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Abstract

In this paper we study decomposition methods based on separable approximations for mini-
mizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic
Approximation Method (DQAM) of Mulvey and Ruszczyński [20] and the Parallel Coordinate
Descent Method (PCDM) of Richtárik and Takáč [30]. We show that the two methods are equiv-
alent for feasibility problems up to the selection of a step-size parameter. Further, we prove
an improved complexity bound for PCDM under strong convexity, and show that this bound is
at least 8(L0/L̄)(! � 1)2 times better than the best known bound for DQAM, where ! is the
degree of partial separability and L0 and L̄ are the maximum and average of the block Lipschitz
constants of the gradient of the quadratic penalty appearing in the augmented Lagrangian.

1 Introduction

With the rise and ubiquity of digital and data technology, practitioners in nearly all industries
need to solve optimization problems of increasingly larger sizes. As a consequence, new tools and
methods are required to solve these big data problems, and to do so e�ciently.

In this work, we are concerned with convex optimization problems with an objective func-
tion that is separable into blocks of variables and where these blocks are linked by a subset of
constraints which nevertheless make the problem nonseparable. Nonseparability is a source of dif-
ficulty in solving these very large optimization problems. This structure is particularly relevant in
stochastic optimization problems where each block relates to a certain scenario and involves only
variables related to that particular scenario. The objective function expressed as an expectation is
separable in these blocks and the linking constraints (called non-anticipativity constraints) encode
the natural requirement that decisions be based only on information available at the time of de-
cision making. Applications that can be modeled as large scale stochastic optimization problems
include multicommodity network flow problems, financial planning problems and airline routing.

A classical approach to solving such problems is to use the augmented Lagrangian by relaxing
the linking constraints. The augmented Lagrangian idea was first introduced independently by
Hestenes [13] and Powell [26] and convergence of the associated augmented Lagrangian method
was established later by Rockafellar [32, 33]. The method remains popular today with studies on,
for example, convergence of the method [4] and applying the method to design optimization [11].
Advantages of the augmented Lagrangian method approach include the simplicity and stability of
the multiplier iterations, the possibility of starting from an arbitrary multiplier, and the fact that
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there is no primal master problem to solve. However, the augmented Lagrangian is nonseparable,
so the problem is still di�cult to solve.

The nonseparability of the augmented Lagrangian has motivated the development of decompo-
sition techniques. In an early work, Stephanopoulos and Westerberg [40] suggest decomposing the
augmented Lagrangian using linear approximations and Watanabe et al. [45] use a transformation
method to deal with the nonseparable cross products. In a more recent line of work, Ruszczyński
[35, 36] and Mulvey and Ruszczyński [20, 21] propose and analyze a diagonal quadratic approxi-
mation (DQA) to the augmented Lagrangian and an associated diagonal quadratic approximation
method (DQAM). By approximating the original problem by one that is separable into blocks,
these techniques make a significant di↵erence in terms of solvability because the problem is broken
into a number of problems of a more manageable size. Decomposition techniques have become even
more attractive with the advances in parallel computing: since the decomposed subproblems can
be solved independently, parallelism is possible, which leads to acceleration. A recent development
in the area of decomposition techniques is the Expected Separable Overapproximation (ESO) of
Richtárik and Takáč [30] and the associated parallel coordinate descent method (PCDM).

Another approach that uses the augmented Lagrangian to tackle the di�culty caused by the
linking constraints is the alternating-directions method of multipliers (ADMM) [7, 8]. The ADMM
updates the primal variables and Lagrange multipliers using Jacobi iterations, without explicitly
optimizing the augmented Lagrangian for any given multiplier. The ADMM is used for stochastic
programming problems and referred as progressive hedging [34]. The convergence of ADMM has
long been established for two-block problems, however the convergence for multiple blocks has only
been addressed recently under specific assumptions [14] or through modifications [12, 44]. We do
not present a further discussion of ADMM methods as our focus in this work is on comparing
decomposition methods minimizing the augmented Lagrangian for a fixed multiplier.

(Block) coordinate descent methods, early variants of which can be traced back to an 1870
paper of Schwarz [37] and beyond, have recently become very popular due to their low per-iteration
cost and good scalability properties. While convergence results were established several decades
ago, iteration complexity bounds were not studied until recently [43]. Randomized coordinate
and block coordinate descent methods were proposed and analyzed in several settings, such as for
smooth convex minimization problems [24, 29, 31], L1-regularized problems [?], composite problems
[18, 29, 42], nonsmooth convex problems [10], nonconvex problems [19, 25] and problems with
separable constraints [22, 23]. Parallel coordinate descent methods were developed and analyzed
in [6, 9, 30, 38, 41], primal-dual methods in [39, 41] and inexact methods in [42]. The methods are
used in a number of applications, including linear classification [5, 15, 41], compressed sensing [17],
truss topology design [28], solving linear systems of equations [16] and group lasso problems [27].

1.1 Augmented Lagrangian

Our work is motivated by the need of solving huge scale instances of constrained convex optimization
problems of the form

min
x

(1)
,...,x

(n)

n

X

i=1

g
i

(x(i)) (1a)

subject to
n

X

i=1

A
i

x(i) = b (1b)

x(i) 2 X
i

, i = 1, 2, . . . , n, (1c)
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where for i = 1, 2, . . . , n we assume that X
i

✓ RNi are convex and closed sets, g
i

: RNi ! R[{+1}
are convex and closed extended real-valued functions and A

i

2 Rm⇥Ni . Problem formulation (1)
is also known as an extended monotropic optimization problem, using the nomenclature of [2].

While the objective function (1a) and the constraints (1c) are separable in the decision vectors
x(1), . . . , x(n), the linear constraint (1b) links them together, which makes the problem di�cult to
solve. Moreover, we are interested in the case when n is very large (millions, billions and more),
which introduces further computational challenges.

It will be useful to think of the decision vectors {x(i)} as ‘blocks’ of a single decision vector
x 2 RN , with N =

P

i

N
i

. This can be achieved as follows. We first partition the N ⇥N identity
matrix I columnwise into n submatrices U

i

2 RN⇥Ni , i = 1, 2, . . . , n, so that I = [U1, . . . , Un

], and
then set x =

P

n

i=1 Ui

x(i). That is, x is the vector composed by stacking the vectors x(i) on top of

each other. It is easy to see that x(i) = UT

i

x 2 RNi . Moreover, if we let A
def
=
P

n

i=1Ai

UT

i

2 Rm⇥N ,
then (1b) can be written compactly as Ax = b. Note also thatA

i

= AU
i

, for i = 1, 2, . . . , n. If we

now write g(x)
def
=
P

i

g
i

(x(i)) and X
def
= {x =

P

i

U
i

x(i)|x(i) 2 X
i

} ✓ RN , then problem (1a)–(1c)
takes the following form:

min
x2X

g(x) (2a)

subject to Ax = b. (2b)

A typical approach to overcome the issue of nonseparability of the linking constraint (2b) is to
drop it and instead consider the augmented Lagrangian,

F
⇡

(x)
def
= g(x) + h⇡, b�Axi+ r

2kb�Axk2,

where ⇡ 2 Rm is a Lagrange multiplier vector, r > 0 is a penalty parameter and k · k denotes
the standard Euclidean norm. Now, the Method of Multipliers [3, 13] can be employed to solve
problem (1) as described below (Algorithm 1).

Algorithm 1 (Method of Multipliers)

1: Initialization: ⇡0 2 Rm and iteration counter k = 0
2: while the stopping condition has not been met do
3: Step 1: Fix the multiplier ⇡

k

and solve

z
k

 min
x2X

F
⇡k(x). (3a)

4: Step 2: Update the multiplier

⇡
k+1  ⇡

k

+ r(b�Az
k

), (3b)

and update the iteration counter k  k + 1.
5: end while

2 The Problem and Our Contributions

The focus of this paper is on the optimization problem (3a). Hence, we need not be concerned
about the dependence of F on ⇡ and will henceforth refer to the objective function, dropping the
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constant term h⇡, bi, as F (x). Ignoring the constant term h⇡, bi, problem (3a) is a convex composite
optimization problem, i.e., a problem of the form

min
x2RN

{F (x)
def
= f(x) + (x)}, (4)

where f is a smooth convex function and  is a separable (possibly nonsmooth) convex function.
Indeed, we may set

f(x)
def
=

r

2
kb�Axk2 = r

2
kb�

n

X

i=1

A
i

x(i)k2, (5)

and

 (x)
def
=

(

g(x)� h⇡, Axi, x 2 X,

+1, otherwise.

