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Key issues

© Choice of suitable assumptions

@ Choice of stability technique

G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations Glasgow, January 30, 2018 3 /34



Key issues

© Choice of suitable assumptions

@ Choice of stability technique

Energy method

Semigroup technique

Spectral technique

Fourier technique (= Parseval’s identity)?
Perturbation arguments

Discrete maximal parabolic regularity

1C. Lubich: Numer. Math. (1988, 1991)

G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations

Glasgow, January 30, 2018

3/34



Key issues

© Choice of suitable assumptions

© Choice of stability technique

Energy method

Semigroup technique

Spectral technique

Fourier technique (= Parseval’s identity)?
Perturbation arguments

Discrete maximal parabolic regularity

© An assumption may be suitable for a stability technique but
not suitable for another stability technique.

1C. Lubich: Numer. Math. (1988, 1991)
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1. Nonlinear parabolic equations

Consider the initial value problem
o' (t) + A(t)u(t) = B(t,u(t)), 0<t<T,
u(0) = u®,

in a usual triple V-C H = H' C V' of separable complex Hilbert
spaces, with V' densely and continuously embedded in H.

Here
@ A(t): V — V' uniformly coercive and bounded linear operator,

@ B(t,:):V = V' tel0,T], possibly nonlinear, “small”.

For instance: in the case of second order parabolic equations subject
to homogeneous Dirichlet b.c., we have

H=1%), V=HY2), V =HY0).
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Notation:

L[]l [ ] - ||« norms on H,V, and V| respectively.
e (-,-) inner product on H and duality pairing between V' and V.

o A (t):=3[A®)+ A(t)*], Au(t):=1[A(t) — A(t)*]

[A(t) = As(t) + Aa(t) |
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Quantification of the non-self-adjointness of A(¢)

Consider the bounded linear operator A(t) : H — H and its
anti-self-adjoint part A, (¢),

A(t) = A7PBAMATP([), Adl) = A7) A1) A2 (),

A(t) =T+ A,(t). We have |A(t)]? = 1+ | A4 (t)|? and

1
Yo eV (A(t)v,v) € S, <= |A(t)| < cos — |AL(t)] < tang,

for any angle ¢ < 90°, and the sector

Sp:={z€C:z2=pe¥ p>0,p <o}

The smallest half-angle of a sector Sw(tf as well as the norms of A,(t) or
A(t) are exact measures of the non-self-adjointness of A(%).

2G. Savaré: Numer. Math. (1993)
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Comparison to the commonly used estimate

Let
|A@)v]|x < v(t)|v]] YweV
and
Re(A(t)v,v) > k(t)|[v]|> Vv e V.
Then 0
v(t
A < 7

The ratio v(t)/k(t) is an estimate of the non-self-adjoindness of A(t).

Since it depends on the choice of the specific norm || - || on V. it may
be a crude one!3

The ratio v(t)/k(t) attains its minimal value, namely |A(%)], if we
endow V" with the time-dependent norm || - ||,

lo|le == (As(t)v, )2 VYo e V.

3A.: SINUM (2015), A., Lubich: Numer. Math. (2015)
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Assumptions on A and B

@ Uniform boundedness of | A, (t) := A7V2(t)Ag(t)A7Y/2(t) |:

Vi€ [0,T) Vv e H |Ay(t)v] < Ai(t)|v]
with a stability function Ay (t).

@ Local Lipschitz condition on B:*

Let T, :={v €V :min ||[v —u(t)|| <1} and assume that
ATV2(8) (B(t,v) — B(£,9))] < Aa(OIAY2() (w0 — D)) + pa(t)]o — ],
for v, € T,,, with a “small” stability function A\a(¢).

© "Weak” Lipschitz (or bounded variation) conditions on A(¢) and
B(t,-) in time.

