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® Electromagnetic scattering from thin
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e Compute scalar potential and 2 PDEs
on wire surface only —
time + 1D space.

® Fields reconstructed anywhere in
space using integral formulation.
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Motivation: scattering
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Motivation: scattering
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Motivation: scattering
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Outline

Define the time domain boundary integral equation (TDBIE) acoustic scattering problem

® Summarise methods and costs

Galerkin variational formulations of TDBIE

® Drop space, and concentrate on time stepping illustrated by Volterra integral equation

Connections to backwards-in-time collocation

Results



Motivation: acoustic scattering

Problem: a’(x, t) is incident on I for t > 0 — find the scattered field a°(x, t)

scattered field as

Q
A
T
—_— ~—
T P
incident field ~

al Vs p

® PDE: a;, = Aa® in Q (wave speed is ¢ = 1);
e BC:a°+a =0onTl
e TDBIE: a° can be obtained from surface potential u:

1 Lt |x - '
/u(x, |x'—x|) dox = —a'(x,t) xel, t>0
g

4 |x"— x|



Motivation: acoustic scattering

Problem: a’(x, t) is incident on I for t > 0 — find the scattered field a°(x, t)

® Solve TDBIE for surface potential u:

1 u(x', t—|x"—x|)

4n r | X' —x|

dox = —a'(x,t) xecl, t>0

e Use surface potential u to compute (in the exterior):

1 Lt—|x —
as(x,t):4/u(x’| : |"| X) dop x€Q t>0
™ Jr X —X

® Both steps easier said than done!

® Gives all frequencies simultaneously by Fourier transform in time of a°(x, t) - multiscale!



Approximate solution methods for TDBIE

Find u given a' from

A .
(Su)(x, £) = — /”(X’t X =XD) o = —ai(x,t) xeT, >0
i

T ar |x'—x|

e Convolution Quadrature in time (based on Laplace transform techniques) and coupled
with Galerkin in space. Needs a talk by itself! Liibich and then many subsequent papers,
including by Banjai on a version based on RK methods, as well as a proper fast method.

¢ Full space-time Galerkin. Bamberger and Ha Duong. Full version has theoretical
backing. A simplified version is usually used and usually works, but lacks theory to back it
up. Space mesh adaptation recently by Gimperlein and Stark.

e Collocation in space and time - usually fails.
¢ Collocation in time with Galerkin in space - can work (EM example).

¢ Backwards-in-time collocation with Galerkin in space - usually works, no theory.



Approximate solution methods for TDBIE

Find u given f = —a' (switch notation from now on) from
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¢ Backwards-in-time collocation with Galerkin in space - usually works, no theory.



Computational costs for TDBIE approximation — surface in 3D space

e Time step and space mesh size about the same — O(1/N)

e Surface area of scatterer — O(Ns) elements

e Number of time steps — O(N7)

e Explicit time stepping (marching on in time) schemes with local time basis functions —
cost O(NTN2) = O(N®)

® Space-time Galerkin schemes with local time basis functions —
cost O(N®)x number of iterations to solve linear systems

e Explicit time stepping (marching on in time) schemes with global time basis functions —
cost (’)(N3T/2N§) = O(N1/?)

® Fast methods (Banjai for acoustics, Michiellsen for EM) can reduce the O(N®) costs.

® Compare with PDE in 3D scattering domain — C n* where Cis a big constant
depending on the size of the domain.



Energy in scattered field

1 u(x’, t—|x"—x|)
(Su)(x, 1) = o /r oD dox = f(x.t) xel >0

Scattered field energy can be calculated from the surface potential u

E(u:t) = /Ot/ru(x,T)(SL'l)(x, Ydox dr > 0

® Ha Duong’s results concern its time integral and give a coercivity and stability result:

;
of|ull3- S/O E(uit)dt < Bllully- (T = )l = Nullgy= < I(T = )Flly

Note: basic calculus gives:

T T
/OE(u; ) dt:/o (T — t)/ru(x, £) (Si)(x, t) dox dt

® Ha Duong uses HT = Hééz’lp (Lions & Magenes) in PhD thesis, and H ™~ is its dual.



Galerkin variational formulation

® Approx solution in terms of unknowns U}:

Ny Ng

u(x,t) = up(x,t) ZZ UL Vi (x) dn(t) € Vh, u(x,0) = up(x,0) =0

n=1 k=1

® The energy expressions suggest using the time differentiated TDBIE
Si=f not Su="f,

and one or other of

T T
Find u, € V), s.t. / /qh Supdox dt :/ /qh fdoxdt Yaq,€e Vj
0 Jr 0 Jr

T T
Find up € V) s.t. / (T—t)/th[Jth'xdt:/ (T—t)/thdaxdt VYap € Vj
0 r 0 r



Galerkin variational formulation - (lack of) theory

® No theory for the standard Galerkin formulation — no coercivity to work with.