The main purpose of this work is to draw links between two existing decomposition methods
for solving (4), one old and one new, both based on separable approximations to the objective
function. In particular, we consider DQAM of Mulvey and Ruszczyński [20, 21, 36] and PCDM of
Richtárik and Takáč [30]. Our main contributions (not in order of significance) include:

1. Two measures of separability. We show that the parameter “number of neighbours”,
used in the analysis of DQAM [36], and the degree of partial separability, used in the analysis
of PCDM [30], coincide up to an additive constant in the case of quadratic f .

2. Two generalizations of DQAM.We provide a simplified derivation of the diagonal quadratic
approximation, which enables us to propose two generalizations of DQAM (Section 3.2) to
non-quadratic functions f , based on

(i) a finite di↵erence separable approximation of the augmented Lagrangian (Algorithm 3),
and

(ii) a quadratic approximation with the Hessian matrix replaced by an approximation of its
block diagonal (Algorithm 4).

Studying the complexity of these algorithms is outside the scope of this work.

3. Equivalence of PCDM and DQAM for smooth problems. We identify a situation in
which the second of our generalizations of DQAM (Algorithm 4) coincides with a “fully par-
allel” variant of PCDM for an appropriate selection of algorithm parameters (see Section 5.4,
Theorem 7). This happens for problems with arbitrary smooth f and  ⌘ 0.

4. Improved complexity of PCDM under strong convexity. We derive an improved com-
plexity result for PCDM in the case when F is strongly convex (see Section 6, Theorem 10).
The result is much better than that in [30] in situations where the strong convexity constant
of F is much larger than the sum of the strong convexity constants of the f and  .

5. Comparison of the convergence rates of DQAM and PCDM. We study the newly
developed complexity guarantees for (a fully parallel variant of) PCDM and the existing
convergence rates for DQAM and show that even though DQAM is specifically designed
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to approximate the augmented Lagrangian, PCDM has much better theoretical guarantees
(Section 6.3). In particular, if F is strongly convex, both DQAM and PCDM converge
linearly; that is, F (x

k+1)  qF (x
k

), where q depends on the method. However, we show that
q is much better (i.e., smaller) for PCDM than for DQAM, which then leads to vast speedups
in terms of iteration complexity. In particular, we show that the theoretical bound for the
number of iterations required to find an ✏-approximate solution is at least

16(! � 1)3

!
⇥ L0

L̄
(� 8L

0

L̄

(! � 1)2 for ! � 2) (6)

times larger for DQAM than for (fully parallel) PCDM. Here, ! is the degree of partial
separability1 of f (defined in Section 4.4), and L0 and L̄ are the maximum and average of
the constants L

i

= rkAT

i

A
i

k, i = 1, 2, . . . , n, respectively. Note that the speedup factor (6)
is larger than 1000 for ! = 10 even in the case when L0 = L̄. In practice, however, L0 will
typically be larger than L̄, often much larger.

The form of the speedup factor (6) comes from the fact that DQAM depends on (!�1)3 and
L0 (while PCDM depends on ! and L̄), which adversely a↵ects its theoretical complexity rate.
Let us comment that Mulvey and Ruszczyński [20] remarked that the dependence of DQAM
on ! is in practice much better than cubic, although this was not previously established
theoretically. We thus answer their conjecture in the a�rmative, albeit for a (as we shall
see, not so very) di↵erent method. To the best of our knowledge, no improved results were
available in the literature up to this point.

6. Optimal number of block updates per iteration. PCDM is flexible in that it allows
for an arbitrary number of block updates per iteration, whereas DQAM needs to update
all blocks. Moreover, we show that under a simple parallel computing model it is optimal
for PCDM to update as many blocks in a single iteration as there are parallel processors
(Section 6.4, Theorem 13). As a consequence, the DQAM approach of updating all blocks in
a single iteration is less than optimal.

7. Computations. We also provide preliminary numerical results that show the practical
advantages of PCDM.

We also comment that, as shown in [29], PCDM enjoys complexity guarantees even in the case
when F is merely convex, as opposed to it being strongly convex.

3 Diagonal Quadratic Approximation Method

In this section we present the Diagonal Quadratic Approximation Method (DQAM) that was in-
troduced and analysed in a series of papers by Mulvey and Ruszczyński [20, 21], Ruszczyński [36]
and Berger, Mulvey and Ruszczyński [1]. As explained in Section 1.1, the augmented Lagrangian
is nonseparable because of the cross products hA

i

h(i), A
j

h(j)i appearing in f(x + h). The DQAM
provides a separable approximation of f(x+ h) by ignoring these cross terms; this approximation
is referred to as the diagonal quadratic approximation (DQA). This makes Step 1 of the method of
multipliers ((3a) in Algorithm 1) significantly easier to solve, and amenable to parallel processing.

1
The multiplicative improvement factor (6) is only valid for ! � 2 as DQAM was not analyzed in the case ! = 1.
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First, notice that we can write

f(x+ h) = r

2kb�A(x+ h)k2

= r

2kbk
2 � rhb, A(x+ h)i+ r

2

�

kAxk2 + 2hAx,Ahi+ kAhk2
�

= f(x) + hf 0(x), hi+ r

2kAhk
2

= f(x) + hf 0(x), hi+ r

2

n

X

i=1

kA
i

h(i)k2 + r

2(kAhk
2 �

n

X

i=1

kA
i

h(i)k2)

= f(x) +
n

X

i=1

h(f 0(x))(i), h(i)i+ r

2

n

X

i=1

kA
i

h(i)k2 + r

2

X

i 6=j

hA
i

h(i), A
j

h(j)i. (7)

Now observe that it is only the last term in (7), composed of products hA
i

h(i), A
j

h(j)i for i 6= j,
which is not separable. Ignoring these terms, we get a separable approximation of f(x+ h) in h,

f(x+ h) ⇡ fDQA(x+ h)
def
= f(x) + hf 0(x), hi+ r

2

n

X

i=1

kA
i

h(i)k2, (8)

which in turn leads to a separable approximation of F (x+ h) in h:

F (x+ h)
(4)
= f(x+ h) + (x+ h)

(8)
⇡ fDQA(x+ h) + (x+ h). (9)

Mulvey and Ruszczyński [20] propose a slightly less transparent construction of the same ap-
proximation. For a fixed x, they approximate f(y) via replacing the cross-products hA

i

y(i), A
j

y(j)i,
for i 6= j, by

hA
i

y(i), A
j

x(j)i+ hA
i

x(i), A
j

y(j)i � hA
i

x(i), A
j

x(j)i. (10)

Clearly, this is equivalent to what we do above, which can be verified by substituting y = x + h
into (10).

3.1 The algorithm

We now present the DQA method (Algorithm 2). The algorithm replaces Step 1 of the Method of
Multipliers (Algorithm 1). In what follows, ✓ 2 (0, 1) is a user defined parameter.

Algorithm 2 (DQAM: Diagonal Quadratic Approximation Method)

1: for k = 0, 1, 2, . . . do
2: Step 1a: Solve for h

k

h
k

 arg min
h2RN

�

fDQA(x
k

+ h) + (x
k

+ h)
 

(11a)

3: Step 1b: Determine intermediate vector y
k

y
k

 x
k

+ h
k

(11b)

4: Step 1c: Form the new iterate x
k+1

x
k+1  (1� ✓)x

k

+ ✓y
k

(11c)

5: end for
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Let us now comment on the individual steps of Algorithm 2. Step 1a is easy to execute because
the function that is being minimized in (11a) is separable in h, and hence the problem decomposes
into n independent lower-dimensional problems:

h(i)
k

= arg min
h

(i)2RNi

n

h(f 0(x
k

))(i), h(i)i+ r

2
kA

i

h(i)k2 + 
i

(x(i)
k

+ h(i))
o

, i = 1, 2, . . . , n.

Moreover, the problems are independent, and hence the updates h(1)
k

, · · ·h(n)
k

can be computed in
parallel. In (11b) an intermediate vector y

k

is formed, and then in (11c) a convex combination of
the current iterate x

k

and the intermediate vector y
k

is taken to produce the new iterate x
k+1.

Step (11c) is needed because DQAM uses a local approximation, so if the new point x
k

+ h
k

is far
from x

k

, the approximation error may be too big and a reduction in the objective function value
is not guaranteed. This would lead to serious stability and convergence problems in general, and
hence, Step 1c is employed as a correction step for regularizing the method.

3.2 Two generalizations

DQAM was originally designed and analyzed for convex quadratics. Here we propose two general-
izations of the method to non-quadratic convex functions f . Our generalizations are based on the
following simple result.

