
THE BROUWER FIXED POINT THEOREM AND THE
BORSUK–ULAM THEOREM

ANTHONY CARBERY

1. Brouwer fixed point theorem

The Brouwer fixed point theorem states that every continuous map f : Dn → Dn

has a fixed point. When n = 1 this is a trivial consequence of the intermediate
value theorem.

In higher dimensions, if not, then for some f and all x ∈ Dn, f(x) 6= x. So the
map f̃ : Dn → Sn−1 obtained by sending x to the unique point on Sn−1 on the line
segment starting at f(x) and passing through x is continuous, and when restricted
to the boundary ∂Dn = Sn−1 is the identity.

So to prove the Brouwer fixed point theorem it suffices to show there is no map
g : Dn → Sn−1 which restricted to the boundary Sn−1 is the identity. (In fact, this
is an equivalent formulation.)

It is enough, by a standard approximation argument, to prove this for C1 maps g.
Consider ∫

Dn

detDg =
∫

Dn

dg1 ∧ dg2 ∧ · · · ∧ dgn

where Dg is the derivative matrix of g. On the one hand this is zero as Dg has less
than full rank at each x ∈ Dn, and on the other hand it equals, by Stokes’ theorem,∫

Sn−1
g1dg2 ∧ · · · ∧ dgn.

This quantity manifestly does not depend on the behaviour of g1 in the interior
of Dn, and, by symmetry, likewise depends only on the restrictions of g2, . . . , gn

to Sn−1. But on Sn−1, g is the identity I, so that reversing the argument, this
quantity also equals ∫

Dn

detDI = |Dn|.

In do Carmo’s book Differential Forms and Applications, an argument along the
above lines is attributed essentially to E. Lima. Is there a similarly simple proof of
the Borsuk–Ulam theorem via Stokes’ theorem?
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2. Borsuk–Ulam theorem

The Borsuk–Ulam theorem states that for every continuous map f : Sn → Rn there
is some x with f(x) = f(−x). Once again, when n = 1 this is a trivial consequence
of the intermediate value theorem.

In higher dimensions, we first note that it suffices to prove this for smooth f .
Knowing it for smooth functions, uniformly approximate continuous f : Sn → Rn

by smooth maps fm, for each of which there is an xm with fm(xm) = fm(−xm);
then there is a subsequence (which we’ll also call xm) convergent to some x ∈ Sn.
Then fm(xm) = (fm(xm)− f(xm)) + f(xm); the first term is as small as we please
for m sufficiently large, and the second term converges to f(x) by continuity of f .
So fm(xm) → f(x) and similarly fm(−xm) → f(−x).

So assume for contradiction that f is smooth and that for all x, f(x) 6= f(−x).
Then

f̃(x) :=
f(x)− f(−x)
|f(x)− f(−x)|

is a smooth map f̃ : Sn → Sn−1 such that f̃(−x) = −f̃(x) for all x, i.e. f̃ is odd,
antipodal or equivariant with respect to the map x 7→ −x.

Thus it suffices to show there is no equivariant smooth map h : Sn → Sn−1. Equiv-
alently, thinking of the closed upper hemisphere of Sn as Dn, it suffices to show
there is no smooth map g : Dn → Sn−1 which is equivariant on the boundary. Once
again this formulation is equivalent to the Borsuk–Ulam theorem and shows (since
the identity map is equivariant) that it generalises the Brouwer fixed point thorem.

2.1. Case n = 2. As above, it’s enough to show that there does not exist a g :
D2 → S1 which is equivariant on the boundary, i.e. such that g(−x) = −g(x) for
x ∈ S1.

If there did exist such a (smooth) g, consider∫
D2

detDg =
∫

D2
dg1 ∧ dg2

On the one hand this is zero as Dg has less than full rank at each x, and on the
other hand it equals, by Stokes’ theorem,∫

S1
g1dg2 = −

∫
S1
g2dg1

So it’s enough to show that∫ 1

0

(g1(t)g′2(t)− g2(t)g′1(t))dt 6= 0

for g = (g1, g2) : R/Z → S1 satisfying g(t+ 1/2) = −g(t) for all 0 ≤ t ≤ 1.

