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What are we doing in Bochum
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Instantons in turbulence




spatial scales time scales

Plasma = physics of scales

global scale: 106 km hours

system scale: 10° km minutes
plasma inflow _
ion scales pj, di: 103 km seconds
Large-scale
de: 10 km 103 s
ol - lon-scale
Electron-scale electron o 1km 104 s
scales
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Coupling of different plasma models
Motivation

p fluid description
MHD, Hall-MHD, 5- or |0 moment 2 Fluid

) kinetic description
PIC,Vlasov

p Coupling fluid and kinetic simulations
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Dream:

Vlasov + Maxwell

2 Fluid 10 Moment + Maxwell

2 Fluid 5 Moment + Maxwell

2 Fluid + gen. Ohms Law

MHD
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. kinetic ions, kinetic electrons 10-moment fluid ions, 5-moment fluid electrons
. kinetic ions, 10-moment fluid electrons 5-moment fluid ions, 5-moment fluid electrons

10-moment fluid ions, 10-moment fluid electrons . MHD



Very active field (we are not alone)
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Abstract. The multi-hierarchy simulation model for magnetic reconnection is devel-
oped, where both micro and macro hierarchies are expressed consistently and simulta-
neously. Two hierarchies are connected smoothly by shake-hand scheme. As a numer-
ical test, propagation of one-dimensional Alfvén wave is examined using the multi-
hierarchy simulation model. It is found that waves smoothly pass through from macro
to micro hierarchies and vice versa.
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Abstract

Many kinds of simulation models have been developed to understand the complex plasma systems. However, these sim-
ulation models have been separately performed because the fundamental assumption of each model is different and
restricts the physical processes in each spatial and temporal scales. On the other hand, it is well known that the interactions
among the multiple scales may play crucial roles in the plasma phenomena (e.g. magnetic reconnection, collisionless
shock), where the kinetic processes in the micro-scale may interact with the global structure in the fluid dynamics. To take
self-consistently into account such multi-scale phenomena, we have developed a new simulation model by directly inter-
locking the fluid simulation of the magnetohyrdodynamics (MHD) model and the kinetic simulation of the particle-in-cell
(PIC) model. The PIC domain is embedded in a small part of MHD domain. The both simulations are performed simul-
taneously in each domain and the bounded data are frequently exchanged each other to keep the consistency between the
models. We have applied our new interlocked simulation to Alfvén wave propagation problem as a benchmark test and
confirmed that the waves can propagate smoothly through the boundaries of each domain.
© 2007 Elsevier Inc. All rights reserved.
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What are we doing different?

Daldorff, Toth, Gombosi, Lapenta, Amaya, Markidis,Brackbill 2014

implicit PIC + MHD, buffer zone, Maxwellian

Our approach:
several models, no buffer zone, no assumption on Maxwellian form
+ adaptive and criteria

status: proof of principle, not really mature



Suitable situations for adaptive modelling

In which situations can adaptive modelling be applied?

turbulence: X magnetic reconnection: v/

Phenomena must...
... be localized.

. occur in a specific plasma regime.



Ingredients

Hyperbolic fluid equations:
» CWENO
»5- and |0-moment equations

Viasov:

» semi-Lagrangian PFC

» Boris push + back-substitution
» CUDA

Explicit Maxwell solver:
» Yee
»FDTD

Sub-cycling
» Maxwell
» reduced speed of light

Coupling:
» kinetic -> fluid
» fluid -> kinetic
» refinement criteria

Kurganov, Levy 2000
Hakim, Loverich, Shumlak 2006, Johnson, Rossmanith 2010
Wang, Hakim, Germaschewski, Bhattacharjee 2015

Filbet, Sonnendrucker, Bertrand 200 |
Schmitz, Grauer 2006

(factor 4)
(C =20 Valfven)



Models

Ps = ms/d3vf5 (mass density)

us; = Ms d>vvf, (velocity)
Ps
1
E. = imS/d3vvvfs (energy tensor)
1
Q. = 5Ms / d*v(v — ug)(v — ug)(v — us)fs  (heat flux tensor)

Ps = 2Es — psusug

1
s — tPs
p 3r

Es = trEs



5b-moment model:

Oeps = —V - (psus)

Ot(psus) = —V - (psusus) — %V(%Js — psuﬁ) -+ %,05 (E + ug X B)
O:E, = —%v (58 = poud)us) + = pou, - E— V- Qs

Qxxx + Qxyy + szz
Q — Qxxy =+ nyy + Qyzz
Qxxz =+ nyz + szz

10-moment model:

atps = -V (psus)

at(psus) = -V - Es+ %ps(E + U X B)
245
O,E. = -V - [3 Sym(ugEg) — 2,05u5u5u5} + 9 Sym (psuSE + E. x B) + Risos — V- Qs

S

1 /1 det P,
Riso,s p— 7-_5 <§(tr PS)]l — PS) with Ts = T0 ep2



Vlasov equation

8t@+v-vrﬁ-+%(5+vxB)-vv)fszo

Maxwell's equations

3tB:—V><E

qSIOS
E = 2 B — § : .
515 C (V X 1o : m. u )




compressible MHD

in conservation form:

Op

a—kv-(pv):O

8;;! | v'<VPV‘|‘|(pI 822) BB>:
%%—V-(v(e%—pl B;) B(v-B))
%flV-(vB—Bv):O

1

= (v - 1) (e — ~pv® — —32>

2

1
2



compressible MHD

Riemann solvers

examples: Godunov, PPM, HLL(*), wave-propagation
*very good resolution of shocks
*very bad in smooth regions

ENO-schemes
>shock resolution not as good as from Riemann solvers,

*much better resolution of waves in smooth regions
very easy!!!

We use CWENO-type schemes.

Main reason: easy !!!



Nessyahu and Tadmor (1990)
Kurganov and Levy (2000)

e no (aproximate) Riemann solver necessary

e dimension by dimension approach makes sence

e high order

e monotone, WENO, TVD depends on the reconstruction

e easy for complex problems

low Mach number limit ok



Maxwell Solver: FDTD and Yee mesh (1966)
inspired by lectures by A. Spitkovsky

OE /0t =c(V X B)—4xJ, V.-E=4r0. V-B=0

_ _ d \Y
OB /0t = —¢(V X E) , EWV=Q(E+;XB)
e ———— < ______ -
v T A FDTD: second order in space and
o i . .
, X E"Y2 = ErU2 4 At[e(V x B™) — dmnJ"]
i B"t! = B" — cAtV x E"t1/?
Bmm
15 / \x
_B._): X,

Yee mesh: div B




Yee mesh motivated by integral form:

IS
T

B-dS:—]{ E. dl
)

8t/E-dS:—02/j-dS+02]{ B . dl
> > o

Ly

2D by projection

Ax



Coupling FDTD- and CWENO Method

Fluid: strongly stable TVD Runge Kutta (Shu-Osher 1988)

At

v =" + ?f(’vnatn)
At
v = + Ff(GU, — 50", " + At)
2AL
vn—l—l :/U//_|_Tf(%v//_%vn’tn+%At>
subcycling and interpolation
/0(5)7112782 IO;7HN§7832 pg’aug’vg,?
58 . Be . B8 .pB% | BS .B% .B%® B® |BY¥ .BES .B® B® |B® . BE® .BEY BE
S e T I VI e e e e T e e e T e el I el I
. FVW\'/N/ . [ T [ T
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E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4
EO 53 E3 53 EY' 5% E3 5% E? 3% ES s E3 5% EI3 g%
B° B3 B! B3 B’ B3 B’ B3



Ok, now we have a fluid code !

Let’s do Vlasov



Vlasov simulations

collisionless Plasma: Vlasov equation

dk
5, TV V x i k( +vxB)-V,f=

+ Maxwell, Kk = e, i

important: positive conservative scheme, semi-Lagrangian,
Boris, backsubstitution method

(Filbet, Sonnendriicker, Bertrand 2001)



Darwin-Approximation

CFL-condition too restrictive
—> Darwin approximation

electric field split into longitudinal and transversal part

E—E +E mtV -E+=0und VXE, =0

Maxwell equations

V x E _ B v.E =7
ot €0

OE
VxB:uo(so o :j> V-B=0




Darwin-Approximation

CFL-condition too restrictive
—> Darwin approximation

electric field split into longitudinal and transversal part

E—E +E mtV -E+=0und VXE, =0

Maxwell equations

OB
VxEp= - v-Eng—’;