Proposition 1. Let f(x) = r

2kb � Axk2, and let C
i

(x) = UT

i

f 00(x)U
i

, where f 00(x) is the second
derivative (Hessian) of f(x). Then for all x, h 2 RN ,

fDQA(x+ h) = f(x) +
n

X

i=1

h

f(x+ U
i

h(i))� f(x)
i

(12)

and

fDQA(x+ h) = f(x) +
n

X

i=1

h

h(f 0(x))(i), h(i)i+ 1
2hCi

(x)h(i), h(i)i
i

. (13)

Proof. First note that

n

X

i=1

h

f(x+ U
i

h(i))� f(x)
i

=
n

X

i=1

h

r

2kb�Ax�A
i

h(i)k2 � r

2kb�Axk2
i

=
n

X

i=1

h

rhAx� b, A
i

h(i)i+ r

2kAi

h(i)k2
i

= hf 0(x), hi+ r

2

n

X

i=1

kA
i

h(i)k2,

which, in view of (8), establishes (12). Finally, (13) follows from (8) and the fact that r

2kAi

h(i)k2 =
1
2hU

T

i

f 00(x)U
i

h(i), h(i)i, which in turn follows from the identities f 00(x) = rATA and A
i

= AU
i

.

Our two generalized methods are obtained by replacing fDQA(x+ h) in Step 1 of Algorithm 2
by one of the two approximations (12) and (13). (In the second case, C

i

(x) is an arbitrary positive
semidefinite matrix and not necessarily UT

i

f 00(x)U
i

), leading to Algorithms 3 and 4, respectively.
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Algorithm 3 (Generalization of DQAM: Finite Di↵erences Approximation)

1: for k = 0, 1, 2, . . . do
2: Step 1a: Solve for h

k

h
k

 arg min
h2RN

(

f(x
k

) +
n

X

i=1

h

f(x
k

+ U
i

h(i))� f(x
k

)
i

+ (x
k

+ h)

)

(14a)

3: Step 1b: Determine intermediate vector y
k

y
k

 x
k

+ h
k

(14b)

4: Step 1c: Form the new iterate x
k+1

x
k+1  (1� ✓)x

k

+ ✓y
k

(14c)

5: end for

Algorithm 3 is based on a finite di↵erence approximation, and is applicable to (possibly) non-
smooth functions. Algorithm 4 is based on a separable quadratic approximation. To the best of
our knowledge, these algorithms have not been previously proposed, with the exception of the case
when f is a convex quadratic when both methods coincide with DQAM.

Algorithm 4 (Generalization of DQAM: Separable Quadratic Approximation)

1: for k = 0, 1, 2, . . . do
2: Step 1a: Solve for h

k

h
k

 arg min
h2RN

(

f(x
k

) + hf 0(x
k

), hi+ 1
2

n

X

i=1

hC
i

(x
k

)h(i), h(i)i+ (x
k

+ h)

)

(15a)

3: Step 1b: Determine intermediate vector y
k

y
k

 x
k

+ h
k

(15b)

4: Step 1c: Form the new iterate x
k+1

x
k+1  (1� ✓)x

k

+ ✓y
k

(15c)

5: end for

Algorithm 3 is a derivative-free method that is based upon a finite di↵erences approximation
to f . Therefore, this method may be particularly useful when computing derivatives of f is pro-
hibitively expensive, which may be the case for non-quadratic f .

Algorithm 4 replaces the (block of the) Hessian of f , with an approximation to it. For quadratic
f , the Hessian is fixed throughout the algorithm, whereas the Hessian changes at each iteration
in the non-quadratic case. Therefore, Algorithm 4 may be particularly useful when access to the
Hessian is not possible, or when using an approximation to the Hessian is much cheaper than
using the true Hessian. We may think of the generalization from DQAM to Algorithm 4, as an
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analogue with a Newton method versus a quasi-Newton method. There is an abundance of literature
advocating the use of quasi-Newton methods, and so, intuitively, Algorithm 4 may be particularly
useful when f is not quadratic.

The convergence analysis for these two methods is an open problem, which we do not consider in
this paper. Instead, we propose that DQAM be replaced by PCDM, described in the next section.

4 Parallel Coordinate Descent Method

As discussed in the introduction, we propose that instead of implementing Step 1 of the Method
of Multipliers (Algorithm 1) using DQAM, a parallel coordinate descent method (PCDM) be used.
This section is devoted to describing the method, developed by Richtárik and Takáč [30].

4.1 Block samplings

As we shall see, unlike DQAM where all blocks are updated at each iteration, PCDM allows for an
(almost) arbitrary random subset of blocks to be updated at each iteration. The purpose of this
section is to formalize this.

In particular, at iteration k only blocks i 2 S
k

✓ {1, 2, . . . , n} are updated, where {S
k

}, k � 0,
are iid random sets having the following two properties:

P(i 2 S
k

) = P(j 2 S
k

) for all i, j 2 {1, 2, . . . , n}, (16)

P(i 2 S
k

) > 0 for all i 2 {1, 2, . . . , n}. (17)

It is clear that, necessarily, P(i 2 S
k

) = E[|Sk|]
n

. Following [30], for simplicity we refer to an arbitrary

random set-valued mapping with values in the power set 2{1,2,...,n} by the name block sampling, or
simply sampling. A sampling S

k

is called uniform if it satisfies (16) and proper if it satisfies (17).
In [30], PCDM was analyzed for all proper uniform samplings. However, better complexity

results were obtained for so called doubly uniform samplings, which belong to the family of uniform
samplings. For brevity purposes, in this paper we concentrate on a subclass of doubly uniform
samplings called ⌧ -nice samplings, which we now define.

Definition 2 (⌧ -nice sampling). Let ⌧ be an integer between 1 and n. A sampling Ŝ is called ⌧ -nice
if for all S ✓ {1, 2, . . . , n},

P(Ŝ = S) =

8

<

:

0, |S| 6= ⌧,
1

(n⌧)
, otherwise.

(Here, 1/
�

n

⌧

�

denotes ‘n choose ⌧ ’.) A natural candidate for ⌧ is the number of available
processors/threads as then updates to the ⌧ blocks of x

k

can be computed in parallel. As we shall
later see, this is also the optimal choice from the complexity point of view (Theorem 13).

4.2 Expected Separable Overapproximation (ESO)

Fix positive scalars w1, . . . , wn

. (We write w = (w1, . . . , wn

).) We define a separable norm by

kxk2
w

def
=

n

X

i=1

w
i

kx(i)k2(i), x 2 RN , (18)
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where for each i = 1, 2, . . . , n we fix a positive definite matrix B
i

2 RNi⇥Ni and set

ktk(i)
def
= hB

i

t, ti1/2, t 2 RNi . (19)

We can now define the concept of expected separable overapproximation.

Definition 3 (Expected Separable Overapproximation (ESO) [30]). Let � and w1, . . . , wn

be posi-
tive constants and Ŝ be a proper uniform sampling. We say that f : RN ! R admits a (�, w)-ESO
with respect to Ŝ (and, for simplicity, we write (f, Ŝ) ⇠ ESO(�, w)) if for all x, h 2 RN ,

E
⇥

f
�

x+
P

i2Ŝ U
i

h(i)
�⇤

 f(x) + E[|Ŝ|]
n

⇣

hf 0(x), hi+ �

2 khk
2
w

⌘

. (20)

In Section 4.3 we describe how the ESO is used to design a parallel coordinate descent method
for solving problem (4). The issue of how the parameters w and � giving rise to an ESO can be
determined/computed will be discussed in Section 4.5.

4.3 The algorithm

In PCDM we compute the approximation

E
h

F (x+
P

i2ŜUi

h(i))
i

= E
h

f(x+
P

i2ŜUi

h(i)) + (x+
P

i2ŜUi

h(i))
i

. (21)

It can be verified (see [30, Section 3]) that due to separability of  the following identity holds:

E
h

 (x+
P

i2ŜUi

h(i))
i

=
⇣

1� E[|Ŝ|]
n

⌘

 (x) + E[|Ŝ|]
n

 (x+ h). (22)

Substituting (22) and (20) into (21), we obtain

E
h

F (x+
P

i2ŜUi

h(i))
i

 FESO(x+ h)
def
=
⇣

1� E[|Ŝ|]
n

⌘

F (x) + E[|Ŝ|]
n

H
�,w

(x+ h), (23)

where
H

�,w

(x+ h)
def
= f(x) + hf 0(x), hi+ �

2 khk
2
w

+ (x+ h), (24)

which is separable in h:

H
�,w

(x+ h)
(18)+(19)

= f(x) +
n

X

i=1

n

h(f 0(x))(i), h(i)i+ �wi
2 hBi

h(i), h(i)i+ 
i

(x(i) + h(i))
o

. (25)

We are now ready to present the parallel coordinate descent method (Algorithm 5).

