
On a Random Walk Survivability Problem With Arc

Failures and Memory

Burak Büke1 J. Cole Smith2

Sadie Thomas3

1School of Mathematics, University of Edinburgh

B.Buke@ed.ac.uk

2Department of Industrial Engineering, Clemson University

jcsmith@clemson.edu

3Department of Industrial and Systems Engineering, University of Florida

sadiethomas@ufl.edu

Abstract

Consider a directed network in which each arc can fail with some specified proba-

bility. An entity arrives on this network at a designated origin node and traverses the

network in a random-walk fashion until it either terminates at a destination node, or

until an arc fails while being traversed. We study the problem of assessing the prob-

ability that the random walk reaches the destination node, which we call the survival

probability of the network. Complicating our analysis is the assumption that certain

arcs have “memory,” in the sense that after a memory arc is successfully traversed, it

cannot fail on any subsequent traversal during the walk. We prove that this problem

is #P-hard, provide methods for obtaining lower and upper bounds on the survival

probability, and demonstrate the e↵ectiveness of our bounding methods on randomly

generated networks.

Keywords: Random walks on graphs, survival probability, computational complexity, network

reliability, #P-hard, Markov chain, heuristics

1

1 Introduction

In this paper, we consider a network G(V,A) having node set V = {1, . . . , n} and directed

arc set A, where a reliability value 0  rij  1 is associated with each arc (i, j) 2 A. We

examine some entity that conducts a random walk starting at node 1 (the origin node) and

seeks to reach node n (the destination node). Define �i = {j 2 V : (i, j) 2 A}, and �i = |�i|.
Given that the entity is currently on node i 2 V , the next arc traversed by the random walk

is determined by selecting arc (i, j), where j 2 �i, with probability 1/�i. We assume that

there exists a directed path from node i to node n, for every i 2 V . This assumption is made

without loss of generality: If no path exists from some i 2 V to n, then we can equivalently

add arc (i, n) with rin = 0 to satisfy the assumption.

The survival probability of a network is the probability that a random walk hits node n

before it encounters an arc that fails while being traversed. In a truly Markovian model,

the probability that an arc fails is independent of the walk’s prior movements, and in fact

a simple conditioning argument can be employed to compute the survival probability (as

we show in Section 3). However, in several settings for which random walk analyses are

conducted, an arc that is successfully traversed once is known to be reliable for the duration

of the walk. This interpretation arises, generally speaking, when the existence of arc (i, j)

is uncertain, and rij refers to the probability that (i, j) exists. A walk that encounters arc

(i, j) and successfully crosses it would confirm that the arc exists, and would guarantee its

reliability in future traversals.

When an arc is known to be reliable after being successfully traversed once, we say that

the arc has memory, or that it is a memory arc. A network may consist of a mixture of

memory arcs and memoryless arcs (e.g., those arcs (i, j) that survive with probability rij

each time they are traversed, independent of the number of times they have already been

traversed). Note that any arc of the form (i, n) is automatically treated as a memoryless

arc for simplicity, because the walk stops upon hitting node n and therefore cannot traverse

any such arc multiple times. We let Am ⇢ A denote the set of memory arcs in our problem.

The problem of calculating the survival probability is called the Random Walk Survivability

problem with Memory (RWSM). Because of the arc memory property, simple Markov-chain

methods are unsuitable for addressing the RWSM problem. In fact, there is no obvious way

to compute a network’s survival probability short of using an exponential-time algorithm.

In this paper, we make three primary contributions. The first demonstrates that RWSM is

in general #P-hard, and in particular, is at least as hard as enumerating all Hamiltonian

paths in a directed network. The second provides two general approaches based on RWSM

modifications, which (respectively) yield lower and upper bounds on the survival probability

2

of a network. The third prescribes a mechanism for strategically constructing these mod-

ifications in order to produce tight bounds on survival probabilities, which we empirically

demonstrate on a set of randomly generated test instances.

The graph theoretic literature is replete with applications in which random walks arise,

or in which they approximate behavior on real networks. One classical application of random

walks appears in the context of electricity grids [9], while more contemporary applications

regard social and recommender networks [5, 17]. We refer the reader to [3, 4, 15] for a

comprehensive treatment of random walks. To motivate this paper and illustrate the problem

setting, consider the stochastic surveillance of a network. An intruder enters the network via

some node, and without knowledge of the network structure, moves randomly in order to

gain access to some target nodes. (The notion of a single possible origin and destination node

for the random walk is made without loss of generality above, and can easily be extended to

the case having multiple possible origin or destination nodes.) Each movement made by the

intruder risks detection by the network owner. In one scenario, the network owner will detect

(with perfect reliability) any arc that is being monitored. The intruder is unsure of which

arcs are being monitored, and assesses the probability that arc (i, j) is being monitored as

1 � rij. Hence, in this case, traversing (i, j) the first time is successful with probability rij;

moreover, if the arc is traversed once, it will be safely traversed each time thereafter, and

hence each arc is treated as a memory arc. In a di↵erent scenario, all arcs are monitored,

but detection on arc (i, j) occurs with probability (1 � rij). In this case, detection on (i, j)

is simply a (memoryless) Bernoulli process, and (i, j) is treated as a memoryless arc with

reliability rij. (Of course, the situation in which arc monitoring and detection are both

probabilities that are less than one is also of interest. This scenario does not satisfy the

assumptions that we make in our model, although our model could be readily adapted to

handle such a scenario.)

One notable application of random walks is the PageRank algorithm [6, 8], which is

used to determine relative importances of web pages. This algorithm models the behavior

of Internet users as a random walk on the network, where web pages are treated as nodes

and the links between pages as directed arcs. Similarly, RWSM can be used to calculate the

probability that a user safely reaches desired information without encountering undesirable

content. This content could be malware in a security context, or could be a competitor’s

advertisement in a sales context. When a user clicks on a link to go from page i to j for the

first time, the user encounters undesirable content with probability 1� rij. (Note that when

the probability depends only on j, a simple transformation exists to convert the RWSM

problem with imperfect arcs to one having imperfect nodes.) Once a link is safely opened,

then it will be safely opened each time thereafter, which justifies the assumption of arcs

3

having memory.

Although the problem we explore in this paper is new, several studies in the literature

examine the probability that a network functions as desired. One particular class of problems

explores a multicommodity flow network with unreliable arcs. The challenge in these prob-

lems is to evaluate the probability that there exists a path connecting each origin-destination

pair after arcs fail. It is in general NP-hard to evaluate network reliability as defined in this

manner [7], and other foundational reliability problems are also known to be #P-hard [22],

as we prove the RWSM to be in this paper. We refer to [12, 13, 14, 18, 23] for studies

that propose algorithms to compute network reliability. One related study of interest was

performed by Shier [21], who approximates a di↵erent network reliability problem by exam-

ining paths of bounded length. As such, the approach in [21] relaxes the probability that

certain arcs might fail in an origin-destination walk. By contrast, our approaches in this

paper di↵er by constructing alternative restrictions and relaxations on survival probability,

and are tailored toward mitigating the complexity induced by the presence of memory arcs.

The remainder of this paper is organized as follows. Section 2 states our main complex-

ity result, showing that RWSM is #P-hard. Section 3 explores lower- and upper-bounding

algorithms for RWSM. Then, we conduct computational experiments in Section 4 that show

the tightness of the suggested bounding methods and illustrate the e↵ectiveness of our rec-

ommended strategies to improve these bounds. Finally, we conclude the paper in Section 5

and discuss possible directions for future research.

2 Problem Complexity

We begin by stating our key complexity result: The RWSM is a #P-hard problem. The

implication of this result is that if a polynomial-time algorithm existed to compute the

survival probability for an RWSM instance, then it would be possible to solve very di�cult

counting problems. In particular, the following proof demonstrates that an e�cient solution

procedure to the RWSM problem would imply an e�cient algorithm for determining the

number of Hamiltonian paths that exist in a directed graph.

Theorem 1. The RWSM problem is #P-hard.

Proof. We demonstrate that the RWSM problem is at least as di�cult as computing the num-

ber of Hamiltonian paths (HPs) in a directed graph with a specified origin and destination.

The HP problem seeks a directed path between two designated nodes such that all nodes in

the network are visited exactly once by the path, and is known to be strongly NP-complete

[11]. Our transformation is from an arbitrary HP instance having nodes V 0 = {1, . . . , n} and

4

arc set A0, with origin node 1 and destination node n. Note that we can assume without loss

of generality that no arcs exist of the form (n, i), for any i = 1, . . . , n� 1.

The RWSM network is initialized exactly as a copy of the HP instance network, with

several modifications described as follows. For each HP node i = 1, . . . , n, split node i

into two nodes, i-in and i-out, and create a split arc directed from i-in to i-out. Every arc

(i, j) 2 A0 is replaced with a temporary arc directed from i-out to j-in; each temporary arc

will later be replaced with a specialized subgraph. All split arcs have a common reliability

value of r (which we will specify at the end of this proof), while the reliability of all other

arcs in the network will equal 1. Node 1-in is the source, and node n-out is the destination

for RWSM.

The next part of our transformation ensures that, given a starting point of i-out (for

i < n), the probability of traversing to j-in is equal to a common value 1/d, for all (i, j) 2 A0.

To achieve this, for each node i = 1, . . . , n�1, create (n� �i) new temporary arcs from i-out

to i-in. (For now, this operation creates parallel arcs in the graph whenever n � �i � 2.

However, our transformation will ultimately ensure that no parallel arcs exist.) Now, every

i-out node has out-degree n, and each arc exiting an i-out node is a temporary arc. Figure

1 illustrates the transformation described thus far, with Figure 1(a) depicting the input

instance, and Figure 1(b) depicting the network obtained after duplicating each node and

adding the required split and temporary arcs.