Find up such that
T T .
/ /thUth'xdt://thdO'xdt
0o Jr 0 Jr

for each gn = 1j(x) dm(t) € Vp.
® But, on finite time intervals Ha Duong proves stability results about the following.
Find vy such that

T T .
/ (T—t)/thL'/hdaxdt:/ (T—t)/thdaxdt
0 r 0 r

for each g = 1j(x) pm(t) € V.

We will return to this later.



Galerkin is not usually a time-marching scheme

It is when ¢, are piecewise constants in time, but not in general.

Example: ¢,(t) = Bi(t/h— m)

0.5

— 1st order B-splines (hat functions)

o1 % Om

¢NT—1 ¢NT

T/3
time t

® N time basis functions.

® ¢o(t) is not needed since solution u(x,0) = 0.

® ¢n,(t) is not a “complete” basis function. Time

2T/3 T

integral is fOT e




Galerkin is not usually a time-marching scheme

® Example: ¢p,(t) = Bi(t/h— m) — 1st order B-splines (hat functions)
e Resulting linear system for the U"” € RNs (Ns space degrees of freedom):

n
U=0, QU™ +> QUU"=F", n=1:Nr-1
m=0

Nt
Z pm yNr=—m — fN7 (n= Nt) from “incomplete” ¢y,
m=0

When Nt =4 (P, Q are sparse block Ns x Ns matrices):

Q @ 0 0 Ut Ft
Ql QO Q* 0 U2 f2
QZ Ql QO Q* U3 f3
P3 P2 Pl PO U4 f4



Galerkin matrix assembly hard

® Fix x and t and evaluate

[l ) AL LN
!X’ x| | S -

for each j where it is non-zero. : j B ) TR O S

® Inner/outer circles show sup ¢,(t — |x" — x]). \ N r% /. , B ,
® Intersections of (square) space mesh elements LN L
sup ¢, are complicated. T N I P e

® Now multiply by ¢m(t)1k(x) and evaluate

I Jp - doxc
® 5D integrals with weird shapes. SRS BN 0 SR S S SRR NN RS SR

® Maischak (Brunel) developed quadrature code. ;/é I I SR PP
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Galerkin matrix assembly hard
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Galerkin matrix assembly hard

® Fix x and t and evaluate P /ﬁ\‘
X

/1/11 ’X/ (t—[x"—x|) dox

x| :
for each j where it is non-zero. : i X \ S
® Inner/outer circles show sup ¢,(t — |x" — x]). ,,,,,,,,,, / .
® Intersections of (square) space mesh elements » o ‘
sup ¢, are complicated. P ‘ S I
® Now multiply by ¢m(t)1k(x) and evaluate L1
o e doxt R

* 5D integrals with weird shapes. S I S

® Maischak (Brunel) developed quadrature code.



Summary of Galerkin for TDBIE

® No theory unless Ha Duong's more complicated variational form used.
® Matrix assembly hard because of complicated 5D integral regions.

® Does not produce a marching on in time (MOT) scheme - more like a 2 point BVP in
time.



Summary of Galerkin for TDBIE

® No theory unless Ha Duong's more complicated variational form used.
So let's use it.

® Matrix assembly hard because of complicated 5D integral regions.
Use time basis functions that are globally smooth enough extended by 0 to do simple
quadrature based on the space elements.

® Does not produce a marching on in time (MOT) scheme - more like a 2 point BVP in

time.
Modify variational formulation to keep theoretical properties and to produce a MOT

scheme.

[llustrate the time-stepping parts using 1st kind Volterra integral equations.



TDBIE connection with 1st kind Volterra integral equations

If I is an infinite flat plane, separation of variables in

1 u(x’, t—|x"—x|)

4r Jr X' —x|

doxr =f(x,t) xel,t>0

gives

/OtJO(|w|T)ﬁ(w, £ 7)dr = Flw, £)

where 0, f are Fourier transforms of u, f in space over the 2D plane with frequency vector w.

Jo = 1st kind Bessel function of order 0.



TDBIE connection with 1st kind Volterra integral equations

If I is a sphere surface, separation of variables into spherical harmonics in

1 u(x', t—|x"—x|)
= doy = f(x,t Mt
47T/r x| Ox (x,t) xel, t>0

gives step-kernel VIE problem for each up pn:

/Ot KK(T) u&m(t_T) _ 2)(:67,"(1’ t), Kﬁ(t) = { g)’f(l — t2/2)’ : § g

for the unit sphere. Note that it takes 2 time units to travel the diameter of sphere.