Algorithm 5 (PCDM: Parallel Coordinate Descent Method)

1: Initialization: x0 2 RN , ESO parameters (�, w)
2: for k = 0, 1, 2, . . . do
3: Step 1a: Solve

h
k

 arg min
h2RN

FESO(x
k

+ h) (26a)

4: Step 1b: Update x
k

x
k+1  x

k

+
X

i2Sk

U
i

h(i)
k

(26b)

5: end for

10



Given an iterate x
k

, in (26a) we compute

h
k

= h(x
k

)
def
= arg min

h2RN
FESO(x

k

+ h)
(23)
= arg min

h2RN
H

�,w

(x
k

+ h). (27)

Further, note that (26b) is equivalent to writing x(i)
k+1 = x(i)

k

+ h(i)
k

for all i 2 S
k

and x(i)
k+1 = x(i)

k

for all i /2 S
k

. That is, only blocks belonging to the random set S
k

are updated. This means that
in (26a) we need not compute all blocks of h

k

. In view of (25) and (27), this is possible, and hence
(26a) can be replaced by

h(i)
k

 arg min
h

(i)2RNi

n

h(f 0(x
k

))(i), h(i)i+ �wi
2 hBi

h(i), h(i)i+ 
i

(x(i)
k

+ h(i))
o

, i 2 S
k

. (28)

4.4 Measure of separability

In this section we provide a link between the measures of separability of f utilized in the analysis
of DQAM [20] and PCDM [30]. In the first case, the quantity is defined specifically for a quadratic
objective; in the second case the definition is general. As we shall see, both quantities coincide in the
quadratic case. As the complexity of the two methods depends on these quantities, our observation
allows us to compare the convergence rates (see Section 6). Both measures of separability are to
be understood with respect to the fixed block structure introduced before.

Now we define the degree of partial separability introduced by Richtárik and Takáč [30] for a
smooth convex function.

Definition 4 (Partial separability). A smooth convex function f : RN ! R is partially separable
of degree ! if there exists a collection J of subsets of {1, 2, . . . , n} such that

f(x) =
X

J2J
f
J

(x) and max
J2J

|J |  !, (29)

where for each J , f
J

is a smooth convex function that depends on x(i) for i 2 J only.

The following result establishes the relationship between ! and the Ruszczyński measure of
separability, !

R

, defined in [36].2 This will be important in Section 6 for the complexity comparison.

Theorem 5. For convex quadratic function f given by (5) we have ! = !
R

+ 1, where !
R

is the
Ruszczyński measure of separability defined in [36].

Proof. First, we can write

f(x) =
r

2

m

X

j=1

 

b
j

�
n

X

i=1

A
ji

x(i)
!2

, (30)

where b
j

is the j-th entry of b. Note that all summands in the decomposition are convex and
smooth. Moreover, summand j depends on x(i) if and only if A

ji

6= 0. If we now let

!
j

= |{i : A
ji

6= 0}|, j = 1, 2, . . . ,m, (31)

2
Note that, in [36], the Ruszczyński measure of separability is denoted by N , but we call it !R here to avoid a

notation clash. See the notation dictionary in Appendix A for further details. Furthermore, !R is defined for a

strongly convex quadratic function only.
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then we conclude that f is partially separable of degree

! = max
j2{1,2,...,m}

!
j

. (32)

In words, ! is the maximum number of blocks linked by any single constraint. Moreover, “!
R

is
the maximum number of blocks linked by any single constraint, decremented by one” [36]. Thus
establishing the result. (Further details on !

R

can be found in [36] and in Appendix B.)

4.5 ESO for partially separable smooth convex functions

In order for PCDM to be implementable, one needs first to compute the parameters w1, . . . , wn

(defining the norm k · k
w

) and � > 0 for which (f, Ŝ) ⇠ ESO(�, w), i.e., for which (20) holds.
Clearly, the parameters � and w depend on f and Ŝ.

In what follows we will assume that the gradient of f is block Lipschitz. That is, there exist
positive constants L1, . . . , Ln

such that for all x 2 RN , i 2 {1, 2, . . . , n} and h(i) 2 RNi ,

k(f 0(x+ U
i

t))(i) � (f 0(x))(i)k⇤(i)  L
i

ktk(i), (33)

where ksk⇤(i)
def
= max{hs, xi : kxk

w

= 1} = hB�1
i

s, si1/2 is the conjugate norm to k · k
w

.

Theorem 6 (Theorem 14 in [30]). Assume f is convex, partially separable of degree !, and has
block Lipschitz gradient with constants L1, L2, . . . , Ln

> 0. Further, assume that Ŝ is a ⌧ -nice
sampling, where ⌧ 2 {1, 2, . . . , n}. Then (f, Ŝ) ⇠ ESO(�, w), where

� = 1 +
(! � 1)(⌧ � 1)

max{1, n� 1} , w
i

= L
i

, i = 1, 2, . . . , n. (34)

In Section 6 we study the complexity of PCDM in the case covered by the above theorem (and
under a further strong convexity assumption).

Consider now the special case of convex quadratic f given by (5). If the matrices AT

i

A
i

,
i = 1, 2, . . . , n, are all positive definite, we can choose B

i

= rAT

i

A
i

, i = 1, 2, . . . , n, in which case we
will have L

i

= 1 for all i. Otherwise we can choose B
i

to be the N
i

⇥N
i

identity matrix, and then

L
i

= rkAT

i

A
i

k def
= r max

kh(i)k1
kAT

i

A
i

h(i)k, (35)

where both norms in the definition are the standard Euclidean norms in RNi .

4.6 Fully parallel coordinate descent method

PCDM used with an n-nice sampling Ŝ resembles DQAM in two ways: i) it updates all blocks
during each iteration, ii) it is not randomized. Indeed, h =

P

n

i=1 Ui

h(i) =
P

i2Ŝ U
i

h(i), and hence

F (x+ h) = E [F (x+ h)]
(23)

 FESO(x+ h)
(23)+(24)

= f(x) + hf 0(x), hi+ �

2 khk
2
w

+ (x+ h).

In particular, in the setting of Theorem 6 we have � = ! and w = L = (L1, . . . , Ln

), and
Algorithm 5 specializes to fully parallel PCDM.
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5 Links Between DQAM and PCDM

In this section we discuss and compare DQAM and PCDM. We highlight some of the main di↵er-
ences between the two methods, and describe a special case where the methods coincide.

5.1 Fully parallel vs partially parallel updating

One of the main di↵erences between DQAM and PCDM is the number of blocks that must be
updated at each iteration. At each iteration of DQAM, all n blocks must be updated. This
highlights the fact that DQAM uses a fully parallel update scheme. On the other hand, PCDM is
more flexible as it is able to update ⌧ blocks at each iteration where 1  ⌧  n. This is beneficial
because in practice there are usually fewer processors than the number of blocks. So, PCDM can
act as a serial method if ⌧ = 1, a fully parallel method if ⌧ = n, or it can be optimized to the
number of processors p (so ⌧ = p). The advantages of updating ⌧ = p blocks at each iteration of
PCDM is established theoretically in Section 6.

Because DQAM updates all n blocks at each iteration, it is a Jacobi type method, whereas
PCDM can be interpreted as a Jacobi type method when ⌧ = n, a Gauss-Seidel type method when
⌧ = 1, or a hybrid Jacobi-Gauss-Seidel method when 1 < ⌧ < n.

5.2 Flexibility of PCDM

PCDM can be applied to a general convex composite function. Specifically, f is only assumed to
be smooth and convex. Further, the algorithm is guaranteed to converge when applied to a general
smooth convex function, and can be equipped with iteration complexity bounds (see [30]). On the
other hand, the convergence results for DQAM have been only derived under the assumption that
f is quadratic and strongly convex; there are no convergence guarantees for a function f with any
other structure. Complexity estimates for both methods are discussed in detail in Section 6.

Notice that DQAM has been tailored specifically for an augmented Lagrangian objective func-
tion so it is reasonable that the function f is assumed to be quadratic and strongly convex in this
context. However, this assumption restricts the range of problems that can be solved using DQA,
while PCDM can be applied to a much wider class of problems.