Next, we replace each temporary arc (i-out, j-in) where (i, j) 2 A0 or i = j, with a

reducing subgraph structure. A reducing subgraph structure is seeded by a chain of k + 1

arcs (i-out, ij
1

), (ij
1

, ij
2

), . . . , (ijk, j-in), where ij
1

, . . . , ijk are k new nodes added to the

network. (Note that a precise value of k will be specified at the end of this proof.) For each

new node ij, add an arc from ij to node n-out. Because each new arc added is not a split

arc, it has 100% reliability. Given that the walk is currently visiting i-out, the probability

that the walk chooses arc (i-out, ij
1

) next (for some j 2 �i) and reaches j-in (instead of

going directly to n-out) is 1/(n2k). Accordingly, we select d = n2k in this transformation.

Figure 1(c) illustrates an example of a reducing subgraph.

It is more convenient to compute the failure probability (given by 1 � probability of

successfully reaching node n-out). We say that the walk takes a “step” each time it attempts

to traverse a split arc. Define usw as the number of walks that (a) have s steps, (b) have

visited w distinct i-out nodes, and (c) terminate at an i-out node that is visited exactly once

in the walk (i.e., the walk is visiting an i-out node for the first time when it terminates).

Note that this value regards the counting of all such walks without regard to arc reliabilities.

Now, defining fs as the probability that the walk fails during step number s, the failure

5

(a) Original network (b) Transformed network

(c) Reducing subgraph with two new nodes to replace arc (3-out, 4-in)

Figure 1: Sample graph transformation before reducing subgraphs.

6

probability is then given as

F =
1X

s=1

fs. (1)

We can compute fs as:

fs =
min{s,n}X

w=1

(usw(1� r)rw�1)

ds�1

=
1� r

ds�1

0

@
min{s,n}X

w=1

uswr
w�1

1

A . (2)

Note that the 1/(ds�1) term captures the probability of taking a given s-step walk that ends

at an i-out node. The (1�r)rw�1 component term accounts for the probability of successfully

making it across (w� 1) split arcs that are visited for the first time, but then failing on the

last split arc visited. The usw term counts how many such unique walks exist. In particular,

we are most interested in unn, which equals the number of n-step walks that visit n distinct

out-nodes; i.e., the number of Hamiltonian paths. Our goal is to select k and r appropriately

so that the coe�cient unn can e�ciently be recovered from the failure probability F .

To accomplish this goal, define ↵sw = (uswrw�1) /ds�1, and consider the sequence ↵
11

,

↵
21

, ↵
22

, ↵
31

, We wish to choose k (which in turn determines d) and r such that:

rw�1/ds�1 >
sX

w0
=w+1

↵sw0 +
1X

s0=s+1

min{s0,n}X

w0
=1

↵s0w0 81  w  s  n. (3)

If (3) holds, then suppose that F is known, and consider the calculation of F/(1� r), given

by:

F/(1� r) =
1X

s=1

min{s,n}X

w=1

↵sw. (4)

Then we can compute usw e�ciently, 81  w  s  n, by the following procedure. Initialize

by setting s = w = 1 and T
1,1 = F/(1� r). Compute

usw =

�
Ts,w

rw�1/ds�1

⌫
, (5)

and then set ↵sw = (uswrw�1)/ds�1) and

Ts,w =

8
<

:
Ts�1,s�1

� ↵s�1,w�1

, if s > 1 and w = 1,

Ts,w�1

� ↵s,w�1

, if 1 < w  s.
(6)

Note that (5) is valid due to the facts that (a) usw is an integer, (b) usw cannot be an integer

greater than the value specified by (5), or else the remaining ↵-values in the summation

7

specified in (4) must be negative, and (c) if usw were less than the value specified by (5), then

the remaining sum of ↵-values would need to exceed rw�1/ds�1, which by (3) is impossible.

Equation (6) updates Ts,w after computing usw. We would then proceed by incrementing w

if w < s, and otherwise (if w = s), by setting s = s + 1 and w = 1. We then compute usw

via (5), and carry this process out until unn is obtained. Therefore, given r and k such that

(3) holds true, unn (the number of Hamiltonian paths) can be e�ciently computed, and thus

the RWSM problem is #P-hard.

To find values for r and k that satisfy (3), we seek to find upper bounds on both terms

appearing in the right-hand side of (3), and then guarantee that rw�1/ds�1 exceeds the upper

bounds on those terms, for 1  w  s  n. First note that
Ps

w0
=w+1

↵sw0 is the probability

of taking an s-step walk with w0 > w unique steps. An upper bound on
Ps

w0
=w+1

↵sw0 is the

probability of the walk not failing on the first w unique steps, multiplied by the probability

of the walk making it across each of s � 1 reducing subgraphs. The first of these values

is simply given by rw. The second of these values is 1/2k(s�1), noting that each temporary

arc is replaced with a reducing subgraph having k intermediate nodes, such that the walk’s

probability of going from i-out to j-in (and not to n-out) on a reducing subgraph is 1/2k.

Therefore, we have:

sX

w0
=w+1

↵sw0  rw/2k(s�1). (7)

The same logic gives
P1

s0=s+1

(
P

min{s0,n}
w0

=1

↵s0w0) is bounded from above by the probability of

the walk successfully traversing s reducing subgraphs, so that:

1X

s0=s+1

min{s0,n}X

w0
=1

↵s0w0  1/2ks. (8)

Therefore, to satisfy (3), it is su�cient to satisfy the following, 81  w  s  n:

rw�1/ds�1 > rw/2k(s�1) + 1/2ks.

By substituting d = n2k, this inequality becomes

rw�1/(ns�12k(s�1)) > rw/2k(s�1) + 1/2ks , (9)

rw�1/ns�1 > rw + 1/2k, (10)

To achieve this, we find r and k such that (a) rw�1/(2ns�1) � rw and (b) rw�1/(2ns�1) �
1/2k. Hence, noting that (a) and (b) can be satisfied for all s and w by considering the case

of s = w = n, we take

r = 1/(2nn�1), (11)

8

and choose the smallest integer k that satisfies the following, where � = log
2

n:

2k > 2nn�1/rn�1 = 2(2�(n�1))(2(2�(n�1)))(n�1) = 2n(�(n�1)+1), i.e.,

k = dn(�(n� 1) + 1)e+ 1. (12)

Note therefore that k is O(n2 log n).

Finally, we verify that the transformation is polynomial in terms of n, the size of the

original HP instance. To do this, we verify that the number of the transformed RWSM

network’s nodes is bounded by a polynomial function of n (which su�ces because there

are no parallel arcs in this network, and the number of arcs is no more than a square of

the number of nodes), and that the numerical data requires a polynomial number of bits

to be represented using a binary encoding. Observe that there are 2n + k(n � 1)n nodes

in the transformed network after splitting all original nodes, adding additional temporary

arcs to make the out-degree of each node equal to some common value n, and replacing

each temporary arc with a k-node reducing subgraph. Noting that k is O(n2 log n), the

number of RWSM nodes is O(n4 log n). Next, the only numerical data used is the reliability

value r for the split arcs, which takes O(n log n) bits to represent, noting the base-2 log of

1/r as computed by (11). Hence, the transformation is polynomial, and this completes the

proof.

3 Bounding Techniques

Computing the survival probability for a random walk having memory arcs is evidently very

di�cult. We thus develop in this section e�cient methods to compute lower and upper

bounds on the survival probability. Section 3.1 focuses on lower-bounding methods, where

we convert a subset of memory arcs to memoryless arcs. In Section 3.2, we describe an upper-

bounding scheme, wherein memory arcs are partitioned into clusters, and the traversal of

one arc in a cluster ensures the reliability of all arcs in the cluster. Each modification serves

to simplify the calculation of the survival probability, at the expense of underestimating (in

Section 3.1) or overestimating (in Section 3.2) this probability. Section 3.3 summarizes our

developments and discusses an implementation technique that we employ in our methods.

3.1 Lower-Bounding Technique

In this section, we first demonstrate how to obtain a lower bound on the survival probability

by assuming that some (or all) of the memory arcs are actually memoryless. Then, we present

a method for calculating the survival probability by using an expanded network having only

9

memoryless arcs. The size of this expanded network grows exponentially as a function of

the number of memory arcs, and therefore it is necessary to limit the number of arcs that

have memory. One strategy would be to treat as memoryless any arc that could be traversed

at most once due to graph connectivity, because the notion of memory on those arcs is not

relevant. (In fact, acyclic graphs prohibit re-traversals of any arc, implying that memory can

be ignored on all arcs, and hence that the network’s survival probability can be determined

in polynomial time.) In general, however, we require a more sophisticated method to most

e↵ectively choose which arcs are treated as memoryless.

First we prove the intuitive result that if a subset of memory arcs is changed to mem-

oryless, the survival probability of this modified problem cannot increase. Suppose that

a random walk is performed on a directed graph G(V,A) having memory arcs Am ✓ A.

Consider a walk w given by the sequence of nodes i
1

� · · · � iz, where (ij, ij+1

) 2 A for

j = 1, . . . , z�1, and where nodes may be repeated in the walk. Now define Nw,i and Nw,(i,j)

as the number of times node i and arc (i, j) are visited during walk w, respectively, and let

W be the set of walks starting at node 1 and terminating at node n. The probability that

walk w 2 W is performed and successfully terminates at node n is given by
0

@
Y

i2V \{n}

1

�i
Nw,i

1

A

0

@
Y

(i,j)2Am
:Nw,(i,j)>0

rij

1

A

0

@
Y

(i,j)2A\Am

rij
Nw,(i,j)

1

A , (13)

where the first term corresponds to the probability of choosing walk w and the remainder

corresponds to the survival probability of walk w. Summing over all possible walks in W

yields the survival probability pAm :

X

w2W

0

@
Y

i2V \{n}

1

�i
Nw,i

1

A

0

@
Y

(i,j)2Am
:Nw,(i,j)>0

rij

1

A

0

@
Y

(i,j)2A\Am

rij
Nw,(i,j)

1

A . (14)

We are now ready to state our lemma.

Lemma 1. Consider a directed graph G(V,A) along with two alternative memory arc sets

Am
1

⇢ Am
2

⇢ A. Then pAm
1
 pAm

2
.