Now clearly
(g1(t)g′2(t)− g2(t)g′1(t))dt

represents the element of net arclength for the curve (g1(t), g2(t)) measured in the
anticlockwise direction. Indeed, |g| = 1 implies 〈g, g′〉 = 1

2
d
dt |g|

2 = 0, so that
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det(g, g′) = ±|g||g′| = ±|g′|, with the plus sign occuring when g is moving anti-
clockwise. And the point of the equivariance condition is that (g1(1/2), g2(1/2)) =
−(g1(0), g2(0)), and that∫ 1

0

g1(t)g′2(t)dt = 2
∫ 1/2

0

g1(t)g′2(t)dt.

In passing from (g1(0), g2(0)) to (g1(1/2), g2(1/2)) the total net arclength traversed
is clearly an odd multiple of π, and so we’re done.

Note that the argument shows that for any smooth equivariant h : S1 → S1 we have∫
S1
h1dh2 = −

∫
S1
h2dh1 6= 0,

and indeed is an odd multiple of π.

In the higher dimensional case n ≥ 3 we’d be done by the same argument if we
could show that ∫

Sn−1
g1dg2 ∧ dg3 · · · ∧ dgn 6= 0

whenever g : Sn−1 → Sn−1 is equivariant.

2.2. Dimensional reduction. The material in this subsection is based upon notes
by Shchepin available at http://www.mi.ras.ru/˜scepin/elem-proof-reduct.pdf with
some details added, and is adapted to the smooth case under consideration.

Theorem 1. Suppose n ≥ 4 and there exists a smooth equivariant map f : Sn →
Sn−1. Then there exists a smooth equivariant map f̃ : Sn−1 → Sn−2.

Once this is proved, only the case n = 3 of the Borsuk–Ulam theorem remains
outstanding. Note that only the case when f is surjective is interesting here (as if
f avoids a pair of points we can simply retract its image into an equator).

Proof. Starting with f , we shall identify suitable equators En−1 ⊆ Sn and En−2 ⊆
Sn−1, and build a smooth equivariant map f̃ : En−1 → En−2.

We first need to know that there is some pair of antipodal points {±A} in the target
Sn−1 whose preimages under f are at most “one-dimensional”. This is intuitively
clear by dimension counting but for rigour we appeal to Sard’s theorem.1 Indeed,
Sard’s theorem tells us that the image under f of the set {x ∈ Sn : rank Df(x) <
n − 1} is of Lebesgue measure zero: so there are plenty of points A ∈ Sn−1 at all
of whose preimages x – if there are any at all – Df(x) has full rank n− 1. By the
implicit function theorem, for each such x there is a neighbourhood B(x, r) such
that B(x, r) ∩ f−1(A) is diffeomorphic to the interval (−1, 1). The whole of the
compact set f−1(A) is covered by such balls, from which we can extract a finite
subcover: so indeed f−1(A) is covered by finitely many diffeomorphic copies of
(−1, 1).

1Shchepin works instead with polyhedra homeomorphic to spheres and piecewiese linear sur-
jections between them. We may assume that the image of each face in the domain is contained in
a face of the target. In this setting linear algebra shows that there is a pair of antipodes whose
inverse images are finite unions of line segments.



4 ANTHONY CARBERY

Now for x ∈ f−1(A) and y ∈ f−1(−A) = −f−1(A) with y 6= −x, consider the
unique geodesic great circle joining x to y. The family of such is clearly indexed
by the two-parameter family of points of f−1(A) × f−1(−A) \ {(x,−x) : f(x) =
A}. Their union is therefore a manifold in Sn of dimension at most three. Since
n ≥ 4 there must be points ±B ∈ Sn outside this union(and necessarily outside
f−1(A) ∪ f−1(−A)). Such a point has the property that no geodesic great circle
passing through it meets points of both f−1(A) and f−1(−A) other than possibly at
antipodes. In particular, no meridian joining ±B meets both f−1(A) and f−1(−A).