5.3 Approximation type and algorithm philosophy

In DQAM, a local two-sided approximation to the cross products is employed. The error associated
with the approximation is of the order o(khk22), which explains that, if the update h

k

is too large,
then the model loses accuracy. This justifies the need for a correction step (11c) so as to ensure
that x

k+1 is not too far from x
k

. This ensures a reduction in the objective value and ultimately,
algorithm convergence. The need for a correction scheme within DQAM is also apparent from the
finite di↵erences formulation presented in Algorithm 3. Consider the summation in (14a), and for

simplicity assume that  ⌘ 0. Then the block update h(i)
k

is that which minimizes the function value
di↵erence in the i-th block coordinate direction, independently of all the other blocks j 6= i. Clearly,
this will not guarantee that F (x

k

+ h
k

)  F (x
k

) because the function F is not block separable. A
simple 2D quadratic example showing that this approach is doomed to fail was described in [41].

In contrast to the DQAM scheme, PCDM employs a one-sided global expected separable overap-
proximation of the augmented Lagrangian (4), which guarantees to produce a new random iterate
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x
k+1 that, on average, decreases the objective function. That is, x

k+1 satisfies E[F (x
k+1) | xk] 

F (x
k

). It turns out that this is su�cient to obtain a high probability complexity result and therefore
there is no need for a correction step in PCDM. In fact, as we shall see in Section 5.4, a “correction
step” is already embedded in the approximation in the form of the ESO parameter �.

Note that, besides DQAM, there are many other algorithms that follow a “step-then-correct”
strategy. One example are trust region methods, where a solution to some subproblem is found,
the quality of the solution is measured, and then the size of the trust region is adjusted to reflect
the quality. A second example is the conditional gradient algorithm, which builds a linear approx-
imation to the objective function, finds the minimizer of the linearized problem (the “step”) and
then “corrects” by taking a convex combination of the previous point and the step to reduce the
objective value. A correction step is implicitly built-in for PCDM, in the choice of the constant �.

5.4 A special case in which the methods coincide

So far we have highlighted some of the di↵erences between DQAM and PCDM. However, in this
section we present a special case where the two methods coincide.

Theorem 7. Assume f is partially separable of degree !, and has block Lipschitz gradient with
constants L1, L2, . . . , Ln

> 0. Further, assume  ⌘ 0. Then Algorithm 4 (generalization of DQAM)
coincides with fully parallel PCDM under the following choice of parameters:

C
i

(x
k

) ⌘ L
i

B
i

(i = 1, 2, . . . , n), ✓ = 1
!

. (36)

Proof. In Algorithm 4 we have x
k+1 = (1� ✓)x

k

+ ✓(x
k

+ h
k

), where

h
k

= arg min
h2RN

{hf 0(x
k

), hi+ 1
2

n

X

i=1

hC
i

(x
k

)h(i), h(i)i}. (37)

Due to separability of the objective function in (37) and the choice of parameters (36), we see that

h(i)
k

= � 1
Li
B�1

i

(f 0(x
k

))(i), i = 1, 2, . . . , n, and hence

x(i)
k+1 = (1� ✓)x(i)

k

+ ✓(x(i)
k

+ h(i)
k

) = x(i)
k

� 1
!Li

B�1
i

(f 0(x
k

))(i). (38)

In fully parallel PCDM we have x
k+1 = x

k

+ h
k

, where

h
k

= arg min
h2RN

(

hf 0(x
k

), hi+ !

2

n

X

i=1

hL
i

B
i

h(i), h(i)i
)

. (39)

Using separability of the objective function in (39), we again obtain the same formula (38) for x
k+1,

establishing the equivalence of the two methods.

A few remarks:

• In the context of the original problem (1), the case covered by the above theorem corresponds
to a feasibility problem ( ⌘ 0 means that g ⌘ 0).

• DQAM was analyzed in [36] only for the parameter ✓ in the interval (0, 1
2(!�1)). For ! > 1 this

leads to smaller steps than the PCDM default choice ✓ = 1
!

, which, intuitively, is expected
to result in slower convergence of DQAM.
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6 Complexity of DQAM and PCDM under Strong Convexity

In this section we study and compare the convergence rates of DQAM and PCDM under the
assumption of strong convexity of the objective function. We limit ourselves to this case as com-
plexity estimates for DQAM are not available otherwise. Both DQAM and PCDM benefit from
linear convergence, but the rate is much better for PCDM than for DQA.

Strong convexity. We assume that F is strongly convex with respect to the norm k · k
w

for
some vector of positive weights w = (w1, . . . , wn

) specified in the results, with (strong) convexity
parameter µ

F

> 0. A function � : RN ! R [ {+1} is strongly convex with respect to the norm
k · k

w

with convexity parameter µ
�

= µ
�

(w) � 0 if for all x, y 2 dom�,

�(y) � �(x) + h�0(x), y � xi+ µ�

2 ky � xk2
w

, (40)

where �0(x) is any subgradient of � at x. The case with µ
�

(w) = 0 reduces to convexity. It will be
useful to note that for any t > 0,

µ
�

(tw) = µ
�

(w)/t. (41)

Strong convexity of F may come from f or  or both and we will write µ
f

(resp. µ ) for the
strong convexity parameter of f (resp.  ). It is easy to see that

µ
F

� µ
f

+ µ . (42)

Note that the strong convexity constant of F can be arbitrarily larger than the sum of the
strong convexity constants of the functions f and  . Indeed, consider the following simple 2D
example (N = n = 2): f(x) = µ

2 (x
(1))2,  (x) = µ

2 (x
(2))2, where µ > 0. Let kxk

w

be the standard
Euclidean norm (i.e., B

i

= 1 and w
i

= 1 for i = 1, 2). Clearly, neither f nor  is strongly convex
(µ

f

= µ = 0). However, F is strongly convex with constant µ
F

= µ.
In the rest of the section we will repeatedly use the following simple result.

Lemma 8. Let ⇠0 > ✏ > 0 and � 2 (0, 1). If k � 1
�

log
⇣

⇠0
✏

⌘

, then (1� �)k⇠0  ✏.

Proof. (1� �)k⇠0 = (1� 1
1/� )

(1/�)(�k)⇠0  e��k⇠0  e� log(⇠0/✏)⇠0 = ✏.

6.1 PCDM

We now derive a new improved complexity result for PCDM. In [30, Theorem 20] the authors prove
an iteration complexity bound based on the assumption that µ

f

+ µ > 0. Here we obtain a new
and tighter complexity result under the weaker assumption µ

F

> 0. As discussed above, µ
F

can be
substantially bigger than µ

f

+ µ , which implies that our complexity bound can be much better.
The following auxiliary result is an improvement on Lemma 17(ii) in [30] and will be used in

the proof of our main complexity result.

Lemma 9. If µ
F

(w) > 0 and � � µ
f

(w), then for all x 2 domF

H
�,w

(x+ h(x))� F ⇤ 
� � µ

f

(w)

µ
F

(w) + � � µ
f

(w)
(F (x)� F ⇤). (43)
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Proof. Let µ
F

= µ
F

(w) and µ
f

= µ
f

(w). By Lemma 16 in [30], we have

H
�,w

(x+ h(x))  min
y2RN

n

F (y) +
��µf

2 ky � xk2
w

o

. (44)

Using this, we can further write

H
�,w

(x+ h(x))
(44)

 min
y=�x

⇤+(1��)x, �2[0,1]

n

F (y) +
��µf

2 ky � xk2
w

o

= min
�2[0,1]

n

F (�x⇤ + (1� �)x) +
(��µf )�

2

2 kx� x⇤k2
w

o

 min
�2[0,1]

n

�F ⇤ + (1� �)F (x)� µF�(1��)�(��µf )�
2

2 kx� x⇤k2
w

o

, (45)

where in the last step we have used strong convexity of F . Notice that �⇤ def
= µ

F

/(µ
F

+��µ
f

) 2 (0, 1]
and that µ

F

(1� �⇤)� (��µ
f

)�⇤ = 0. It now only remains to substitute �⇤ into (45) and subtract
F ⇤ from the resulting inequality.

We now present our main complexity result. It gives a bound on the number of iterations
required by PCDM (Algorithm 5) to obtain an ✏ solution with high probability. The result is
generic in the sense that it applies to any smooth convex function and proper uniform sampling as
long as the parameters � and w giving rise to an ESO are known.