Proof. For the first instance (with memory arcs Am
1

) and any walk w 2 W , we can write the

probability of choosing walk w and successfully reaching node n as
⇣Q

i2V \{n}
1

�i
Nw,i

⌘⇣Q
(i,j)2Am

2 :Nw,(i,j)>0

rij
⌘⇣Q

(i,j)2A\Am
2
rijN

w,(i,j)
⌘

⇣Q
(i,j)2Am

2 \Am
1 :Nw,(i,j)>0

rijN
w,(i,j)�1

⌘


⇣Q

i2V \{n}
1

�i
Nw,i

⌘⇣Q
(i,j)2Am

2 :Nw,(i,j)>0

rij
⌘⇣Q

(i,j)2A\Am
2
rijN

w,(i,j)
⌘
.

Summing over all w 2 W on both sides, we get pAm
1
 pAm

2
.

10

Lemma 1 indicates that the survival probability for the case in which all arcs lack memory

acts as a lower bound. To compute the survival probability in the memoryless case, let Yt

represent the position of the random walk without memory at time t if the walk has not yet

failed; otherwise, Yt represents a cemetery state, ⇥, if the walk has failed by time t. Define

�(i) = P(9t � 0 : Yt = n|Y
0

= i).

By conditioning on our first step, for i = 1, . . . , n� 1 we get

�(i) =
P

j:(i,j)2A
rij
�i
P(9t � 0 : Yt = n|Y

0

= i, Y
1

= j)

=
P

j:(i,j)2A
rij
�i
P(9t � 0 : Yt = n|Y

0

= j)

=
P

j:(i,j)2A
rij
�i
�(j).

The first equality is the result of conditioning on the first time step, the second equality

follows by using the Markov property and time-homogeneity, and the third holds by substi-

tution. Notice that we have �(n) = 1 by definition. Hence, the above result yields n � 1

equations with n� 1 variables.

To write the above equations in matrix form, define the (n� 1)⇥ (n� 1) matrix Q with

entries qij such that

qij =

(
rij
�i

if (i, j) 2 A, i 6= n, j 6= n

0 otherwise
8i, j 2 V \ {n}. (15)

Similarly, define vector b as

bi =

(
rin
�i

if (i, n) 2 A

0 otherwise
8i 2 V \ {n}. (16)

Then the solution of the above equations can be written as

� = (I �Q)�1b,

where I is the (n� 1)-dimensional identity matrix. Note that the Markov chain is absorbing

due to the assumption that there exists a path from every node to node n. Therefore, (I�Q)

is invertible [10, 19].

Next, we give an expansion technique to convert a network having m = |Am| memory

arcs into one having only memoryless arcs. We first make 2m copies of the network G. Each

copy G0 is associated with a di↵erent subset S 0 ✓ Am of memory arcs and the random walk

takes place on G0 if it has successfully crossed all arcs in S 0 (and none in Am \ S 0). All

reliabilities corresponding to arcs in S 0 are perfect, because they have by assumption been

successfully crossed at least once. Hence, when the random walk traverses a memory arc

11

Figure 2: Four-node network in which only arc (3,2) has memory.

(i, j) for the first time, the walk moves from node i in one network G0 (for which (i, j) /2 S 0)

to node j in another copy network G00 (whose visited arc set is S 00 = S 0[{(i, j)}). Note that
the final node n need not be duplicated in this process, and hence the total number of nodes

required in this transformation is given by (n� 1)2m + 1. Before we formalize this method,

we illustrate the idea on the network given in Figure 2, where the walk seeks to reach node 4

from node 1. All arcs have equal reliability r in this example, and only arc (3,2) has memory.

This network is equivalent to the network with memoryless arcs illustrated in Figure 3, i.e.,

when the walk crosses arc (3, 2) the first time, it moves to a parallel network copy in which

arc (3, 2) has reliability 1. To find �(i), we solve the following system of linear equations:

0

BBBBBBBBB@

1 �r/2 �r/2 0 0 0

0 1 �r/2 0 0 0

�r/3 0 1 0 �r/3 0

0 0 0 1 �r/2 �r/2
0 0 0 0 1 �r/2
0 0 0 �r/3 �1/3 1

1

CCCCCCCCCA

0

BBBBBBBBB@

�(1)

�(2)

�(3)

�(1-1)

�(2-1)

�(3-1)

1

CCCCCCCCCA

=

0

BBBBBBBBB@

0

r/2

r/3

0

r/2

r/3

1

CCCCCCCCCA

.

This method thus requires the solution of an (n� 1)2m⇥ (n� 1)2m system of equations.

To develop a lower bound on the survival probability, we can choose k  m arcs to have

memory, treat all remaining arcs as memoryless, and employ the method given above.

To formalize the lower-bounding methodology, suppose a set S ✓ Am of arcs is chosen

to have memory and the complement of S (A\S) is assumed to be memoryless. If |S| = k,

12

Figure 3: Equivalent memoryless network.

13

then S has 2k subsets S
1

, . . . , S
2

k , where S
1

= ; and S
2

k = S. Define the block matrix

Q̃ =

0

BBBB@

Q̃S1,S1 Q̃S1,S2 · · · Q̃S1,S2k

Q̃S2,S1 Q̃S2,S2 · · · Q̃S2,S2k

...
...

. . .
...

Q̃S2k ,S1 Q̃S2k ,S2 · · · Q̃S2k ,S2k

1

CCCCA
.

For 1  u  2k, 1  v  2k, matrix Q̃Su,Sv is an (n � 1) ⇥ (n � 1) matrix that has entries

q̃Su,Sv
ij defined as

q̃Su,Sv
ij =

8
>>>><

>>>>:

1

�i
if Su = Sv, (i, j) 2 Su

rij
�i

if Su = Sv, (i, j) 2 A\S
rij
�i

if Sv = Su [{(i, j)}, (i, j) 2 S\Su

0 otherwise.

Next, define b̃ as a column vector with (n� 1)2k entries. Let j(i) = i mod (n� 1) if i is not

a multiple of n� 1, and j(i) = (n� 1) otherwise. The b̃-vector is given as:

b̃i =

(
rj(i)n
�i

if (j(i), n) 2 A

0 otherwise.
(17)

Then, by solving � = (I � Q̃)�1b̃, a lower bound is given by �(1), where I is the (n� 1)2k-

dimensional identity matrix.

The method described above yields a valid lower bound for any choice of S ⇢ Am.

However, we can possibly improve this lower bound by strategically choosing arcs in S.

Consider the survival probability calculation in which there exists only one memory arc, i.e.,

Am = {(i
1

, j
1

)} for some arc (i
1

, j
1

) 2 A. The following analysis quantifies the increase in

survival probability by having memory on this arc. To simplify our notation we define

⇢(i) = P(walk hits node n without crossing arc (i
1

, j
1

)|Y
0

= i)

 (i) = P(walk attempts to cross arc (i
1

, j
1

) before hitting node n|Y
0

= i).

Notice that (i) calculates the probability that the walk hits node i
1

and attempts to traverse

(i
1

, j
1

), without accounting for failure or success while crossing arc (i
1

, j
1

). To calculate ⇢(i)

and (i) for each i 2 V \ {n}, we define matrix C̃i1j1 such that c̃i1j1 = 0 and c̃ij = qij as

defined above when (i, j) 2 A \ {(i
1

, j
1

)}. Define b as in (16) and define vector ci1 such that

ci1i1 = 1/�i1 and ci1i = 0 for i 2 V \ {i
1

, n}. Then, we can calculate ⇢ and as

⇢ = (I � C̃i1j1)
�1b

 = (I � C̃i1j1)
�1ci1 .

14

Let �(1, t) be the probability of reaching the destination node n after crossing arc (i
1

, j
1

)

exactly t times given that the walk starts from node 1. Hence,

�(1) =
1X

t=0

�(1, t). (18)

From the definition, �(1, 0) = ⇢(1). For �(1, 1), the walk must cross (i
1

, j
1

) once, and

then arrive at node n without attempting to cross (i
1

, j
1

) again. Hence,

�(1, 1) = (1)ri1j1⇢(j1).

Similarly, we can calculate �(1, t) as

�(1, t) = (1)ri1j1 (j1)
t�1⇢(j

1

), t � 2. (19)

Replacing the expression given by (19) in (18) yields

�(1) = ⇢(1) +
ri1j1 (1)⇢(j1)

1� (j
1

)
. (20)

Lemma 2. The increase in the survival probability by having memory on arc (i
1

, j
1

) is

��
(i1,j1) =

ri1j1(1� ri1j1) (1) (j1)⇢(j1)

(1� (j
1

))(1� ri1j1 (j1))
. (21)

Proof. The survival probability when arc (i
1

, j
1

) has memory is given by (20). If the arc

were not to have memory, �(1, 0) and �(1, 1) would not change, but for t � 2, we would

modify (19) as

�(1, t) = (1)rti1j1 (j1)
t�1⇢(j

1

),

and hence the total probability would be

⇢(1) +
ri1j1 (1)⇢(j1)

1� ri1j1 (j1)
. (22)

Subtracting (22) from (20), the result follows.

Lemma 2 quantifies the gain by having memory on a given arc, while all other arcs are

memoryless. As a heuristic means to select a set of k < m arcs that have memory, we

calculate (21) for each arc, sort the arcs in nonincreasing order of these values, and select

the first k arcs to have memory.

15

3.2 Upper-Bounding Technique

In Section 3.1 we obtained a lower bound on the survival probability by assuming that a

subset of the arcs remain unreliable, even after they are successfully crossed. By contrast,

we obtain an upper bound in this section by assuming that some arcs may become fully

reliable even before they are crossed.

Toward this objective, we partition the set of memory arcs Am into k clusters A
1

, . . . , Ak.

Then, we assume that once one arc in a cluster is traversed, all other arcs in the same cluster

become fully reliable. The following lemma formally states the key upper-bounding principle

used in this section.