*A., Crouzeix, Makridakis: Numer. Math. (1999)
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Parabolic equations satisfying our assumptions

© Reaction—diffusion equation
up — Au = f(u).
@ Quasi-linear parabolic equations.
© Cahn—Hilliard equation
Up + Vgzze — (U3 — 1)ze = 0.
© Kuramoto—Sivashinsky equation (with low-order dispersion)
Ut + VUgger + 0Ugzy + Uge + Uty = 0.
Topper-Kawahara equation.

Systems of Kuramoto—Sivashinsky-type equations.

© 00

Parabolic equations of the form

us — Yp i (a3, 1) + @i, 8))ug; ), = Blt,u)

with positive definite and Hermitian, and anti-Hermitian matrices,
respectively, with smooth entries a;;(x,t) and a;;(z,t), respectively,
and B(t,-) suitable, possibly nonlinear, operators.
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2. Implicit multistep schemes

@ (o, 3) an implicit g-step scheme generated by the polynomials

q
a(@) = al, B¢
=0

q
)=>_ Bi'.
i=0

@ Let VNeN, k:=T/N,and t" :=nk, n=0,...,N.

Let UY,...,U%! € V be given starting approximations.

Define approximations U™ to u™ := u(t"™), m =q,..., N, by

q

=0

Z [aif + kﬁiA(t"+i)] U7L+i _

q
Ik Z BiB(tn+i7 Uv7z+z’)7

1=0

n=0,...,N —q.
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Assumption: The scheme (o, 3) is (strongly) A(¥)-stable, i.e., for
z € Sy, x(z;+) = a(-) + zB(-) satisfies the root condition,
and the roots of [ are (strictly) less than 1 in modulus.

Sy

)
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An important constant

Let

1
K(aﬂ) = sup max \mﬁ(()\ =

2>0 ek |a(C) + zB(¢)]  sind’

with C the unit circle, £ :={¢ € C:|¢| =1}, and ¥ as large as possible
s.t. the scheme (a, ) is A(V)-stable.

Y
a
C \19 r 519
5 >~ x
7| = asin?
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Example: BDF methods

Let q 1
a(Q) = Z;C‘H(C— 1), B(¢)=¢?, q¢=1,...,6.
j=1
(cr, B) is the g-step BDF scheme; its order is g.
The ¢-step BDF scheme is strongly A(,)-stable with

91 = 95 = 90°, 5 = 86.03°, ¥4 = 73.35°, ¥ = 51.84°, ¥ = 17.84°.
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3. The stability result

Let V™ € T, satisfy the perturbed equations

q q
> [l + kBAF™H VT = kY BB, V) + kE”.
=0 =0
Theorem
Let 9™ := V™ — U™, If

(Cotﬂ))\l(t) a4 [((a.ﬁ)/\g(t) <1l Vte [O,T],

then we have the stability estimate

n n—q

9" + kY 194 < CZ (1977 + k197 11%) + Ok Y 1E)2,
l=q /=0

n

., N, with a constant C' independent of k,n,U", V"™ and E™.

v

G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations Glasgow, January 30, 2018 14 / 34



Geometric interpretation of the stability condition

(cotP)A1(t) + KapyA2(t) <1 <= (cosP)A1(t) + A2(t) < sind

A1 cos ¥
S’l9
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Sharpness of the stability condition

(cotD)A1(t) + K(a,pyra(t) <1 <= A2(t) <sind — (cos V)1 (2)

G. Akrivis (akrivis@cse.uoi.gr)

A1 cos ¥
S’l9

Multistep methods for parabolic equations

Glasgow, January 30, 2018

16 / 34



Ay = sind — (cos DA, ¥ <D< 90°

Q
Yy 03‘)
N R
P S\
22 /LN
AL
7 Al
// )\1
C AND
1
S

The method («, 3) is unstable for the equation
v + ZAu=u' + Agu+ i Asu — (21 — 32)Asu = 0.