Theorem 10. Assume that F = f+ is strongly convex with respect to the norm k·k
w

(µ
F

(w) > 0).
Let Ŝ be a proper uniform sampling satisfying (f, Ŝ) ⇠ ESO(�, w).Choose an initial point x0 2 RN ,
target confidence level ⇢ 2 (0, 1), target accuracy level 0 < ✏ < F (x0)� F ⇤ and iteration counter

K � n

E[|Ŝ|]
� + µ

F

(w)� µ
f

(w)

µ
F

(w)
log

✓

F (x0)� F ⇤

✏⇢

◆

. (46)

If {x
k

}, k � 0, are the random points generated by PCDM (Algorithm 5) as applied to problem (4),
then P(F (x

K

)� F ⇤  ✏) � 1� ⇢.

Proof. Let ↵ = E[|Ŝ|]
n

and ⇠
k

= F (x
k

)� F ⇤. Then for all k � 0,

E[⇠
k+1 | xk]

(23)

 (1� ↵)⇠
k

+ ↵(H
�,w

(x
k

+ h(x
k

))� F ⇤)
(Lemma 9)

 (1� �)⇠
k

. (47)

where � = ↵µ
F

(w)/(µ
F

(w) + � � µ
f

(w)). Note that Lemma 9 is applicable as the assumption

� � µ
f

(w) is satisfied due to the fact that (f, Ŝ) ⇠ ESO(�, w) (see [30, Section 4]). Further,
note that � > 0 since ↵ > 0 and µ

F

(w) > 0. Moreover, �  1 since ↵  1 and � � µ
f

(w). By
taking expectation in x

k

through (47), we obtain E[⇠
k

]  (1� �)k⇠0. Applying Markov inequality,
Lemma 8 and (46), we obtain P(⇠

K

> ✏)  E[⇠
K

]/✏  (1��)K⇠0/✏  ⇢, establishing the result.

In order to compare the complexity of PCDM with that of DQAM, which is a fully parallel
method, we now derive a specialized complexity result for fully parallel PCDM. The method is no
longer stochastic in this situation, i.e., the sequence of vectors {x

k

}, k � 0, is deterministic. Hence,
we give a standard complexity result as opposed to a high probability one. Finally, we make use of
the fact that for partially separable functions f , the parameters � and w are known.

16



Theorem 11. Assume f : RN ! R is partially separable of degree !, and has block Lipschitz
gradient with constants L1, L2, . . . , Ln

> 0. Further assume that F = f + is strongly convex with
µ
F

(L) > 0, where L = (L1, . . . , Ln

). Finally, let {x
k

}
k�0 be the sequence generated by fully parallel

PCDM. Then for all k � 0,

F (x
k+1)� F ⇤  qPCDM(F (x

k

)� F ⇤), (48)

where

qPCDM = 1� µ
F

(L)

! + µ
F

(L)� µ
f

(L)
. (49)

Moreover, if we let ✏ < F (x0)� F ⇤ and

k � 1

1� qPCDM
log

✓

F (x0)� F ⇤

✏

◆

, (50)

then F (x
k

)� F ⇤  ✏.

Proof. Let Ŝ be the fully parallel sampling, i.e., the n-nice sampling. Applying Theorem 6, we
see that (f, Ŝ) ⇠ ESO(�, w), with � = ! and w = L. Following the first part of the proof
of Theorem 10, we have ↵ = 1 and ⇠

k+1  (1 � �)⇠
k

, where � = µ
F

(L)/(µ
F

(L) + ! � µ
f

(L)),
establishing (48). The second statement follows directly by applying Lemma 8.

6.2 DQAM

We now present a complexity result for DQAM, established in [36].

Theorem 12 (Theorem 2 in [36]). Let f(x) = r

2kb � Axk2 be partially separable of degree ! > 1.
Assume that F (= f +  ) is strongly convex with µ

F

(e) > 0, where e 2 Rn is the vector of all
ones. Further assume that the sets X

i

, i = 1, . . . , n, are bounded. Let {x
k

}, k � 0, be the sequence
generated by DQAM (Algorithm 2) with ✓ = 1

2(!�1) . Then for all k � 0,

F (x
k+1)� F ⇤  qDQAM

�

F (x
k

)� F ⇤�,

where

qDQAM = 1� µ
F

(e)

16L0(! � 1)3 + 4(! � 1)µ
F

(e)
, (51)

and L0 def= max1in

rkA
i

k2. Moreover, if we let ✏ < F (x0)� F ⇤ and

k � 1

1� qDQAM
log

✓

F (x0)� F ⇤

✏

◆

, (52)

then F (x
k

)� F ⇤  ✏.

Ruszczyński analyzed DQAM for a range of parameters ✓: ✓ 2 (0, 1/(! � 1)) [36, Theorem 1;
µ = 0]. However, the choice ✓ = 1/(2(! � 1)) is optimal [36, Eq (5.11)], and the above theorem
presents Ruszczyński’s result for this optimal choice of the stepsize parameter. A table translating
the notation used in this paper and [36] is included in Appendix B.
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6.3 Comparison of the Linear Rates of DQAM and PCDM

We now compare the convergence rates qDQAM and qPCDM defined in (51) and (49), respectively, and
the resulting iteration complexity guarantees. We will argue that qPCDM can be much better (i.e.,
smaller) than qDQAM, leading to vastly improved iteration complexity bounds. However, as we shall
see, in practice the fully parallel PCDM method and DQAM behave similarly, with PCDM being
about twice as fast as DQAM.

Before we start with the comparison, recall from (35) that the gradient of f(x) = r

2kb � Axk2
(i.e., f covered by Theorem 12) is block Lipschitz with constants L

i

= rkAT

i

A
i

k, i = 1, 2, . . . , n.
Hence, L0 = max

i

L
i

, which draws a link between the quantities L
i

, i = 1, 2, . . . , n, appearing in
Theorem 11 and L0 appearing in Theorem 12.

• Identical Lipschitz constants. Assume now that L
i

= L0 for all i = 1, 2, . . . , n and let
L = (L1, . . . , Ln

), as in Theorem 11. Using (41) we observe that

µ
�

(L) = µ
�

(L0e) = µ
�

(e)/L0, (53)

whence

qPCDM (49)+(53)
= 1� µ

F

(e)

L0! + µ
F

(e)� µ
f

(e)
. (54)

We can now directly compare qPCDM and qDQAM by comparing (54) and (51). Clearly3,

16L0(! � 1)3 � L0! and 4(! � 1)µ
F

(e) � µ
F

(e)� µ
f

(e), (55)

and hence qPCDM  qDQAM. However, both inequalities in (55) can be very loose, which means
that qPCDM can be much better than qDQAM. For instance, in the case when µ

F

(e) = µ
f

(e),
we have

1� qPCDM

1� qDQAM
=

16L0(! � 1)3 + 4(! � 1)µ
F

(e)

L0!
� 16(! � 1)3

!
. (56)

In view of (50) and (52), this means that the number of DQAM iterations needed to obtain
an ✏-solution is larger than that for PCDM by at least the multiplicative factor 16(!� 1)3/!.
For instance, the theoretical iteration complexity of DQAM is more than 1000 times worse
than that of PCDM for ! = 10.

• Varying Lipschitz Constants. If the constants L1, . . . , Ln

are not all equal, it is somewhat
di�cult to compare the complexity rates as we cannot directly compare the strong convexity
constants µ

�

(L) and µ
�

(e) (for � = F and � = f). What we can do, however, is to at
least make sure that the “scaling” is identical in both. Here is what we mean by that.
Recall that µ

�

(w) is the strong convexity constant of � wrt a weighted norm kxk
w

defined
by (18). As we have remarked in (41), if we scale the weights by a positive factor t > 0, the
corresponding strong convexity constant scales by 1/t. Hence, µ

�

(L) and µ
�

(e) cannot be
considered comparable unless

P

i

L
i

=
P

i

e
i

= n. Of course, even if this was the case, it is
possible that the strong convexity constants might be very di↵erent. However, in this case
there is at least no reason to suspect a-priori that one might be larger than the other, and
hence they are comparable in that sense.

3
This holds as long as ! > 1, which is the case covered by Theorem 12 and hence assumed here.
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If we let L̄ = 1
n

P

i

L
i

and w
i

= L
i

/L̄ for i = 1, 2, . . . , n, then
P

i

w
i

= n, and hence, as
explained above, µ

�

(w) ⇡ µ
�

(e). Furthermore, since w = L/L̄, and using (41), we have
µ
�

(L) = µ
�

�

L̄w
�

= µ
�

(w)/L̄ ⇡ µ
�

(e)/L̄. This is an analogue of (53) and we can therefore
now continue our comparison in the same way as we did for the case with identical Lipschitz
constants. In particular, if µ

F

(e) = µ
f

(e) (for simplicity), then as above we can argue that

1� qPCDM

1� qDQAM
=

16L0(! � 1)3 + 4(! � 1)µ
F

(e)

L̄!
� 16(! � 1)3

!