Lemma 3. Let W be the set of all origin-destination walks on G, and let Hw ✓ {A
1

, . . . , Ak}
be the set of all clusters such that walk w 2 W visits at least one arc in the cluster. Define

�h,w as the first arc crossed in cluster Ah 2 Hw during walk w 2 W . Then

X

w2W

0

@
Y

i2V \{n}

1

�N
w,i

i

1

A

Y

Ah2Hw

r�h,w

!0

@
Y

(i,j)2A\Am

rN
w,(i,j)

ij

1

A (23)

is an upper bound on the survival probability.

Proof. The result follows by comparing (14) and (23).

Because (23) requires enumerating all origin-destination walks, calculating the upper

bound using this formula is generally impractical. However, using the intuition behind the

upper-bounding clusters, let T = {1, . . . , k} and T
1

, . . . , T
2

k be the subsets of T . We now

define the following block matrix:

B̃ =

0

BBBB@

B̃T1,T1 B̃T1,T2 · · · B̃T1,T2k

B̃T2,T1 B̃T2,T2 · · · B̃T2,T2k

...
...

. . .
...

B̃T2k ,T1 B̃T2k ,T2 · · · B̃T2k ,T2k

1

CCCCA
.

Define Ul =
S

i2Tl
Ai. For 1  u  k, 1  v  k, matrix B̃Tu,Tv is an (n�1)⇥ (n�1) matrix

with entries b̃Tu,Tv
ij defined as

b̃Tu,Tv
ij =

8
>>>><

>>>>:

1

�i
if Tu = Tv, (i, j) 2 Uu

rij
�i

if Tu = Tv, (i, j) 2 A\Am

rij
�i

if 9l 2 T : Uv = Uu [Al, (i, j) 2 Al, and Al \ Uu = ;
0 otherwise.

16

Defining the (n�1)2k-dimensional column vector b̃ as in (17), we set � = (I� B̃)�1b̃ and

obtain an upper bound of �(1) on the survival probability.

Similar to the lower-bounding method, the upper-bounding method is valid for any parti-

tioning of the set of memory arcs. The next two subsections detail approaches for improving

the upper bound based on our choice of the partitioning scheme.

3.2.1 Strategic clustering approaches

Following the same principle given in Section 3.1, we will attempt to partition arcs into

clusters, so that the overestimation in the upper bound caused by placing multiple arcs in a

common cluster is mitigated. Accordingly, we devise a metric that assesses the overestimation

in the upper bound due to placing distinct arcs (i
1

, j
1

) and (i
2

, j
2

) in the same cluster. Toward

this goal, suppose that no arc aside from (i
1

, j
1

) and (i
2

, j
2

) has memory. We can write the

survival probability as follows:

�(1) = P(hitting n without crossing (i
1

, j
1

) or (i
2

, j
2

)|Y
0

= 1)

+P(hitting n after crossing only (i
1

, j
1

)|Y
0

= 1)

+P(hitting n after crossing only (i
2

, j
2

)|Y
0

= 1)

+P(hitting n after crossing (i
1

, j
1

) first and then (i
2

, j
2

)|Y
0

= 1)

+P(hitting n after crossing (i
2

, j
2

) first and then (i
1

, j
1

)|Y
0

= 1).

(24)

We seek to compute the di↵erence in (24) when (i
1

, j
1

) and (i
2

, j
2

) are assigned to the same

cluster, and when they are assigned to di↵erent clusters. In both cases, the first three

terms of (24) will be identical. For simplicity in notation, we replace e
1

= (i
1

, j
1

) and

e
2

= (i
2

, j
2

) where convenient below. Define P s
1

and P s
2

to be the fourth and fifth terms of

(24), respectively, when e
1

and e
2

are assigned to the same cluster, and define P d
1

and P d
2

analogously when e
1

and e
2

are assigned to di↵erent clusters. For the fourth term of (24),

we have

P s
1

= P(hitting n after crossing e
1

first and then e
2

|Y
0

= 1)

= P(attempting to cross e
1

before crossing e
2

|Y
0

= 1)re1
⇥P(crossing e

2

and then hitting n|Y
0

= j
1

, re1 := 1),

(25)

where the notation re1 := 1 indicates that the reliability of arc e
1

is set to 1 in the calculation

of this probability term. When these arcs are in di↵erent clusters, we have

P d
1

= P(attempting to cross e
1

before crossing e
2

|Y
0

= 1)re1re2
⇥P(crossing e

2

and then hitting n|Y
0

= j
1

, re1 := 1).
(26)

The values for P s
2

and P d
2

are similarly defined for the case in which the walk reaches n after

crossing e
2

before crossing e
1

by swapping e
1

and e
2

in (25) and (26). To calculate these

17

values, we must compute for each i 2 V \ {n}:

↵e1\e2(i) = P(attempting to cross e
1

without crossing e
2

|Y
0

= i)

 e2|e1(i) = P(attempting to cross e
2

|Y
0

= i, re1 := 1)

�e1,e2(i) = P(walk hits node n|Y
0

= i, re1 := 1, re2 := 1).

In computing the ↵-values, the walk should fail if arc e
2

or any arc of the form (i, n), for

i 2 V , is traversed. The walk should terminate if it attempts to traverse e
1

. Similar logic

holds for , except that because e
1

was already crossed, its reliability should be perfect,

and if the walk attempts to traverse e
2

, then the walk ends successfully. Finally, the �

calculation simply assumes that arc reliabilities for e
1

and e
2

are perfect, and that the walk

terminates at node n. Therefore, to calculate these values, we require slight modifications of

the (n�1)⇥(n�1) matrix Q derived in Section 3.1. Define matrix C̃A1
A0

exactly as matrix Q,

but where all arcs in A
0

have reliability 0 and all arcs in A
1

have reliability 1. For example,

in the computation of , we will use C̃e1
e2
, which indicates that the entry corresponding to

e
1

is set to 1/�i1 (a perfect-reliability arc), and the entry corresponding to e
2

is set to 0 (a

result of the walk terminating when it attempts to traverse this arc). Recall that vector ci

is the zero vector except where cii = 1/�i. Using the conditioning argument in Section 3.1,

we can write

↵e1\e2 = (I � C̃e1,e2)
�1ci1

 e2|e1 = (I � C̃e1
e2
)�1ci2

�e1,e2 = (I � C̃e1,e2)�1b,

where b is given by (16). Using this notation, we can write

P s
1

+ P s
2

= ↵e1\e2(1)re1 e2|e1(j1)�e1,e2(j2) + ↵e2\e1(1)re2 e1|e2(j2)�e1,e2(j1)

P d
1

+ P d
2

= ↵e1\e2(1)re1re2 e2|e1(j1)�e1,e2(j2) + ↵e2\e1(1)re2re1 e1|e2(j2)�e1,e2(j1).

Taking the di↵erence, we can quantify the loss coe�cient `
12

, i.e., the upper-bound increase

due to assigning e
1

and e
2

to the same cluster, as

`
12

= (P s
1

+ P s
2

)� (P d
1

+ P d
2

) = ↵e1\e2(1)re1(1� re2) e2|e1(j1)�e1,e2(j2)

+ ↵e2\e1(1)re2(1 � re1) e1|e2(j2)�e1,e2(j1). (27)

Given `uv, for each pair of arcs (iu, ju) and (iv, jv), we suggest the following clustering

algorithm. Define PA as the set of arcs that have been assigned to a cluster, PU as the set of

unassigned arcs, and k ( m) as the number of clusters used in the upper-bounding scheme.

The first phase of our algorithm seeds each cluster with a single arc. We begin this phase by

placing arc (i
1

, j
1

) (arbitrarily) in the first cluster, and move (i
1

, j
1

) from PU to PA (as we

18

do each time an arc is assigned to a cluster). For each subsequent cluster, we use a max-min

approach to determine the first arc to be assigned to the cluster. For each arc (iv, jv) 2 PU ,

we compute `uv over all arcs (iu, ju) 2 PA. We then let v⇤ 2 argmaxv2PU
{minu2PA{`uv}},

i.e., placing arc (iv⇤ , jv⇤) in a cluster with any other assigned arc results in the maximum loss

coe�cient over all unassigned arcs, even if (iv⇤ , jv⇤) is assigned to a cluster that minimizes its

loss coe�cient. Arc (iv⇤ , jv⇤) becomes the first arc assigned to the next empty cluster. Once

each cluster is nonempty, we assign all remaining arcs in PU to clusters as follows. While PU

is nonempty, we find an arc (iu, ju) 2 PU and cluster Ah that minimizes the sum of `uv over

all arcs (iv, jv) already assigned to Ah, and place arc (iu, ju) into cluster Ah. The procedure

repeats until all arcs are assigned to a cluster.

3.2.2 Reducing upper-bound overestimation within clusters

Observe that for each cluster Ah and arc (i, j) 2 Ah, the foregoing method accounts only for

the probability of failing on (i, j) if it is the first arc traversed in Ah. However, it is possible

to tighten the upper-bound estimate by examining the maximum probability that the walk

does not fail on any arc in Ah, starting from arc (i, j). In this manner, we can possibly

(depending on the problem instance) account for other arc reliabilities in the cluster aside

from rij.

Let �h,w 2 Ah be the first arc traversed in cluster Ah during walk w, and define W�h,w as

the set of all origin-destination walks that cross arc �h,w, and do so before any other arc in

Ah is traversed. Then, we can write the second product in (13) as

Y

(i,j)2Am
:Nw,(i,j)>0

rij =
Y

Ah2Hw

!Ah
, where !Ah

=
Y

(i,j)2Ah:Nw,(i,j)>0

rij, 8Ah 2 Hw.