OE
VXB:,uo(so o :j) V-B=0




Darwin-Approximation

CFL-condition too restrictive
—> Darwin approximation

electric field split into longitudinal and transversal part

E—E +E mtV -E+=0und VXE, =0

Maxwell equations with Darwin approximation

oB 0
Er— EL=F
V X T It V L o
0
VXBZMO(&‘O@EEDIJ> V-B=0

no timestep restriction by the speed of light, but 8 elliptic equations



Semi-Lagrangean scheme

Consider O f + 0, (v(t,z)f) =0

The characteristics of this PDE are given by: d_X(S) — v(g X(S))
ds ’
X(t) = =

Denote the solutionas X (s, ¢, x)

Since g—*’; = 0 (r.h.s. of the PDE), we have

To X (s,t,x2)
/ f(t,z)dx :/ t f(s,x)dx

X(Sataxl)

With this we can update the cell-average of f in the ith cell:

T, 1 X", 1)
[ e = [ 2, x)da

i—% X(tn7tn—|—1’xi_%)



Let ff’ denote the cell-average in the ith cell at time t™.

I e
n X(tn’tn+1’xi+%) n
= / » f(t ,ac)dx—/ f(t", x)dx
X (tm,t L %) x’i—i—%

Strategy:

@ Follow the Characteristics ending at the cell borders backwards in time and find their
footpoint

@ Reconstruct the integral of f from the footpoint to the cell border
- m—+1 _  F
@ Update with fz = f,;n’ + Cbi_% — (I)i—l—%

This will lead to a conservative scheme.



Developed by Filbet, Sonnendriicker, Bertrand (JCP 2001)
PFC = Positive Flux-Conservative

Let's consider the simple second-order scheme for positive velocities: Approximate the primit
function of f in the interval [xi_%,a}H%] (again, f; denotes the cell average):

F(x) = /_io f(z)da

SN ;1 fi+1 — fi
F(x)—wz_l—l—(m—xi_%)fz—l—§(aﬁ—xi_%)(x—azi+%) o

Now we can reconstruct f itself:

AP e —
f)= @) = it (@ - TS




However this scheme can cause negative reconstructed f To avoid this, one can introduce a
slope-limiter € to ensure that the reconstruction lies between 0 and f:

. — { min(1;2f; /(fix1 — fi))_ B if fix1 > fi
’ min(1l; —2(feo — fi)/((fix1 — fi)) if fix1 < f,
to obtain B B
fiv1 — [
Ax

fr(x) = fi + ei(x — ;)

Let's denote the distance from the footpoint of the characteristic to the cell-boundary by «.

Integrating f;, then gives the flux through the boundary at T, 1
2

T 1
P, 1 =/ > fn(z)dx
2 X

it3—a

:oz(ﬁ;-#%(l—&)(ﬁ—kl_fi))

Some remarks:
@ This scheme can be extended to higher orders. We use the third order one.
@ A similar derivation produces the scheme for negative velocities.

@ The length of the characteristics can be arbitrarily large with only a minor change in the
derivation.

@ The accuracy in time depends only on how good the characteristics can be calculated.



The Vlasov equation

ds
Mo

8tfs‘|‘v’vxfs+ (E+VXB)vvfs:O

We want to solve this PDE using a one-dimensional semi-Lagrangian scheme.

Why? Becase one-dimensional schemes can have fancy limiters, conservation-properties and
efficient implementations that are difficult to generalise to higher dimensions.

Remember: The Vlasov equation is a conservative, hyperbolic PDE in 6 dimension (plus time)

One way to do this is splitting.



Splitting

Consider 0;f = Af + Bf, where A and B are linear operators (with no time dependance).

The formal solution to this is

f(t) = exp ((A+ B)t) fo

If A and B commute, we can also write:

f(t) = exp(Bt) exp(At) fo

This means we can just solve 0; f = Af, use the result as an initial value for
O¢ f = Bf and still get the correct solution!