Glasgow, January 30, 2018 17 / 34
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Alternative forms of the sufficient stability condition
Uniform boundedness of A, (t) := A;1/2(t)Aa(t)A;1/2(t) :
Vi€ [0,T] Yve H [|Ag(t)v] < Ai(t)|v]

with a stability function A ().
Sufficient stability condition: (cos¥)Ai(t) + A2(t) < sin?)
Alternative assumptions: 1. Uniform boundedness of
A(t) == AP0 AR AT (@) :

Vte[0,T) Vv e H |A(t)v] < A\i(t)|v]

with a stability function A (¢). )
Since |A()]? = 1 + | A4 (t)|?, we may assume that \; ()2 = 1+ A\ (¢)2.
Then, the stability condition reads

(cos ¥)\/ A1 (£)2 — 1 4 Ao(t) < sin®
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2. Let ¢(t) be the smallest half-angle of a sector containing the numerical

range of A(t),
(A(t)v,v) € Sppy Yo €V VE€[0,T].

Then,
Vt € [0,T] Yv e H |Ag(t)v] < Ai(t)|v]

with A1 (t) = tan (t).
Then, the sufficient stability takes the form

’ (cos¥) tan p(t) + Aa(t) < sind ‘

which can also be written as

sin(d — (1))

Ao(t) < cos p(t)
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6 %2 = —cos?
%2 e 7T \7«‘2/“\ ¢
N
_ e
=7 Zil cos ¢
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3. Let
[A@)v]l« <v(@)|lv] YvoeV

and
Re(A(t)v,v) > k(t)|v||* Yo e V.

Then
v(t

We may assume that ;\1(t) < % and the stability condition reads

~—

JA@®)] <

=

~—

(cos V) ZS; — 1+ Xa(t) <sind
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Comparison to the energy technique

For g € {1,...,5}, stability results for BDF schemes have also been
established via energy techniques under the sufficient stability condition

AgAL(t) + (L4 0g)Xa(t) <1 Vt € [0,T]

with
m="mn=0, n3= 1/13 = 0.07692, 14 = 0.2878, 05 = 0.80973.

For ¢ = 3,4, 5, since 7, > cos ¥, and 1 + 1), > 1/sindy, this is not
a best possible linear stability condition.

e | Nevanlinna, Odeh: Numer. Funct. Anal. Optim. (1981)‘

e Lubich, Mansour, Venkataraman: IMA J. Numer. Anal. (2013)
e A, Lubich: Numer. Math. (2015)

e A.: SINUM (2015)

e A., Katsoprinakis: Math. Comp. (2016)
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4. Implicit—explicit multistep schemes

@ (o, 3) an implicit g-step scheme

(cr,y) an explicit g-step scheme,

q q q—1
=Y al’s B =D_B<¢ O =D wuc
i=0 i=0 =0

o let NeN, k:=T/N,and t" :==nk, n=0,...,N.
o Let UY,... U%! € V be given starting approximations.
@ Define approximations U™ to v := u(t""),m =q,..., N, by

q—1

q
> [oaI + kB AE T U™ = k> 3B, U,
=0 1=0

e | M. Crouzeix: Numer. Math. (1980) |
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The stability result

e l2(0)
xy
K(ap) 7= 0D 0 1oy 3 B0

Example: Implicit—explicit BDF methods

a(¢) = Z ~¢II(C -1, B =¢% () =¢- (¢ -1

J= 1

(cr,y) the unique explicit g-step scheme of order g.

In this case | K4 5.) = [7(—=1)| =27 — 1P

Let V™ € T, satisfy the perturbed equations

q q—1
> [l + kBAF™H |V = k> 4B, V) + KE™
=0 =0

°A., Crouzeix, Makridakis: Numer. Math. (1999)
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Theorem
Let 9™ :=V™ U™, If

(cotI) A1 (t) + [Xr((‘yﬂgn))\g(t) <1l Vtelo,T],

then we have the stability estimate

n—q
972 + k’z 191> < CZ (1971 + K[l97)1%) + Ck > | B2,
l=q /=0

n

q,...,IN, with a constant C' independent of k,n,U™, V"™ and E".