Py is Legendre polynomial and the indices £, m refer to the order of the spherical harmonics.



VIE kernels

Flat plate Bessel Jo(|w|t) kernel:
15

) B0
05 - ".\ T e
: ()
- N N . ~.
or EN ‘b‘».// » \\ ‘ P N
05 ‘ ‘ ‘ ‘
0 2 4 6 8 10
time t
Sphere surface Legendre Py(1 — t2/2) kernel:
15 | T T T 5
Py(1-t2/2)
; |
— — —Pg(11%12)
05 Py(1:t272) | |
0
-0.5 4
-1 .\ |




A model problem for time discretistaion

e Use convolution Volterra integral equation VIE (K, f given, find u)

/tK(T) u(t—T)dr =1f(t), t>0
0

as a model to illustrate time discretisation.
¢ Causal — solution u(t) depends on K, f,u from past, not future.
® Note that when u,f =0 for all t <0,

/OK(T) u(t—T)dT:/o K(r) u(t=7)dr, t>0.



A model problem for time discretistaion

® Use convolution Volterra integral equation VIE (K, f given, find u)

(K * u)(t) := /0 K(t)u(t—7)dr = f(t), te(0,T]

as a model to illustrate time discretisation.

® | ots of good methods for the approximate solution of this problem, e.g. convolution
quadrature, DG, backward in time collocation. These have a marching on in time (MOT)
format. DG perhaps best, but no good for TDBIEs.

e Standard Galerkin is not regarded as a good way to approximate this problem! But we'll
use it anyway because of its role in TDBIEs.



Galerkin for VIE K x u = f

e Use convolution Volterra integral equation VIE (K, f given, find u)
t
/ K(r)u(t - r)dr = £(1), te(0,T].
0
® Ha Duong Galerkin formulation: find up € Vj, s.t. Vgu € V)
T t T )
/ (T — t)qh(t)/ K(r)iin(t — 7)dr dt _/ (T — t)qn(t)f ().
0 0 0

Note that up, gn € Vi, = up(0) = gn(0) = 0.
® Rearranged Ha Duong:

T T T
/OK(T)/T (T—t)qh(t)u'h(t—T)dth:/O (T—t)qh(t)f(t)dt.



Galerkin for VIE K x u = f

® Rearranged Ha Duong:
/OTK(T) /TT(T — 0)qu(t)iin(t — 7)dt dr = /OT(T ) an(t)f(t)d.

e Use up(t) = ZLV:TI undn(t), qn(t) = ¢m(t) foreach m=1,... Nt

Nt T T _ T _
;un/o K(T)/T (T — )bm(t)bn(t — 7)dt d :/O (T — B)om(t)F(t)dt.

Cm,n

® Cp.n looks complicated, and we might expect to have to compute O(N2) different
quantities to set up linear system, ...

e . .but it actually has a lot of structure when the basis functions are splines, and we only
need O(N7) different quantities.



Galerkin for VIE K x u = f

The resulting linear system is
(DA—I—h/A\)U —Df+hf, D= diag(T — h, T —2h,...,2h, h,0).

Comes from (T — t) = (T — mh) + (mh — t) foreach m=1,..., Nt

Nt T T _ T _
> u /0 K(r) / (T — )dm(t)dn(t — 7)dt dr = /0 (T — )om(t)F(t)dt.

T T
=(T - mh)/ Dm(t)dn(t — T)dt+/ (mh — t)pm(t)pn(t — 7)dt

Assemble equations for m=1: Nt:

T T i
(D)mm = (T — mh), (A),,,,n:/0 K(T)/ m(t)bn(t — 7)dt dr



Galerkin for VIE K x u = f

The resulting linear system is
(DA—I—h/A\)U —Df+hf, D= diag(T — h, T —2h,...,2h, h,0).

Comes from (T — t) = (T — mh) + (mh — t) foreach m=1,..., Nt

Nt T T _ T _
> u /0 K(r) / (T — )dm(t)dn(t — 7)dt dr = /0 (T — )om(t)F(t)dt.

T T
=(T - mh)/ Dm(t)dn(t — T)dt+/ (mh — t)pm(t)pn(t — 7)dt

Assemble equations for m=1: Nt:

T T .
(hz\),,,,n:/o K(T)/ (mh — £)6m(t)én(t — 7)dt dr



Galerkin for VIE K x u = f

The resulting linear system is
(DA + hA)U = DFf + hf, D =diag(T — h, T —2h,...,2h, h,0).