L0

L̄
. (57)

Therefore, PCDM has an even more dramatic theoretical advantage compared to DQAM in
the case when the maximum Lipschitz constant L0 is much larger than the average L̄.

6.4 Optimal number of block updates

In this section we propose a simplified model of parallel computing and in it study the performance
of a family of parallel coordinate descent methods parameterized by a single parameter: the number
of blocks being updated in a single iteration.

In particular, consider the family of PCDMs where S
k

is a ⌧ -nice sampling and ⌧ 2 {1, 2, . . . , n}.
Now assume we have p 2 {1, 2, . . . , n} processors/threads available, each able to compute and apply
to the current iterate the update h(i)(x

k

) for a single block i, in a unit of time. PCDM, as analyzed,
is a synchronous method. That is, a new parallel iteration can only start once the previous one
is finished, and hence updating ⌧ blocks will take d ⌧

p

e amount of time. On the other hand, the
iteration complexity of PCDM is better for higher ⌧ . Indeed, by Theorem 6, f satisfies an ESO
with respect to Ŝ with parameters w = L = (L1, . . . , Ln

) and � = �(⌧) = 1 + (!�1)(⌧�1)
n�1 , where

! is degree of partial separability of f (we assume n > 1). If, moreover, µ
F

(L) = µ
f

(L), which is
often the case as  is often not strongly convex, then Theorem 10 says that PCDM needs n

⌧

�(⌧)c
iterations, where c is a constant independent of ⌧ , to solve (4) with high probability. Hence, the
total amount of time needed for PCDM to solve the problem is equal to

T (⌧) = d ⌧
p

en
⌧

�(⌧)c.

We can now ask the following natural question: what ⌧ 2 {1, 2, . . . , n} minimizes T (⌧)? We
now show that the answer is ⌧ = p.

Theorem 13. Assume f : RN ! R is convex, partially separable of degree !, and has block
Lipschitz gradient with constants L1, L2, . . . , Ln

> 0, where n > 1. Further assume µ
F

(L) =
µ
f

(L) > 0 and consider the family of parallel coordinate descent methods with ⌧ -nice sampling,
where ⌧ 2 {1, 2, . . . , n}, applied to problem (4). Under the parallel computing model with p 2
{1, 2, . . . , n} processors described above, the method with ⌧ = p is optimal.

Proof. We only need to show that p = argmin{T (⌧) : ⌧ = 1, 2, . . . , n}. It is easy to see that
n

⌧

�(⌧) is decreasing in ⌧ . Since d ⌧
p

e is constant for kp + 1  ⌧  kp, it su�ces to consider ⌧ = kp
for k = 1, 2, . . . only. Finally, T (kp) = n

p

�(kp)c is increasing in k since �(·) is increasing, and we
conclude that k = 1 and hence ⌧ = p is optimal.

7 Numerical Results

In this section we present two numerical experiments that support the findings of this paper. In
both experiments we choose f(x) = 1

2kb�Axk2 and  ⌘ 0.
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The first experiment considers the performance of DQAM and the fully parallel variant of
PCDM in the above setting where we know that the two methods coincide up to he selection of the
stepsize parameters ! and ✓ (recall Section 5.4). Here we focus on comparing the e↵ects of using
the DQAM stepsize ✓ = 1/(2(! � 1)) versus the larger PCDM stepsize ✓ = 1/!.

The second experiment compares DQAM, fully parallel variant of PCDM (i.e., PCDM used
with n-nice sampling) and PCDM used with ⌧ -nice sampling, in the situation when the number of
available processors is ⌧ , while varying ! (degree of partial separability of f) and ⌧ .

7.1 Impact of the di↵erent stepsizes of DQAM and PCDM

Suppose that A has primal block angular structure, A = [CT , DT ]T , where C is block diagonal

(C
def
= diag(C1, . . . , Cn

), for C
i

2 Rmi⇥Ni), and D 2 R`⇥N (where D
def
= [D1, . . . , Dn

] for D
i

2
R`⇥Ni). Notice that when D = 0, the problem is partially separable of degree ! = 1 (i.e., it is fully
separable) with respect to the natural block structure (i.e., blocks corresponding to the column
submatrices [C

i

; 0;D
i

]). If D is completely dense, the problem is nonseparable (! = n). In general,
! is equal to the number of matrices D

i

that contain at least one nonzero entry.
In this (small scale) experiment we set n = 100 and let C1, . . . , C100 be 10% dense matrices of

size 150⇥ 100. Subsequently, A is a 15, 001⇥ 10, 000 sparse matrix. The degree of separability of
f varies, and is controlled by setting a subset of the matrices D1, . . . , Dn

to zero.
Twenty five random pairs (A, b) were generated for each ! 2 {2, 4, 8, 16, 32, 64, 128}, and DQAM

and fully parallel PCDM were applied to each problem instance, with a stopping condition of
f(x) � f⇤  10�4. The results of this experiment are presented in Figure 7.1, and all data points
are averages over 25 runs.
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Figure 1: The left plot shows the number of epochs (a full sweep through the data, i.e., all i =
1, . . . , n blocks of x are updated in one epoch) needed to solve the problem as a function of the
degree of separability !. PCDM requires far fewer epochs to reach the stopping condition compared
with DQAM. The right plot shows the number of epochs versus the decrease in the function value.
The colours correspond to di↵erent values of !, with dotted lines corresponding to PCDM and solid
lines corresponding to DQAM. Again, this plot shows the superiority of PCDM and also shows the
linear convergence behaviour of the algorithms.

In the left plot in Figure 7.1, we see that when ! = 2, DQAM and PCDM require the same
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number of epochs to solve the problem. This is expected because ✓ = 1/(2(! � 1)) = 1/2 = 1/!.
(Recall Section 5.4, which shows that the two methods coincide in this special case.) Then, as !
grows, PCDM performs far better than DQAM, requiring almost 50% fewer epochs than DQAM.
Again, this is predicted by theory because, as ! ! 1, 1/(2(! � 1)) ! 1/2!. Furthermore, the
right plot in Figure 7.1 shows the linear convergence of the two algorithms.

7.2 Comparison of full vs partial parallelization

Recall that unlike DQAM, PCDM is able to update ⌧ blocks at each iteration, for any ⌧ in the
set {1, 2, . . . , n}, demonstrating useful flexibility of the algorithm. By PCDM(⌧) we denote the
variant of PCDM in which ⌧ blocks are updated at each iteration, using a ⌧ -nice sampling. In this
experiment we investigate the performance of DQAM, PCDM(n) (which in the plots we refer to
simply as PCDM) and PCDM(⌧), for a selection of parameters ⌧ (the number of processors), and
! (the degree of partial separability).

Let us call the time taken for all ⌧ processors to update a single block, one “time unit”. Then,
after one time unit of PCDM(⌧), new gradient information is available to be utilized during the
next time unit, which is much earlier than if all n blocks need to be updated in each iteration.
On the other hand, for DQAM and PCDM, one iteration corresponds to all n blocks of x being
updated. Subsequently, if there are ⌧ processors available, one iteration of DQAM or PCDM (one
epoch) corresponds to dn

⌧

e time units. However, PCDM(⌧) will need to perform more iterations
than both DQAM and PCDM. When both of these factors are taken into account, we have shown
in Theorem 13 that PCDM(⌧) is optimal in terms of overall complexity if there are ⌧ processors.

The purpose of this experiment is to investigate this phenomenon numerically. Further, let A
be a 2 ·104⇥104 sparse matrix, with at most ! nonzero entries per row. Let the stopping condition
be f(x)  10�4bT b. The experiment was run for three instances: ! = 20, 60, 100, and for each !
and varying ⌧ , the average number of time units required by DQAM, PCDM and PCDM(⌧) were
recorded. The results are shown in Figure 2.

The colors in Figure 2 correspond to di↵erent values of ⌧ . The solid lines correspond to
PCDM(⌧), while the dotted line (respectively dashed line) corresponds to DQAM (respectively
PCDM) run with ⌧ processors available. As ! increases, all algorithms require a higher number
of time units. Further, as the number of available processors increases, the number of time units
decreases. More importantly, for any fixed ⌧ , PCDM(⌧), requires far fewer time units than PCDM,
and both require many fewer time units than DQAM. (Notice the log scale.) This demonstrates the
practical advantage of ‘optimizing’ PCDM(⌧) to the number of available processors, (Section 6.4).