In this case the stability condition is:

@ Best possible linear sufficient stability condition.

@ Sharp if the implicit scheme is A-stable.
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5. Key ingredients in the stability analysis

@ Stability technique: Combination of spectral and Fourier techniques

© Advantageous decomposition of the linear operator
Rewrite u/(t) + A(t)u(t) = B(t, u(t)) in the form

W (t) + Ag(t)u(t) + A(t)u(t) = B(t, u(t))

with N N
Ay(t) = (1 mASD),  A(t) = Aa(t) — nA,(2),
with 7) a nonnegative quantity that may depend on A (¢) and As(%).

© Time independent operators
Choose 7 := (tanv/)\; and apply a known stability result.

@ Time dependent operators
Freeze the time, use the previous stability estimate and employ a
discrete perturbation argument.
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o0

= Z e(f,x) C_€> ‘C‘ > 1,

l=q

b
a(¢) +zB(C)

(e.e]

B0y
20+ oBQ) ~ 2 JGN T K21

Now, with b’ := B(V¢) — B(UY), let

— kY fn—LEA)AY, i=1,
/=0
91 = k> f(n— kAN, i=2,
/=0
n—q
kY e(n—£,kA,)E, i=3,
/=0
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and
Iy =9 =97 — 95 — 9%,

n=20,...,N.
Then, we have
(OéiI 4 kﬁiAs)ﬁn+l =k ,Bib"+2, n = 0, ceey N — q.
2
i=0 i=0

Claim:

K> 110512 < K2, 5 kD IIBI2, n=0,...,N.
=0 =0

It suffices to show this estimate for b* = 0 for £ > n, and n replaced by co.
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We introduce b and 6, by

B(t) :Zbk‘einM7 ég(t) :Zgge%ﬂkt.
=0 £=0

From the definition of 65, we deduce
92(75) _ kzﬁ(efmﬂt){a(efmﬂt)f+ﬁ(672i”€t)k:As}_llA)(t).

0y(t)|| < K(aﬁ)\\?)(t)\\*, whence, using Parseval's identity,

S lleg)2 = /0 16a(8) 2 dt < K2, 5 /0 B dt =K, 5 > I
=0 (=0

Therefore,
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6. An example

Let 2 C R? be a bounded domain with smooth boundary 952, and
consider the following initial and boundary value problem

d
u — Y ((aig(@,t) + ag(z,t))ue;), = B(t,u) in 2x[0,T],
i,j=1
u=0 on 02 x [0,T],
u(-,0) = u° in (2,

with T positive and 1" : {2 — C a given initial value. Here,
Q,Q: 02 x[0,T] — C% are uniformly positive definite and Hermitian,
and anti-Hermitian matrices, respectively, with smooth entries a;;(x, 1)

and a;;(z,t), respectively, and B(t,-) are suitable, possibly nonlinear,
operators.
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Consider the antihermitian matrices
S(z,t) := QY2 (x,t)Q(x, ) QY2 (2, ).
The boundedness condition is then satisfied with

Ai(t) == r;;lélﬁ)(p(S(:EJ))7 t€0,77,

with p(-) the spectral radius.
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Two special cases

First case: Let

Qz,t) =ia(z,t)Q(z,t), z€ 2, 0<t<T,

with @ a smooth real-valued function, a : {2 x [0, 7] — R. Then,
S(z,t) =ia(z,t)ly, whence

A1(t) = max |a(z,t)| Vte[0,T].
x€(?
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Second case: d = 2.

It is well known that

Ql/? = ! (Q + VdetQ 1),
trQ + 2v/detQ
and
Q12 = ! ((ra+vax@)n - ),

Vdet Q VirQ + 2v/detQ

with tr Q := a1 + aso the trace of Q.
Therefore,

1
S:
detQ (tra—|-2\/det(’l)

(c4Q - ca(QQ + QQ) + QQQ),

with the constant cq := tr Q + V/det Q.
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