Lemma 3 bounds !Ah
from above by r�h,w . We attempt to improve this bound by computing

the maximum possible value of !Ah
over all walks that visit �h,w before any other arc in

cluster Ah. Toward this goal, consider the following inequality:

Y

(i,j)2Ah:Nw,(i,j)>0

rij  max
w̄2W

�h,w

8
<

:
Y

(i,j)2Ah:N w̄,(i,j)>0

rij

9
=

;

= exp

0

@ max
w̄2W

�h,w

8
<

:
X

(i,j)2Ah:N w̄,(i,j)>0

ln rij

9
=

;

1

A

= exp

0

@� min
w̄2W

�h,w

8
<

:
X

(i,j)2Ah:N w̄,(i,j)>0

� ln rij

9
=

;

1

A . (28)

19

Inequality (28) suggests a possible improvement to the foregoing upper bound, wherein

all arcs in Ah become perfectly reliable after arc �h,w = (i, j) was initially traversed. In

particular, we can revise the reliability of arc �h,w to take on the right-hand side of (28)

(which is no more than r�h,w), thus incorporating the reliability of other arcs within Ah that

must inevitably be traversed before reaching node n, given that the walk enters Ah via �h,w.

The challenge remains to compute this right-hand side value e�ciently.

The minimization problem appearing in (28) corresponds to the optimal objective func-

tion value of a shortest-path problem from the to-node of arc �h,w to node n, multiplied

by r�h,w . Intuitively, this shortest-path cost corresponds to the most reliable path from the

to-node of �h,w to node n, given that all arc reliabilities are perfect except for those belonging

to Ah. Thus, we seek the shortest-path cost from the to-node of �h,w and node n on the

same network G(V,A) defined for the RWSM instance, where each arc (i, j) 2 Ah for which

rij > 0 has a cost of � ln rij, each arc (i, j) 2 Ah for which rij = 0 is deleted, and all other

arcs have a cost of zero.

Instead of individually computing each such shortest path, an alternative approach em-

ploys (backwards) Dijkstra’s algorithm, which computes optimal shortest-path costs for all

nodes in V to node n in time proportional to O(|A|+ n log n) [2]. Hence, our strategy com-

putes the shortest-path cost, ✓hi , from every node i to node n for each cluster Ah (generating

the appropriate arc costs for Ah). The reliability value for arc (i, j) 2 Ah is then revised to

rij multiplied by exp(�✓hj).

3.3 The Bounding Algorithms

Now, we state the bounding algorithms formally using the ideas developed in the previous

sections. In the discussion below, I denotes the identity matrix having appropriate dimen-

sions. The bounding algorithms are outlined in Algorithms 1 and 2.

The algorithm to calculate lower and upper bounds for the survival probability requires

the solution of many linear systems of equations. A close investigation of these systems

shows that the matrices to be inverted have similar structure, di↵ering by only one or two

entries. Hence, the inverse of the related matrices can be calculated by updating a previous

inverse, which takes only O(n2) operations. To achieve this, we rely on the following lemma.

Lemma 4. (Miller [16]) If G is invertible and H is rank one, then

(G+H)�1 = G�1 � 1

1 + g
G�1HG�1, (29)

where g = trace(HG�1).

20

Algorithm 1 Finding a lower bound on the survival probability.
Require: Network G(V,A) with reliabilities, set of memory arcs Am, and k

1

(the number

of memory arcs used to calculate the lower bound)

Set b as in (16)

for all (i, j) 2 Am
do

Set C̃ij and ci as in Section 3.1

Set ⇢ (I � C̃ij)�1b and (I � C̃ij)�1ci

Set ��
(i,j) as in (21)

end for

Sort ��
(i,j) in nonincreasing order and choose the first k

1

arcs to belong to set S (to have

memory).

Set Q̃ and b̃ as in Section 3.1

� (I � Q̃)�1b̃

return Lower Bound: �(1)

For a given (i, j) 2 Am, we define the rank-one (n� 1)⇥ (n� 1) matrix D̃ij(x) having all

zero entries except for dij = x. Suppose that we have F = (I �Q)�1 with entries fkl. Then

(I � C̃ij)�1 = (I �Q+ D̃ij(rij
�i
))�1

= (I �Q)�1 � 1

1+g
(I �Q)�1D̃ij(rij

�i
)(I �Q)�1,

where g = rijfji/�i and

(I �Q)�1D̃ij(rij)(I �Q)�1 =
rij
�i

0

BBBB@

f
1ifj1 f

1ifj2 · · · f
1ifj(n�1)

f
2ifj1 f

2ifj2 · · · f
2ifj(n�1)

...
...

. . .
...

f
(n�1)ifj1 f

(n�1)ifj2 · · · f
(n�1)ifj(n�1)

1

CCCCA
.

The other inverse matrices needed in the bounding algorithm can be iteratively updated in

this manner. For example, given e
1

= (i
1

, j
1

) 2 Am and e
2

= (i
2

, j
2

) 2 Am:

(I � C̃e2
e1
)�1 = (I � C̃e1 + D̃e2(

ri2j2�1

�i2
))�1

= (I � C̃e1)
�1 � 1

1+g
(I � C̃e1)

�1D̃e2(
ri2j2�1

�i2
)(I � C̃e1)

�1,

where g is defined accordingly.

While calculating the lower and upper bounds, we need to invert n2k ⇥ n2k matrices,

I � Q̃ and I � B̃, which would evidently require O(n323k) operations. However, note that

Q̃Su,Sv is a matrix of all zeros if Su 6✓ Sv, and a similar result holds for B̃Tu,Tv . Hence, both

matrices are block upper-diagonal matrices, and both I� Q̃ and I� B̃ can be inverted using

O(n322k) operations. This time can be further reduced using Lemma 4.

21

Algorithm 2 Finding an upper bound on the survival probability.
Require: Network G(V,A) with reliabilities, set of memory arcs Am, k

2

(the number of

clusters used to calculate the upper bound)

Set T
1

= · · · = Tk2 = ;, T = ; (T represents the arcs classified so far, i.e., T =
Sk2

l=1

Tl)

{Assign one arc to each cluster}
Assign (i

1

, j
1

) 2 T
1

, (i
1

, j
1

) 2 T

k 2

for all k = 2, . . . , k
2

do

for all e
1

= (i
1

, j
1

) 2 Am\T, e
2

= (i
2

, j
2

) 2 T do

Set ↵e2\e1 ,↵e1\e2 , e1|e2 , e2|e1 and �e1,e2 as in Section 3.2.

Compute `e1,e2 as in (27)

end for

Choose (i⇤, j⇤) 2 argmax
(i,j)2Am\T{min

(u,v)2T `(i,j),(u,v)}
Assign (i⇤, j⇤) to Tk and T

end for

{Assign the remaining arcs to the clusters}
while T 6= Am

do

for all (i, j) 2 Am\T and 1  k  k
2

do

Set `k
(i,j)

P
(u,v)2Tk

`
(i,j),(u,v)

end for

Choose (i⇤, j⇤, k⇤) 2 arg min
(i,j)2T\Am

⇢
min

k=1,...,k2
`k
(i,j)

�

Assign (i⇤, j⇤) to Tk⇤ and T

end while

{Calculate an upper bound based on the arc clustering found above}
Set B̃ and b̃ as in Section 3.2

� (I � B̃)�1b̃

return Upper Bound: �(1)

22

4 Computational Results

Now, we turn our attention to an empirical analysis of the concepts introduced in Section 3.

Given a network G(V,A), along with a set of arc reliabilities, recall from Lemma 1 that the

survival probability for the memoryless-arc case is no more than that for the case in which

arcs have memory. We first empirically quantify the impact of having memory in our first

set of experiments in Section 4.1, along with the e↵ect of varying reliability values and arc

density. In Section 4.2, we study the tightness of the lower and upper bounds presented

in Sections 3.1 and 3.2, respectively. We perform all experiments on randomly generated

networks using Algorithm 3. This algorithm places an arc between each possible node pair

with probability p (where p is a pre-specified network density parameter), and assigns a

reliability value uniformly generated on the interval [l, u] for each arc. We require that there

is at least one path between the origin and the destination node to avoid trivialities. If a

generated network does not satisfy this property, we reject the network and generate another

one.

4.1 Impact of Arc Memory on Survival Probability

Recall that calculating the (exact) survival probability requires the solution of an (n� 1)2m

square system of equations, where n is the number of nodes and m is the number of memory

arcs. Thus, in order to perform calculations on dense networks, we initially consider seven-

node networks in which each arc has a common reliability value. To explore the relationship

between arc reliability and survival probability with respect to memory, we examine the

relative survival probabilities of the cases in which arcs have memory and lack memory.

Specifically, define the impact of memory to be the di↵erence in survival probabilities with

and without memory, divided by the survival probability of the memory case. Table 1 and

Figure 4 illustrate the impact of memory as a function of r. When r = 0 and r = 1,

the survival probability is given by 0 and 1, respectively, for both memory and memoryless

cases. Hence, arc memory has no impact for these boundary cases. We expect the impact

of memory to initially increase with r, and then decrease as r approaches 1. We observe

that the maximum impact generally occurs when r is relatively close to 1. To magnify the

impact of having memory, our subsequent analysis will thus focus on common arc reliability

r = 0.9.