Comes from (T — t) = (T — mh) + (mh — t) foreach m=1,... Nt

T T
(T - mh)/ (£l — T)dt+/ (mh — E)bm(£)dn(t — 7)dt

Assemble equations for m=1: Nt:

T . A T .
(f)m:/0¢m(t)f(t)dt7 (hf)m:/O (mh — t)ém(t)F(t)dt



Galerkin for VIE K x u = f

® Ha Duong Galerkin formulation: find uy € Vj, s.t. Vgu € Vj

T t
/0 (T — t)an(t) /0 K(r)i(t — 7)d7 dt = /0 (T = (o) (t)de

gives linear system .
(DA+ hA)U = Df + hf.

® Basic Galerkin formulation: find up € Vj, s.t. Vg € V)

/Oth(t)/otK(T)u'h(t—T)det—/Oth(t)f(t)dt.

gives linear system
AU =f.



Galerkin for VIE K * u = f with B; basis

The resulting linear system when B; basis functions used is
(DA + hA)U = DFf + hf, D =diag(T — h, T —2h,...,2h, h,0).

When N =4: U= (uy,...,u)", f.feRr*

g9 qg-1 O 0 G g1 O 0
A—| @ G 9 0 A= 6:71 6:70 ﬁ:l AO

a q1 do g-1 q qi1 d dqg-1

pP3 P2 P1L Po ps P2 P1 Po

Structured, not lower triangular, nearly Toeplitz.



ASIDE: A nice property of B-splines

o Key term: Ymn(7) = [T (T — t)¢m(t)dn(t — 7)dt .
Split (T — t) = (T — mh) + (mh — t) foreach m=1,...,Nr.
If ¢n(t) = Be(t/h — n) (splines degree ¢ > 0) then

T . T .
[ ome)in(e ~r)de = [ Bule/h— m) Bu(e/h—nr/h)de
= (B (= 3+ n—m) — By (5 + 3 +n—m)
— _hB2€+1 (% +n— m)

Away from 0 and T, Bj spline Galerkin gives calculations involving (smoother) B, splines
— good for TDBIE quadrature.

Term fTT(mh — t)dm(t)dn(t — 7)dt also reasonably nice.



Backwards-in-time approximation 1

® Volterra integral equation (VIE) with u,f =0 for all t < 0:

/ K(7) u(t—7)dr = f(t) = /OOK(T) u(t—7)dr te(0,T].
0 0

® Approximate VIE at t =t, = nhfor n=1,2,.... i.e. collocate.

e Approximate solution with basis functions ¢,,:

u(ty, —7) = Z Up—m &m(7) NOT u(7r) = Z uk ok (7)
k

m=0

® Plug into VIE at t = t,:

mZ::quun_m —F(t), G = /0 K(7)ém(7)dr-



Backwards-in-time approximation 2

® Marching on in time for n=1,2,.. .

n 1 n
GmUn—m = f(tn), < uy=—|"F(t,)— ImUn—m
2 () (- S ania)

where

u(ty —7) = mzz:o Upem &m(T),  qm = /0 K(7)pm(T)dT.

® Remarkably, convolution quadrature based on linear multistep methods has this format -
but with globally supported time basis functions.

® \We use mainly B-spline basis functions of degree ¢ since their local support with some
global smoothness is an advantage in the full TDBIE. Need modification for
m=20,...,¢—1, but have also used Gaussian basis functions.



Results for TDBIE — backward-in-time vs CQ

Solution on surface of sphere, approximated using 508 flat elements

0.2 std basis H
- - -BDF 2
0.1 flat corrected [
exact solution
0 -
=011 i
-0.21 B
1 1
0 5 10 15

time

BDF2 is a 2nd order accurate CQ method.
The backward-in-time scheme is (formally) 2nd order witrh local Gaussian basis functions.



Backwards-in-time approximation 3

® Choose B3 (cubic spline) basis functions with modifications to ¢g, ¢1:
d0(t) = Ba(t/h) + 2Bs(t/h+1), éu(t) = Ba(t/h — 1) — Bs(t/h+1),

¢m(t) = B3(t/h—m), m>2

and approximate K * i = f — time differentiated version of VIE.

n = 1, ceey NT . Z 8mUn—m = f(tn)a 8m = / K(T) ¢m(T)dT
m=0 0

® Closely related to simple Galerkin B; spline approximation from earlier:

n
n=1,..., Nyt —1: q_1un+1+ZQmun—m:fna

m=0

where, after scaling, go = qo +29-1, 81 =G1 — q-1 , 8m = Gm, M > 2.