Godunov splitting

What happens when A and B do not commute?
Let's look at the Zassenhaus formula (A variation on Baker-Campbell-Hausdorff):

t2

exp ((A + B)t) = exp (Bt) exp (At) exp ([A, B] E) exp (O(t°))

So now we have:

f(t) = exp(Bt) exp(At) fo + O(t?)

We still get an approximate solution accurate to first order in time.
This is called Godunov splitting or Lie-Trotter splitting



Strang splitting

Can we do better?

A scheme accurate to second order in time is the Strang-Splitting:

f(t) = exp(Bt/2) exp(At) exp(Bt/2) fo + O(t°)
By manipulating the Baker-Campbell-Hausdorff formula, splitting schemes of arbitrary order can
be constructed.

However, the Sheng-Suzuki theorem states that all splitting schemes better than second order will
have at least one negative exponent (i.e. negative time-steps).



Strang splitting and the Vlasov equation

We will now use Strang splitting on the Vlasov equation:

A S d

B
fs(t" 1) = exp(Bt/2) exp(At) exp(Bt/2) fs(t") + O(t°)

This means we update the velocity-part of f; over one half time-step,
then update the position-part over one full time-step,
then update the velocity-part again over one half time-step.

This is equivalent to the Leapfrog or Stromer-Verlet schemes in PIC simulations!



The position update

We want to solve
ath ‘|‘V'vxfs =0

Let's rewrite this equation to

8tfs + axvxfs + 8y'nys + az'szs =0
Since v is just a variable and does not depend on x, we can write this in a conservative form.
Now we have three linear operators that all commute!

We can just solve each step seperately and the solution is still exact. By using a conservative
numerical scheme, the conservation property of the Vlasov equation is kept.



The velocity update

The velocity part is not that easy.

atf3—|— r'zLS (E"—V X B) 'vaS —
8tfs + :j 81):,; (Ea: + Usz — Usz)fs
+ 1 avy (Ey + v, By — U:ch)fs
ms
+ L9, (B, +vsBy —vyBa)fs =0
ms

We can still rewrite this in a conservative way, but the three operators do not commute because
of the velocity in the v X B term.



The velocity update

Can we use Strang splitting?

If we denote the individual operators by V., V,, and V. we will have

F(m ) = exp(Vat/4) exp(Vyt/2) exp(Vat/4)
x exp(Vyt)

x exp(Vet/4) exp(Vyt/2) exp(Vot/4) f (™) + O(t>)

This means 7 steps for the velocity update and we have a numerically preferred direction.



Backsubstitution

What we really want is:
@ Just one step per operator

@ No splitting error in time

leap-frog

ynt1/2 _ yn—1/2 q
m

At

Equations of motion:

d

Emv = q(E+ v xB)
e — v
dt~

looks implicit



Solution: Boris (1970) explicit

n AtE"
viTl/2 =y - qE" At vio= vtz 2m
T]gn AQt vV. = v +v xt"
vt/ — g q o4n
m 2 vi = v +v x
vi—v~ q . . 14 tn-tn
A7 o (VT 4+v) viH/2 gt qAtE
2m
AtB"
with t" = 2

2m



So let’s revisit what the semi-Lagrangian scheme does (for simplicity in 2D).
A full two-dimensional scheme would transport the value of f along the black characteristic.

would like to have:  f'°W(D_ D )= fOld(Sa;, Sy)

SPSS87). $(G,.S,”)
3 x>y

V= §."G) 5] 6=(G,G)

G=(G.G)
1)
KDV = (Gx’Dy(l))
SPIIttlng fmter<Gx7 Gy) _ fOld(Sél)’ Gy) fneW(Gx’ Gy) _ flIﬂ]GI'(Gx, 5?52))
#0ld is |ossed, only have finter

assuming correct interpolation  f2r (G Si2)) = fold(s@ SE2))

= V(GG = S SP)



Backsubstitution for the velocity update

The characteristics for the velocity update can be calculated by the Boris scheme. Define

At 2k
k:—qu S =
2 M 1+ k2

Now the backward in time Boris scheme is given by:

Vv =V —V XS
At

v =v ——qSE
2 Mg

This formula has to be brought into this form:

n _ n/.n+1 n n
UCU_U.CU(U.CU 7Uy7vz)

n _ n/irn+l o n+1l n

v, = v, (v, , Uy , VL)

n _ n/..n+1 n—+1 n—+1
UV, = Vg (va; 7vy y Uy )



Backsubstitution for the velocity update

R AR e (1)
1 1

op = ottt ur) (2)

of = o Wttt o) (3)

The last equation (3) is given simply by the z-component of Boris' scheme.