23

Algorithm 3 Generating random graphs for testing the proposed methods.
Require: Set of nodes (V), network density parameter (p), reliability lower bound (l) and

reliability upper bound (u)

Set pathflag = false

while pathflag = false do

A ;
for all i = 1, . . . , |V | and j = 1, . . . , |V | do
Generate an arc from node i to node j with probability p

if arc (i, j) is generated then

Set A A [{(i, j)}
Generate rij uniformly between l and u

else

Set rij 0

end if

end for

Set Q and b as in (15) and (16)

if a path from 1 to n exists using arcs A then

�(1) (I �Q)�1b

Set pathflag = true

end if

end while

return G(V,A) and r

24

r = 0.25 r = 0.50 r = 0.75

Arcs Memory Memoryless Memory Memoryless Memory Memoryless

10 1.007⇥10�1 1.000⇥10�1 2.559⇥10�1 2.500⇥10�1 5.189⇥10�1 5.000⇥10�1

10 5.907⇥10�2 5.845⇥10�2 1.545⇥10�1 1.477⇥10�1 3.595⇥10�1 3.220⇥10�1

10 2.138⇥10�2 2.051⇥10�2 1.083⇥10�1 1.000⇥10�1 3.439⇥10�1 3.102⇥10�1

12 5.248⇥10�3 4.775⇥10�3 5.222⇥10�2 4.455⇥10�2 2.478⇥10�1 2.478⇥10�1

12 1.806⇥10�3 1.572⇥10�3 2.326⇥10�2 1.767⇥10�2 1.586⇥10�1 1.080⇥10�1

12 1.358⇥10�1 1.347⇥10�1 3.044⇥10�1 3.009⇥10�1 5.503⇥10�1 5.380⇥10�1

14 1.405⇥10�3 1.405⇥10�3 1.574⇥10�2 1.370⇥10�2 1.043⇥10�1 7.692⇥10�2

14 2.670⇥10�3 2.458⇥10�3 2.941⇥10�2 2.511⇥10�2 1.685⇥10�1 1.336⇥10�1

14 1.330⇥10�1 1.327⇥10�1 2.936⇥10�1 2.911⇥10�1 5.246⇥10�1 5.134⇥10�1

16 1.841⇥10�2 1.721⇥10�2 9.204⇥10�2 8.271⇥10�2 2.939⇥10�1 2.604⇥10�1

16 2.033⇥10�2 1.981⇥10�2 9.467⇥10�2 9.001⇥10�2 2.919⇥10�1 2.693⇥10�1

16 5.511⇥10�2 5.490⇥10�2 1.341⇥10�1 1.313⇥10�1 2.999⇥10�1 2.794⇥10�1

18 5.511⇥10�2 5.486⇥10�2 1.332⇥10�1 1.304⇥10�1 2.913⇥10�1 2.735⇥10�1

18 9.544⇥10�4 9.113⇥10�4 1.100⇥10�2 9.949⇥10�3 7.288⇥10�2 5.949⇥10�2

18 9.329⇥10�2 9.308⇥10�2 2.175⇥10�1 2.155⇥10�1 4.201⇥10�1 4.084⇥10�1

20 1.252⇥10�2 1.222⇥10�2 6.558⇥10�2 6.242⇥10�2 2.303⇥10�1 2.124⇥10�1

20 5.805⇥10�3 5.678⇥10�3 2.896⇥10�2 2.751⇥10�2 1.077⇥10�1 9.478⇥10�2

20 5.444⇥10�2 5.433⇥10�2 1.277⇥10�1 1.263⇥10�1 2.715⇥10�1 2.589⇥10�1

Table 1: Survival probabilities for randomly generated seven-node networks.

25

(a) A 7-node, 12-arc network (b) A 7-node, 14-arc network

(c) A 7-node, 16-arc network (d) A 7-node, 18-arc network

Figure 4: Ratio of survival probabilities (given by (memory-memoryless)/memoryless) as a

function of arc reliabilities.

26

4.2 Computational Results of the Bounding Techniques

The second topic we investigate regards the e↵ectiveness of the lower- and upper-bounding

techniques introduced in Section 3 in estimating survival probability. Table 2 and Figures 5

and 6 present the performance of our lower- and upper-bounding techniques on six di↵erent

networks having various sizes, and Table 3 presents the total computation time required to

obtain bounds for these networks. These instances are randomly generated using Algorithm 3

with two caveats. One, the probability of generating an arc of the form (i, n) is p = 0.3 for

the less-dense instances (where (n,m) = (8, 18), (12, 30), and (20, 84)) and is p = 0.4 for the

denser instances (where (n,m) = (8, 26), (12, 42), and (20, 110)). Two, recall that a common

value of r is set to 0.9 in order to magnify the impact of arc memory. The arcs of the form

(i, n) may only be crossed once and the walk terminates after one of these arcs is crossed.

Hence, we treat these arcs as memoryless and assume that all other arcs in the original

network have memory.

The column labeled LB Memory Arcs/Clusters in Table 2 indicates the number of

memory arcs in the lower-bounding case (k
1

) or the number of clusters (k
2

) in the upper-

bounding case. In the following text, we thus refer to k (= k
1

= k
2

) as the number of memory

arcs or clusters. Recall that Algorithms 1 and 2 include methods to specify the composition

of the memory arcs or clusters: We refer to the use of these methods as “strategic selection”

for the lower-bounding scheme and “strategic clustering” for the upper-bounding scheme.

An alternative mechanism would simply randomly select arcs to have memory in the lower-

bounding scheme, and randomly partition the arcs into k clusters in the upper-bounding

scheme. Hence, the fourth and fifth columns correspond to lower-bound values when the

memory arcs are chosen strategically and randomly, respectively. Similarly, the sixth and

seventh columns respectively correspond to strategic and random clustering methods for

obtaining upper bounds. Table 2 shows that the bounds become progressively tighter as we

increase k and employ the strategic methods developed in Section 3.

Table 3 indicates that the computation times for strategically and randomly chosen arcs

or clusters are comparable. This indicates that the major computational burden lies in

solving the resulting set of equations, and that the computational e↵ort required for strategic

selection takes a negligible amount of time. For large k, the computational time roughly

doubles if k increases by one: As a result, the computation times for computing bounds with

k = 20 are approximately 32 times longer than when k = 15. Slightly more computational

e↵ort is required to calculate upper bounds than lower bounds, because the matrix to be

inverted when solving the required system of equations is denser.

To further investigate the e↵ect of strategic selection, we compared the bounds obtained

27

Nodes Arcs
LB Memory Arcs/ LB LB UB UB

Clusters Strategic Random Strategic Random

8 18

0 4.634⇥10�1 4.634⇥10�1 — —

5 4.794⇥10�1 4.753⇥10�1 6.549⇥10�1 6.663⇥10�1

10 4.965⇥10�1 4.907⇥10�1 5.707⇥10�1 5.824⇥10�1

15 5.149⇥10�1 5.135⇥10�1 5.380⇥10�1 5.427⇥10�1

18 5.268⇥10�1 5.268⇥10�1 5.268⇥10�1 5.268⇥10�1

8 26

0 5.131⇥10�1 5.131⇥10�1 — —

5 5.211⇥10�1 5.187⇥10�1 6.686⇥10�1 6.790⇥10�1

10 5.273⇥10�1 5.239⇥10�1 5.977⇥10�1 6.048⇥10�1

15 5.338⇥10�1 5.290⇥10�1 5.695⇥10�1 5.765⇥10�1

20 5.399⇥10�1 5.381⇥10�1 5.570⇥10�1 5.635⇥10�1

12 30

0 1.375⇥10�1 1.375⇥10�1 — —

5 1.496⇥10�1 1.423⇥10�1 5.452⇥10�1 5.569⇥10�1

10 1.617⇥10�1 1.509⇥10�1 3.729⇥10�1 3.814⇥10�1

15 1.799⇥10�1 1.655⇥10�1 2.874⇥10�1 3.095⇥10�1

20 1.876⇥10�1 1.791⇥10�1 2.475⇥10�1 2.666⇥10�1

12 42

0 2.100⇥10�1 2.100⇥10�1 — —

5 2.202⇥10�1 2.150⇥10�1 5.560⇥10�1 5.668⇥10�1

10 2.251⇥10�1 2.163⇥10�1 4.055⇥10�1 4.178⇥10�1

15 2.291⇥10�1 2.191⇥10�1 3.359⇥10�1 3.473⇥10�1

20 2.330⇥10�1 2.235⇥10�1 2.999⇥10�1 3.099⇥10�1

20 84

0 2.338⇥10�1 2.338⇥10�1 — —

5 2.406⇥10�1 2.350⇥10�1 5.565⇥10�1 5.683⇥10�1

10 2.424⇥10�1 2.357⇥10�1 4.106⇥10�1 4.318⇥10�1

15 2.437⇥10�1 2.374⇥10�1 3.451⇥10�1 3.652⇥10�1

20 2.449⇥10�1 2.380⇥10�1 3.128⇥10�1 3.277⇥10�1

20 110

0 2.697⇥10�1 2.697⇥10�1 — —

5 2.733⇥10�1 2.701⇥10�1 5.678⇥10�1 5.824⇥10�1

10 2.745⇥10�1 2.716⇥10�1 4.347⇥10�1 4.515⇥10�1

15 2.755⇥10�1 2.711⇥10�1 3.748⇥10�1 3.886⇥10�1

20 2.761⇥10�1 2.713⇥10�1 3.440⇥10�1 3.578⇥10�1

Table 2: Bound comparison using strategic and random selection/clustering methods.

28

Nodes Arcs
LB Memory Arcs/ LB LB UB UB

Clusters Strategic Random Strategic Random

8 18

0 ⇡ 0 ⇡ 0 — —

5 ⇡ 0 ⇡ 0 0.03 ⇡ 0

10 0.03 0.03 0.06 0.03

15 1.12 1.13 1.32 1.28

18 9.59 9.56 11.23 11.11

8 26

0 ⇡ 0 ⇡ 0 — —

5 ⇡ 0 ⇡ 0 0.06 ⇡ 0

10 0.04 0.03 0.12 0.05

15 1.14 1.13 1.45 1.41

20 40.81 40.80 51.36 51.12

12 30

0 ⇡ 0 ⇡ 0 — —

5 ⇡ 0 ⇡ 0 0.1 ⇡ 0

10 0.04 0.04 0.14 0.05

15 1.38 1.39 1.80 1.69

20 49.03 48.99 60.93 60.65

12 42

0 ⇡ 0 ⇡ 0 — —

5 ⇡ 0 ⇡ 0 0.18 ⇡ 0

10 0.04 0.04 0.25 0.05

15 1.39 1.39 2.13 1.94

20 48.99 49.24 66.41 66.31

20 84

0 ⇡ 0 ⇡ 0 — —

5 0.01 ⇡ 0 1.08 ⇡ 0

10 0.07 0.05 1.22 0.08

15 1.93 1.91 4.04 2.84

20 65.74 65.62 101.91 101.13

20 110

0 ⇡ 0 ⇡ 0 — —

5 0.01 ⇡ 0 1.87 ⇡ 0

10 0.06 0.06 2.06 0.09

15 1.93 1.89 5.21 3.15

20 65.77 66.33 114.43 112.27

Table 3: Computation times for obtaining lower and upper bounds (in seconds).