We have also recorded the average cpu time, and the resulting curves are visually indistinguish-
able from those in Figure 2; only the scale of the vertical axis changes.

7.3 A stochastic optimization example

In this numerical experiment we compare DQAM and PCDM on a stochastic multistage portfolio
optimization problem. The problem is, given an initial budget of S0 = $10, 000 to invest in a pool of
J assets at time t = 0, select assets for inclusion in the portfolio, in such a way that the (expected)
profit is maximized at the final timestage t = T > 0.

A three-stage portfolio optimization problem (T = 2) was generated using real-world data
collected from Yahoo! Finance4. In particular, monthly (adjusted close) price data was collected

4
http://finance.yahoo.com/
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Figure 2: For each fixed ⌧ 2 {8, 16, 32, 64}, PCDM(⌧) (solid line) is better than PCDM (dashed
line), and both are far better than DQAM (dotted line).

for 20 assets (J = 20) from the FTSE100 for the past two years (September 2011 – August 2013).
The price data was used to find the rate-of-return for each asset j = 1, . . . , J :

r(j)(t
d

) = (p(j)(t
d

)� p(j)(t
d

� 1))/(p(j)(t
d

� 1)), j = 1, . . . , J,

where p(j)(t
d

) is the price of asset j at the data timestage t
d

(i.e., t
d

2 {September 2011, October
2011, . . . , August 2013})5. The rate-of-return data for the period September 2011 – August 2012
was used to populate the first time stage of a scenario tree, giving 12 branches from the root node.
The remaining data (September 2012 – August 2013) was used to populate the second time stage
of the scenario tree, giving 12 branches for each of the first stage branches. (A total of n = 144
scenarios.) Equal probabilities were assigned to each scenario.

For this portfolio optimization problem, nonanticipativity constraints b = Ax were introduced
to link together variables from di↵erent scenarios. (See [21] for a thorough discussion of nonantici-
pativity constraints.) For this application, the degree of separability is ! = 2, and we also set B

i

= I
and L

i

= 2r for i = 1, . . . , n. Further, X
i

= {x(i) 2 R160|Q
i

x(i) = q(i), x(i) � 0}, where Q
i

x(i) = q(i)

enforces the inventory and cash-balance equations for the portfolio optimization problem.

The objective function is g(i)(x(i))
def
= (c(i))Tx(i) = (1��)

P

J

i=1 prob
(i)(T ) ·p(i)(0) ·x(i)(T ), where

� = 0.02 is the transaction cost, prob(i)(T ) is the probability for scenario i at time T , p(i)(0) is the
initial price for asset i and x(i)(T ) is the amount of asset i held at time T . Therefore, this problem
can be written as

max
x2X

n

X

i=1

(c(i))Tx(i), subject to Ax = b,

5
The rate-of-return gives the relative increase/decrease in the asset price from one data timestage to the next.
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and the augmented Lagrangian is

min
x2X

n

X

i=1

�hc(i), x(i)i+ ⇡T (b�Ax) +
r

2
kb�Axk22.

In particular, f = r

2kb�Axk22 and  =
P

n

i=1

�

�hc(i), x(i)i+ h⇡T , b�Axi
�

.
The parameters used in the algorithm are, ✓ = 0.5 (the DQAM stepsize), ⌧ = 12 (the number of

processors available), and the convergence stopping test was kb� Axk22 < 10�4. The subproblems
in these experiments ((11a) and (26a)) were solved using Matlab’s ‘quadprog’ function.

Iterations DQAM PCDM–FP PCDM(⌧)
Outer 329 332 292
Total 160,522 158,770 142,710

Table 1: This table reports the number of iterations required by DQAM, fully parallel PCDM,
and PCDM optimized to ⌧ processors, for the portfolio optimization problem described in Section
7.3. The iteration counts are broken into, ‘outer’, which gives the number of full Method of Mul-
tiplier iterations performed, and ‘total’, which gives the total number of block updates performed
throughout the algorithm.

We see that all three algorithms require a similar number of ‘outer’ iterations, with PCDM
optimized to ⌧ = 12 processors requiring the least amount of block updates overall, while fully
parallel PCDM and DQAM perform similarly.
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[28] Peter Richtárik and Martin Takáč. E�cient serial and parallel coordinate descent methods
for huge-scale truss topology design. In Operations Research Proceedings 2011, pages 27–32.
Springer, 2012.
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A Notation Dictionary

For the reader interested in comparing our work with the paper [36] directly, we have included a
brief dictionary translating some of the key notation

Ruszczyński [36] This paper

L n

N ! � 1

xi x

(i)

x̃ x

x y

x� x̃ h = y � x

⌧ ✓

⇢ r

⇢↵

2
L

0

� µF (e)/2
1
2rkb�

Pn
i=1 Aixik22 f(x)

fi(xi)� hAT
i ⇡, xii  i(x

(i)
) (= gi(xi)� hAT

i ⇡, xii)
⇤(x) F (x) = f(x) + (x)

⇤i(xi, x̃) f(x+ Uih
(i)
) + i(y

(i)
)

˜

⇤(x, x̃) f(x) +

Pn
i=1[f(x+ Uih

(i)
)� f(x)] + (x+ h)
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B Two Measures of Separability

Here (for the reader’s convenience) we confirm the assertion that “!
R

is the maximum number of
blocks linked by any single constraint, decremented by one” made in Section 4.4 and in [36].

We now define the separability measure !
R

introduced for the convex quadratic f(x) = r

2kb�
Axk2 by Ruszczyński [36, Section 3] (and called the “number of neighbors” therein).

Let A
ji

be the j-th row of matrix A
i

. Let m
i

be the number of nonzero rows in A
i

and for
each i define an m ⇥m

i

matrix Ei as follows: Ei

jl

= 1 if A
ji

is the l-th consecutive nonzero row

of the matrix A
i

, and 0 otherwise. Note that Ei is a matrix containing zeros and m
i

ones, one
in each column. Let Ei

u

be the u-th column of matrix Ei. Then, for any i 2 {1, 2, . . . , n} and
u 2 {1, 2, . . . ,m

i

} define

V (i, u)
def
= {(i0, u0) : i0 2 {1, 2, . . . , n}, u0 2 {1, 2, . . . ,m

i

0}, k 6= i, hEi

u

, Ei

0
u

0i 6= 0}. (58)

Definition 14. The Ruszczyński degree of separability of the function f defined in (5) is

!
R

= max{|V (i, u)| : i = 1, 2, . . . , n, u = 1, 2, . . . ,m
i

}. (59)

Using the following arguments, we show that the Ruszczyński degree of separability !
R

is
indeed the maximum number of blocks linked by a single constraint decremented by one. Let us
fix i 2 {1, 2, . . . , n}, u 2 {1, 2, . . . ,m

i

} and let j = j(i, u) be a row index for which Ei

ju

= 1. Since

Ei is a 0-1 matrix with exactly one entry of each column equal to 1, we have Ei

j

0
u

= 0 for all j0 6= j.
This means that for any i0 2 {1, 2, . . . , n} and u0 2 {1, 2, . . . ,m

i

0},

hEi

u

, Ei

0
u

0i 6= 0 , Ei

0
ju

0 = 1. (60)

Likewise, Ei

0
has at most one entry equal to one in each row. Moreover, the j-th row of Ei

0
contains

1 precisely when A
ji

0 6= 0. This means that |{u0 : Ei

0
ju

0 = 1}| is 1 if A
ji

0 6= 0 and 0 otherwise. So

|V (i, u)| (58)
= |{(i0, u0) : i0 6= i, hEi

u

, Ei

0
u

0i 6= 0}|
(60)
= |{(i0, u0) : i0 6= i, Ei

0
ju

0 = 1}|

=
X

i

0 6=i

|{u0 : Ei

0
ju

0 = 1}| (31)
= !

j

� 1. (61)

Building on this result we can now write

!
R

(59)
= max{|V (i, u)| : i 2 {1, 2, . . . , n}, u 2 {1, 2, . . . ,m

i

}}
(61)
= max{!

j(i,u) � 1 : i 2 {1, 2, . . . , n}, u 2 {1, 2, . . . ,m
i

}}

= max
j2{1,2,...,m}

!
j

� 1
(32)
= ! � 1.

In the third identity above we used the simple observation that every row j 2 {1, 2, . . . ,m} for
which !

j

6= 0 can be written as j = j(i, u) for any i for which A
ji

6= 0, and some u (which depends
on i).

Indeed, !
R

is the maximum number of blocks linked by any single constraint, minus one.
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