To find (2) we solve (3) for 2! and substitute this into the y-component of Boris’' scheme.
Equation (1) can be found by using the z-component of the forward in time Boris scheme and
solving for v’'.



Example: magnetic reconnection with DSDV |

0.517055

0200755

Electron out of plane current

~2431833

-0.7£8132

Electron distribution function




New Code: DSDV Il (Martin Rieke)

» full Maxwell Solver
p parallel CUDA



Hardware and CUDA performance

The DaVinci-cluster at the Ruhr-Universitat
Bochum consists of |7 nodes with a total of

» 16320 cores and 272 GB RAM on GPUs
(68~NVidia Tesla S1070 cards with
240 cores and 4 GB RAM each)
» 136 respectively 272 (with HT) cores and
408 GB on CPUs (34 Xeon E5530 Quad Core CPUs

(2.4 GHz) with 8 cores respectively 16 cores
(with HT) and 12~GB RAM each)

system resolution duration of run
CPUs (Schmitz, Grauer) 256 x 128 x 30° ~ 150 h
GPUs (this work) 256 x 128 x 32° ~ & h

Comparison of the time necessary to simulate one quarter
of the GEM setup until t = 409;1.



Basic idea

GPUs

/

14

15

¥

snaflssnnnsnnnnnnnnnnnnpanhs

s sfssnnnsnnnnsnnnnnnnfany

Multifluid

Parallelization: space-filling Hilbert-curve

@ Domain is subdivided into
mostly autonomous blocks

@ In each block, one physical
model is applied

@ Communication via exchange of
boundary conditions



Fitting moments

kinetic region — fluid region:

@ Calculating moments via simple

Integration
0.7

L]
original

0.6
0.5 F
0.4 F
0.3 F
0.2 F
0.1}

fluid region — kinetic region:

@ Lack of sufficient information

o
- ~

Phase-space density

@ Extrapolation of shape of pdf

modified ---------- .

Into outer region

Velocity

e Fitting of moments by advection
step with suitable velocity field



lon Sound Waves
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First Results

GEM challenge (reconnection) ion hole






Issues and ToDo’s

numerical errors act differently in fluid and kinetic codes:
numerical dissipation in Vlasov leads to heating

numerical dissipation in fluid leads to cooling

Strategy:

errors are “smaller’ in fluid than in Vlasov, thus
in the kinetic region solve fluid equations with heat flux Q from Vlasov
if there were no numerical errors: fluid = Vlasov

trust fluid
adjust distribution function with the fluid moments

Example: Whistler wave (Daldorff, Toth, Gombosi, Lapenta, Amaya, Markidis,Brackbill JCP 2014)



uy - whistler wave without fitting

10

O
|
<
o
o
o3

0 .
0 S 10 15 20

uy - whistler wave with fitting
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Adaptive Multiphysics Simulations

Criterion

Consider 1D:

_ _ Klje_1 o _
Otfty = — Oy y + ——Ox]is
Ho
k+1

:(@)2(—um@mr%)+ak—mw#%@m7»

__ k_>7 (”(k‘zl)(k”)r%axr)
ki

3k
0rq = —5—poxT
3d:
3 k2
tl’ (8tQ) — _En (f) {TXX8X TXX + Tyyay Tyy + 7_ZZaZ 7—ZZ

+ Ty (Oy Tax + 0xTyy) + Ty, (0, Ty + 0y Tz) + Tiz (02 Tox + 0x T12) }

Assume isotropic temperature:

3k
tr (0,Q) = —EEBP(&(T +0,T+0,T),



Adaptive Multiphysics Simulations

jz - GEM with temperature gradient criterion 0.00

—0.25
—0.50
—0.75
—1.00
—1.25
—1.50
—1.75
1 —2.00
—2.25

12
10

o N A O




Adaptive Multiphysics Simulations

jz - GEM with temperature gradient criterion
12

10

o N A O




Issues and ToDo’s

other models (Landau fluid?)
better subcycling

3D

Newton challenge

shocks

MHD



2D Simulations:

GEM Setup

Parameters:

ML — 25 F=1/m =5 A=05

ng =1 Noo = 0.2 By=1

Yo = 0.1 L, =38m L,=4n
Name Expression Electrons Ions
thermal velocity Vihs = 2T0,8\/$:2 2.0 0.91
plasma frequency Wp,s = c\/ﬁ V10,5 100 20
gyro frequency Qg = zz By 25 1
Larmor radius re = /2Tos \/f A 0082 001
Debye length Ap.s = l\/% 0.014  0.032
skin depth/inertial length  §5 = Z}L—jﬁ 0.2 1

10° 4—

sheet width: 2\ = 1.0

ion skin depth: 1.0
ion gyro radius: r; = 0.91

Axgy = 0.39

electron skin depth: 0.20
Axlgg =0.19

Axass = 0.098

electron gyro radius: r. = 0.082

A$512 = 0.049

ion Debye length: Ap; = 0.032

Ax1024 = 0.024

electron Debye length: Ap . = 0.014
A$2048 = 0.012



128

226 Cells
228 Cells
230 Cells
232 Cells
234 Cells
225 Cells/GPU
226 Cells/GPU
227 Cells/GPU
228 Cells/GPU
229 Cells/GPU
230 Cells/GPU



J 1By ()| dz/(Bods)

3.9 7

3.0 -

2.5 1

2.0 1

1.5 -

1.0 A

0.5 -

multi-physics simulation
fully kinetic

fully two-fluid with ten moments

fully two-fluid with five moments

25

30

35

40




criterium wu, electrons abs(uz,e) Jz abs(uz,;) criterium u,, ions




¢, criterium .- .
.30
0.20
My (.20
= 01>
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Vision and advertisement: Tensor Networks

Katharina Kormann

A Semi-Lagrangian Vlasov Solver in Tensor Train Format
SIAM J. Sci. Comput., 37(4), B613—-B632

Lukas Einkemmer, Christian Lubich
A low-rank projector-splitting integrator for the Vlasov--Poisson equation
arXiv:1801.01103

matrix product states, tensor trains,
tensor networks hierarchical Tucker

St. White 1992 |. V. Oseledets 2008
U. Schollwock 2005 W. Hackbusch 2009
J. |. Cirac, F. Verstraete, 2009 L. Grasedyck 2013

DMRG ALS, MALS

Roman Orus A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States 2014

L. Grasedyck, D. Kressner, C. Tobler A literature survey of low-rank tensor approximation technoques 2013


https://arxiv.org/search/math?searchtype=author&query=Einkemmer%2C+L
https://arxiv.org/search/math?searchtype=author&query=Lubich%2C+C
https://arxiv.org/abs/1801.01103

2D: singular value decomposition SVD

diagonal

l

Man — Ume Zan (VT)an

N/

orthogonal matrix



2D: singular value decomposition SVD

diagonal

l

MMXN — | JMXry 31X, (VT)rZXn

N/

orthogonal matrix

only few singular values r <m, r, <n



tensors: example 4D

d;xd,xdsxd, o €Mdi-daXdsedy — [ ]93dsXr3g [ JdidoXriy Br3gXry,
M M U34 U12 B1234

M = (U3, ® U12)B1o34

U,, = U, ®U)By, Us, = (Uy ® Uj3)Bsy

M=U;®U; XU, ®U;)(B3y XB13)B1r34



hierarchical Tucker HT tensortrain TT




Now: not parallel, electrostatic with constant guide field

Master Student Florian Allmann-Rahn: parallelization with domain decomposition
In his Phd: generalisation to Maxwell

Lot’s of things to do

Thank you

Rieke M, Trost T, Grauer R.
Coupled Vlasov and two-fluid codes on GPUs.
Journal of Computational Physics 283 (2015) 436452

Lautenbach S., Grauer R.
Multiphysics simulations of collisionless plasmas
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