29

(a) 8 nodes with 18 arcs (b) 8 nodes with 26 arcs

(c) 12 nodes with 30 arcs (d) 12 nodes with 42 arcs

(e) 20 nodes with 84 arcs (f) 20 nodes with 110 arcs

Figure 5: Lower bounds with strategically and randomly chosen arcs.

30

(a) 8 nodes with 18 arcs (b) 8 nodes with 26 arcs

(c) 12 nodes with 30 arcs (d) 12 nodes with 42 arcs

(e) 20 nodes with 84 arcs (f) 20 nodes with 110 arcs

Figure 6: Upper bounds with strategically and randomly chosen clusters.

31

Nodes
Total LB Memory

LB
str

E(LB
rand

)
LB

str

� LB
rand

Arcs Arcs min max

8 22

6 6.508⇥10�1 6.467⇥10�1 1.66⇥10�3 5.78⇥10�3

12 6.556⇥10�1 6.522⇥10�1 1.41⇥10�3 5.07⇥10�3

18 6.595⇥10�1 6.576⇥10�1 6.60⇥10�4 3.16⇥10�3

12 34

6 5.154⇥10�1 5.120⇥10�1 2.04⇥10�3 4.36⇥10�3

12 5.220⇥10�1 5.172⇥10�1 3.20⇥10�3 5.94⇥10�3

18 5.274⇥10�1 5.226⇥10�1 2.67⇥10�3 6.38⇥10�3

16 44

6 3.899⇥10�1 3.858⇥10�1 1.54⇥10�3 5.59⇥10�3

12 3.945⇥10�1 3.893⇥10�1 3.77⇥10�3 6.68⇥10�3

18 3.983⇥10�1 3.930⇥10�1 3.03⇥10�3 7.96⇥10�3

Table 4: Lower-bound comparison for strategic and random methods.

from strategically chosen arcs and clusters with bounds obtained from 20 di↵erent instances

of randomly chosen sets of arcs and clusters. The results of our experiments are presented

in Tables 4 and 5. In these tables, Total Arcs refers to the number of arcs with memory in

the original network (i.e., those arcs in A that are not of the form (i, n)), and LB Memory

Arcs refers to the chosen value for k (the number of arcs that have memory in our lower-

bound computation). For Table 4, column LB

str

gives the lower bound obtained by the

strategic arc selection method, and E(LB
rand

) states the average lower bound obtained by

random arc selection. Finally, in the last two columns, LB
str

� LB

rand

states the minimum

and maximum di↵erence between the bounds given by the strategic and random strategies

over all 20 bounds obtained by the random strategy. The columns in Table 5 are analogously

defined. Interestingly, for every instance tested, the strategic bounds (both lower and upper)

are better than all 20 bounds provided by their randomized counterparts. These results

attest to the importance of cleverly choosing arcs and clusters for use in the given bounding

schemes.

So far, the computational results presented on the strategic upper-bounding technique

do not employ the improvement method described in Section 3.2.2, which revises the arc

reliabilities via the solution of a series of shortest-path problems. In Tables 6–7, we present

experiments that quantify how well this technique performs. Table 6 presents the upper-

bound values for networks having a varying number of clusters, and Table 7 shows the

computation time required to obtain these results. When the number of clusters is chosen

to be small, the reduction in upper-bound values is significant, and the computational times

do not change significantly. However, as the number of clusters increases, the reduction

32

Nodes
Total

Clusters UB
str

E(UB
rand

)
UB

rand

� UB
str

Arcs min max

8 22

6 6.989⇥10�1 7.102⇥10�1 4.21⇥10�3 2.82⇥10�2

12 6.715⇥10�1 6.788⇥10�1 3.71⇥10�3 1.35⇥10�2

18 6.638⇥10�1 6.680⇥10�1 1.68⇥10�3 1.03⇥10�2

12 34

6 6.358⇥10�1 6.487⇥10�1 8.31⇥10�3 2.46⇥10�2

12 5.733⇥10�1 5.885⇥10�1 1.03⇥10�2 2.27⇥10�2

18 5.537⇥10�1 5.639⇥10�1 5.64⇥10�3 1.81⇥10�2

16 44

6 5.683⇥10�1 5.849⇥10�1 1.16⇥10�2 2.23⇥10�2

12 4.792⇥10�1 4.945⇥10�1 1.17⇥10�2 2.21⇥10�2

18 4.461⇥10�1 4.589⇥10�1 7.95⇥10�3 1.74⇥10�2

Table 5: Upper-bound comparison for strategic and random methods.

methods do not have any e↵ect, which appears to be due to two trends. One, there typically

exists a path from any given node to the destination that does not visit any arcs in the same

cluster (i.e., the shortest-path costs in the network described in Section 3.2.2 are zero). Two,

the calculated upper bound starts to approach the actual survival probability as the number

of clusters increases, and hence the maximum possible upper-bound improvement is modest

at best.

Also, as expected, the strategic upper-bounding technique nearly always outperforms the

random upper-bounding technique, even after the improvement method is applied to both

techniques. The only exception occurs when there are two clusters, and neither technique

seems to be conclusively better than the other. This behavior is no surprise, given that

the bounds are unlikely to be tight in this case regardless of the cluster choice. However,

observe from Table 7 that the computational times for the random technique are far less

than those corresponding to the strategic technique. An alternative experiment could then

randomly generate multiple clusters, compute a bound for each cluster (optionally aided by

the improvement method), and retain the best bound resulting from those clusters. We refer

to this approach as the multiple-restart random technique. The results of this experiment are

summarized in Tables 8 (bound quality) and 9 (computational time). Our multiple-restart

experiments were performed by using 100 restarts and recording the computational time and

best bounds obtained after 1, 10, 50, and 100 restarts.

These tables show that once again, when only two clusters are allowed, the multiple-

restart random technique generally provides better bounds than the strategic technique,

when the improvement method is used for both. In particular, only 10 restarts are needed to

33

Nodes
Total

Clusters
UB

str

w/o UB
str

w/ UB
rand

w/o UB
rand

w/

Arcs Improvement Improvement Improvement Improvement

8 20

2 7.878⇥10�1 7.850⇥10�1 7.888⇥10�1 7.865⇥10�1

4 7.290⇥10�1 7.290⇥10�1 7.375⇥10�1 7.375⇥10�1

6 7.006⇥10�1 7.006⇥10�1 7.140⇥10�1 7.139⇥10�1

8 6.840⇥10�1 6.840⇥10�1 6.955⇥10�1 6.955⇥10�1

10 6.732⇥10�1 6.732⇥10�1 6.851⇥10�1 6.851⇥10�1

12 32

2 7.836⇥10�1 7.720⇥10�1 7.873⇥10�1 7.873⇥10�1

4 7.185⇥10�1 7.171⇥10�1 7.257⇥10�1 7.247⇥10�1

6 6.805⇥10�1 6.805⇥10�1 6.863⇥10�1 6.834⇥10�1

8 6.552⇥10�1 6.552⇥10�1 6.617⇥10�1 6.617⇥10�1

10 6.380⇥10�1 6.380⇥10�1 6.513⇥10�1 6.513⇥10�1

16 58

2 7.398⇥10�1 7.295⇥10�1 7.407⇥10�1 7.407⇥10�1

4 6.364⇥10�1 6.364⇥10�1 6.439⇥10�1 6.439⇥10�1

6 5.659⇥10�1 5.659⇥10�1 5.818⇥10�1 5.818⇥10�1

8 5.171⇥10�1 5.171⇥10�1 5.398⇥10�1 5.398⇥10�1

10 4.853⇥10�1 4.853⇥10�1 5.032⇥10�1 5.032⇥10�1

Table 6: The e↵ect of shortest path improvement on upper bounds for strategic and random

methods on networks of di↵erent size.

consistently improve upon the strategic technique, while still using less time than the strate-

gic technique. However, when more than two clusters are used, the bounds obtained by the

strategic technique are at least as tight as those obtained by the multiple-restart random

technique (where both use the improvement method), even with 100 restarts, with the only

tie coming in the 16-node, 58-arc instance with four clusters. Furthermore, the strategic

technique with improvement uses less computational time than the 100-restart method, es-

pecially as the number of clusters increases. We therefore recommend the strategic technique

with improvement when generating upper bounds, using as many clusters as possible within

computational limits in order to obtain the best bound possible.

5 Conclusion

In this work, we study the survival probability for random walks on a network. The key

feature of the networks we study is that some arcs may fail the first time they are crossed

by the walk, but they are assumed to be perfectly reliable each subsequent time they are

34

Nodes
Total

Clusters
UB

str

w/o UB
str

w/ UB
rand

w/o UB
rand

w/

Arcs Improvement Improvement Improvement Improvement

8 20

2 0.06 0.06 ⇡0 ⇡0
4 0.03 0.03 ⇡0 ⇡0
6 0.01 0.01 0.01 0.01

8 0.04 0.05 0.02 0.02

10 0.10 0.14 0.09 0.10

12 32

2 0.11 0.11 ⇡0 ⇡0
4 0.04 0.05 ⇡0 0.01

6 0.05 0.06 ⇡0 ⇡0
8 0.06 0.06 0.01 0.01

10 0.07 0.09 0.02 0.03

16 58

2 0.38 0.38 ⇡0 0.01

4 0.37 0.37 ⇡0 ⇡0
6 0.38 0.4 ⇡0 ⇡0
8 0.4 0.43 0.02 0.02

10 0.56 0.61 0.06 0.07

Table 7: The e↵ect of shortest path improvement on upper-bound computation times (in

seconds).