Backwards-in-time approximation 4

® Choose B3 (cubic spline) basis functions with modifications to ¢o, ¢1 and approximate
K x 0 = f — time differentiated version of VIE.

n o R
n = 1, ceey NT . Z 8mUn—m = f(tn)a 8m = /O K(T) ¢m(7—)d7_
m=0

® (Closely related to simple Galerkin B; spline approximation from earlier:
n
n=1,...,Nr—1: q—lun+1+zqmun—m:fna
m=0
where, after scaling, go = qo +29—1, &1 =q1 — q-1 , §m = Gm, M > 2.

® Same as 2nd order extrapolation — replace u,41 by 2u, — u,—1.



Galerkin for VIE K % u = f with B; basis revisited

The Bj basis function full Galerkin approx is not lower triangular (and so is expensive to solve)
(DA + hA)U = Df + hf, D =diag(T — h, T —2h,...,2h, h,0).

Can write it as

(T - nh) <Q—1Un+1 + Z qmunm> + (a—lun+1 + Z C/imunm) = (T - nh)fn + hfn

m=0 m=0

Extrapolate u,4+1 = 2u, — u,—1 gives a lower triangluar approximation:

— nh) (Z Emln— m> + <Z g—mu,,_m) = (T — nh)f, + hf,
m=0

8 =qo+2q9-1, 8 =q1—q—1, 8§ = qk, kK >2. g analagous



Results for VIE

Smooth kernel J o (7t)

102
—6— Std Gal * - Diff Gal
T-t Gal & Diff Extrap
100 — B — Std Extrap T-t Gal - Extrap
o - T-t Extrap ]
A S ¢ VIE kernel Jo(7t) — 1st kind Bessel
: e ] .
0% T function of order 0.
. ]
S ot " o i e VIE approximation by various
3 - a methods: (a) standard Galerkin, (b)
0sh P . ] (T — t)-weighted Galerkin, (c,d)
*oeel ] extrapolated versions of (a,b)
0% [ | ® all appear O(h?)
-10 L
" 10’ 102

system size



Results for VIE

Sphere degree 29 eigenvalue

10°
Y —6— Std Gal * - Diff Gal
Oi\ - T-t Gal & - Diff Extrap
a4l ~ _|— & — Std Extra| T-t Gal - Extra il
0’ R Y ing ’ ® VIE kernel Pg(1 — t?/2)H(2 — t) —
o N sphere scattering, harmonics of order
102t ; e T~ ]
B ¥ el 29.
c * : s :\\ . . .
S 109t % T e VIE approximation by various
8 R i methods: (a) standard Galerkin, (b)
104 F T 3 (T — t)-weighted Galerkin, (c,d)
Tl extrapolated versions of (a,b)
5L * J
° ¥ ® all appear O(h?) - and the kernel is
e ‘ discontinuous at t = 2!
10’ 102

system size



Results for TDBIE — full Ha Duong Galerkin
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Results for TDBIE — full Ha Duong Galerkin

Not a sausage so far.

But plenty of results for other methods.
e.g. Simple Galerkin with extrapolation as preconditioner in Startk & Gimperlein — does a

good job.



Results for TDBIE — backward-in-time vs CQ

Solution on surface of sphere, approximated using 508 flat elements

0.2 std basis H
- - -BDF 2
0.1 flat corrected [
exact solution
0 -
=011 i
-0.21 B
1 1
0 5 10 15

time

BDF2 is a 2nd order accurate CQ method.
The backward-in-time scheme is (formally) 2nd order witrh local Gaussian basis functions.



Results for TDBIE — backward in time, sphere surface

Relative error to T=2

10

107

10

10° 10°
Number of Elements

L Errors — appear 2nd order.

Relative error to T=10

10°
ol % - flat raw g"\u
10 "[| —o— flat corrected
— 8 —spherical
10’ 10° 10°

Number of Elements




Results for TDBIE — backward in time, flat screen

Edge and corner singularities.

Gimperlien, Stark et al. get good results using mesh refinement at corners and edges.
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Summary

¢ Ha Duong full variational formulation has a lot of structure that makes it much less
expensive to set up and use than expected — theory guarantees stability.

e B-spline time basis functions: have nice properties as time basis functions
— simple formula for core time calculation in Galerkin approx
— good smoothess for quadrature (globally C?~1 integrands with By basis)

e Simple Galerkin appears to work as well as full Ha Duong - no theory.

e Extrapolated Galerkin methods with By basis
— B; appears to work almost as well as full versions despite (so far) lack of theory
— equivalent to backward-in-time collocation with By, basis

¢ Qutlook:
— get some full Ha Duong results
— try to patch up theory, particularly of connections between schemes
— move to B, spline Galerkin and B4 backward-in-time collocation counterpart