35

Nodes

Total

Clusters

UBstr w/o UBstr w/ UBrand w/o UBrand w/

Arcs Improvement Improvement Improvement Improvement

Number of restarts Number of restarts

1 10 50 100 1 10 50 100

8 20

2 7.88 7.85 7.89 7.86 7.85 7.83 7.87 7.73 7.65 7.65

4 7.29 7.29 7.38 7.34 7.33 7.31 7.38 7.34 7.33 7.31

6 7.01 7.01 7.14 7.05 7.05 7.05 7.14 7.03 7.03 7.03

8 6.84 6.84 6.96 6.90 6.90 6.87 6.96 6.90 6.90 6.87

10 6.73 6.73 6.85 6.76 6.76 6.74 6.85 6.76 6.76 6.74

12 32

2 7.84 7.72 7.87 7.85 7.84 7.84 7.87 7.64 7.63 7.57

4 7.18 7.17 7.26 7.26 7.24 7.22 7.25 7.25 7.21 7.20

6 6.80 6.80 6.86 6.86 6.86 6.86 6.83 6.83 6.83 6.83

8 6.55 6.55 6.62 6.61 6.61 6.61 6.62 6.61 6.60 6.58

10 6.38 6.38 6.51 6.50 6.44 6.44 6.51 6.48 6.43 6.43

16 58

2 7.40 7.30 7.41 7.41 7.41 7.40 7.41 7.20 7.20 7.15

4 6.36 6.36 6.44 6.42 6.41 6.41 6.44 6.40 6.40 6.36

6 5.66 5.66 5.82 5.77 5.74 5.74 5.82 5.77 5.74 5.74

8 5.17 5.17 5.40 5.32 5.31 5.29 5.40 5.32 5.29 5.29

10 4.85 4.85 5.03 4.96 4.96 4.95 5.03 4.96 4.96 4.95

Table 8: Bounds obtained from the multiple-restart random technique (all bounds multiplied

by 10).

Nodes

Total

Clusters

UBstr w/o UBstr w/ UBrand w/o UBrand w/

Arcs Improvement Improvement Improvement Improvement

Number of restarts Number of restarts

1 10 50 100 1 10 50 100

8 20

2 0.06 0.06 ⇡0 ⇡0 0.03 0.08 ⇡0 0.02 0.09 0.16

4 0.03 0.03 ⇡0 ⇡0 0.01 0.03 ⇡0 0.03 0.09 0.17

6 0.01 0.01 0.01 0.02 0.1 0.17 ⇡0 0.02 0.16 0.31

8 0.02 0.02 ⇡0 0.04 0.27 0.51 ⇡0 0.09 0.53 0.99

10 0.04 0.05 0.02 0.25 1.29 2.43 0.02 0.39 1.95 3.72

12 32

2 0.11 0.11 ⇡0 ⇡0 0.04 0.06 ⇡0 0.01 0.07 0.14

4 0.04 0.05 ⇡0 0.01 0.05 0.08 0.01 0.02 0.14 0.31

6 0.05 0.06 ⇡0 0.03 0.07 0.15 ⇡0 0.05 0.28 0.55

8 0.06 0.06 0.01 0.06 0.36 0.73 0.01 0.12 0.68 1.26

10 0.07 0.09 0.02 0.29 1.41 2.76 0.03 0.48 2.28 4.48

16 58

2 0.38 0.38 ⇡0 0.04 0.19 0.25 0.01 0.04 0.2 0.43

4 0.37 0.37 ⇡0 0.01 0.09 0.15 ⇡0 0.1 0.49 0.97

6 0.38 0.4 ⇡0 ⇡0 0.22 0.38 ⇡0 0.2 0.83 1.7

8 0.4 0.43 0.02 0.2 0.85 1.75 0.02 0.32 1.75 3.79

10 0.56 0.61 0.06 0.64 3.46 6.76 0.07 1.24 5.83 11.5

Table 9: Computational times (in seconds) required to execute the multiple-restart random

technique.

36

crossed. We investigate the computation of the probability that the entity survives the walk

and reaches the destination node before failing on any arc. When all arcs are memoryless,

i.e., each arc fails with the same probability each time it is crossed, calculating the survival

probability is polynomially solvable in a straightforward manner, which requires inverting an

(n�1)⇥(n�1) matrix. However, when arcs exist that have memory, we prove that calculating

survival probability is #P-hard. In particular, this task is at least as hard as calculating

the number of Hamiltonian paths in a directed graph. We then propose e�cient lower-

and upper-bounding techniques to estimate the survival probability. The lower-bounding

technique assumes that only a subset of memory arcs actually have memory. The upper-

bounding technique clusters arcs so that all arcs in a cluster become fully reliable when one

arc in the cluster is traversed. Both bounds converge to the true survival probability as the

number of memory arcs or clusters increase, at the expense of an exponential increase in

computational e↵ort. Our numerical experiments demonstrate that these bounds are quite

e↵ective.

Several research challenges exist that are related to the model studied in this paper.

First, we note that within the confines of the problem considered in this paper, our greedy

method for selecting memory arcs could possibly be improved by examining more complex

interactions among other arcs selected to have memory. (An analogous challenge regards

the clustering problem for the upper-bounding method.) Next, an alternative model may

involve entities that do not fail on arcs, as assumed in this paper, but will eventually reach

an absorbing state. The objective could be to minimize or maximize the amount of time that

this entity requires to reach the end state (see [1, 20] for studies in an ecological context).

Finally, the examination of models having memory arcs can be studied in many other contexts

aside from the one given here, which involves a simple random walk. For instance, instead of

considering a purely random walk, it may be interesting to consider an entity that is actively

seeking to find the destination node, and chooses each subsequent arc to traverse based on

a simple stochastic algorithm related to arc reliabilities and memory as to which arcs have

already been traversed. From a network design perspective, there may exist a network owner

that seeks to aid an entity using a random walk that wishes to find node n. The network

owner may have a budget of k links that can be “revealed” (shown a priori to be reliable

or faulty), or perhaps fortified (guaranteed to be reliable). The optimization challenge of

determining which k out of m links should be revealed (or, alternatively, fortified) is an

interesting challenge that we leave for future research.

37

Acknowledgments

The authors are grateful for the thorough and insightful remarks of an anonymous referee

and an associate editor. Dr. Büke gratefully acknowledges the support of Engineering and

Physical Research Council under grant EP/I017127/1 (Mathematics for Vast Digital Re-

sources). Dr. Smith gratefully acknowledge the support of the National Science Foundation

under grant CMMI-1100765, the Defense Threat Reduction Agency under grant HDTRA-

10-01-0050, the Air Force O�ce of Scientific Research under grant FA9550-12-1-0353, and

the O�ce of Naval Research under grant N000141310036.

References

[1] M.A. Acevedo, J.A. Sefair, J.C. Smith, and R.J. Fletcher, Jr., Conservation with uncer-

tainty: Identifying protection strategies under worst-case disturbance events, Technical

report, University of Florida, School of Natural Resources and Environment, Gainesville,

FL, 2014.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, algorithms, and

applications, Prentice Hall, Englewood Cli↵s, NJ, 1993.

[3] D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs, web-

page. http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html (last checked

14 January 2014).

[4] B. Bollobás, Modern graph theory Vol. 184 of Graduate Texts in Mathematics, Springer,

New York, 1998.

[5] M. Brand, A random walks perspective on maximizing satisfaction and profit, SIAM

Int Conference Data Mining, Newport Beach, CA, SIAM, April 2005, pp. 12–19.

[6] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine,

Comput Networks ISDN Syst 30 (1998), 107–117.

[7] C.J. Colbourn, The combinatorics of network reliability, Oxford University Press, New

York, NY, 1987.

[8] A. Das Sarma, A.R. Molla, G. Pandurangan, and E. Upfal, Fast distributed PageRank

computation, Theoret Comput Sci 561(B) (2015), 113–121.

38

[9] P.G. Doyle and J.L. Snell, Random walks and electrical networks, Mathematical Asso-

ciation of America, Washington, DC, 1984.

[10] B.D. Ewald, J. Humpherys, and J.M. West, Computing expected transition events in

reducible Markov chains, SIAM J Matrix Anal Appl 31 (2009), 1040–1054.

[11] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of

NP-completeness, W. H. Freeman & Co., Princeton, NJ, 1979.

[12] J.S. Lin, C.C. Jane, and J. Yuan, On reliability evaluation of a capacitated flow network

in terms of minimal path sets, Networks 25 (1995), 131–138.

[13] Y.K. Lin, A simple algorithm for reliability evaluation of a stochastic-flow network with

node failure, Comput Oper Res 28 (2001), 1277–1285.

[14] Y.K. Lin and J. Yuan, A new algorithm to generate d-minimal paths in a multistate flow

network with non-integer arc capacities, Int J Reliab, Qual Saf Eng 5 (1998), 269–285.

[15] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, Paul Erdös is eighty,

D. Miklós, V.T. Sós, and T. Szönyi (Editors), Janos Bolyai Society Mathematical Stud-

ies, Budapest, Hungary, 1996, Vol. 2, pp. 353–397.

[16] K.S. Miller, On the inverse of the sum of matrices, Math Magazine 54 (1981), 67–72.

[17] M.E.J. Newman, A measure of betweenness centrality based on random walks, Social

Networks 27 (2005), 39–54.

[18] Z. Peixin and Z. Xin, A survey on reliability evaluation of stochastic-flow networks in

terms of minimal paths, Int Conference Informat Eng Comput Sci 2009 (ICIECS2009),

December 2009, pp. 1–4.

[19] S.M. Ross, Introduction to probability models, Academic Press, Inc., Boston, MA, 2010.

[20] J.A. Sefair, J.C. Smith, M.A. Acevedo, and R.J. Fletcher, Jr., A three-stage model and

algorithm for maximizing weighted expected hitting time with application to conser-

vation planning, Technical report, University of Florida, Department of Industrial and

Systems Engineering, Gainesville, FL, 2014.

[21] D.R. Shier, Network reliability and algebraic structures, Oxford University Press, Ox-

ford, NY, 1991.

39

[22] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J Comput

8 (1979), 410–421.

[23] W.C. Yeh, A revised layered-network algorithm to search for all d-minpaths of a limited-

flow acyclic network, IEEE Trans Reliab 47 (1998), 436–442.

40