We now identify En−2 as the equator of Sn−1 whose equatorial plane is perpen-
dicular to the axis joining A to −A; and we identify En−1 as the equator of Sn

whose equatorial plane is perpendicular to the axis joining B to −B. We assume
for notational simplicity that B is the north pole (0, 0, . . . , 0, 1).

Lemma 1. Suppose B = (0, 0, . . . , 0, 1) ∈ Sn and that X ⊆ Sn is a closed subset
such that no meridian joining ±B meets both X and −X. Let Sn

± denote the open
upper and lower hemispheres respectively. Then there is an equivariant diffeomor-
phism ψ : Sn → Sn such that

X ⊆ ψ(Sn
+).

Proof. Since X is closed and ±B /∈ X, there is an ε > 0 such that spherical caps
centred at ±B subtending angles of 2ε at the origin do not meet ±X. Consider the
projections of ±X along meridians from B and −B on the equator E of Sn which
lies in the plane perpendicular to the axis joining ±B; call these ±Π(X). These
are disjoint closed sets and are therefore positively separated. For x ∈ E let d±(x)
be the geodesic distance in E to ±Π(X), and let

θ(x) = (π/2− ε)
d+(x)− d−(x)
d+(x) + d−(x)

.

Then for all x ∈ E, θ(−x) = −θ(x) and |θ(x)| ≤ π/2 − ε; for x ∈ Π(X) we have
θ(x) = −π/2+ε and for x ∈ −Π(X) we have θ(x) = π/2−ε. Mollify θ if necessary to
obtain a smooth function θ̃ : E → [−π/2+ ε/2, π/2− ε/2] satisfying θ̃(−x) = −θ̃(x)
and such that for x ∈ Π(X) we have −π/2 + ε/2 ≤ θ̃(x) ≤ −π/2 + 3ε/2.

For x ∈ E let ψ(x) be the point of Sn on the meridian through x with latitude θ̃(x).
Then ψ : E → Sn is a smooth equivariant map and clearly we can extend this to
be an equivariant diffeomorphism ψ of Sn to itself which maps Sn−1

+ to the region
above ψ(E).

Finally, since for x ∈ X we have θ̃(x) ≤ −π/2 + 3ε/2, we have that X is contained
in the region above ψ(E), that is, X ⊆ ψ(Sn

+).
�

Continuing with the proof of the theorem, we apply the lemma with X = f−1(A).
Let φ be restriction of ψ to E = En−1. Consider the restriction f̂ of f to φ(E):
it has the property that f̂(φ(E)) does not contain ±A. Let r be the standard
retraction of Sn−1 \ {±A} onto its equator En−2; finally let f̃ = r ◦ f̂ ◦ φ, which is
clearly smooth and equivariant.

�
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Remark. It is clear from the construction of ψ in Lemma 1 that we may assume
that it fixes meridians and acts as the identity on small neighbourhoods of ±B.
Moreover it is also clear that we may find a smoothly varying family of diffeomor-
phisms ψt of Sn, 0 ≤ t ≤ 1, such that ψ0 is the identity and ψ1 = ψ.

2.3. Case n = 3. The treatment in Proposition 1 and Lemma 2 below is also based
upon the notes of Shchepin peviously cited, but it incorporates some significant
differences of detail, and is adapted to the smooth case under consideration.

Proposition 1. Suppose that f : S3 → S2 is a smooth equivariant map. Then there
exists a smooth f† : D3 → S2 which is equivariant on ∂D3 = S2, and moreover maps
S2
± to itself.

Proof. Firstly, by identifying the closed upper hemisphere of S3 with the closed disc
D3 we obtain a smooth map

f̂ : D3 → S2

which is equivariant on ∂D3 = S2.

Then the restriction of f̂ to ∂D3 = S2 gives a smooth equivariant map g : S2 → S2.
If we could take g to be the identity, we would be finished (by the argument given
for the Brouwer fixed point theorem). Further, if g is such that either for all x,
g(x) 6= x, or for all x, g(x) 6= −x, we can use the map

θg(x)± (1− θ)x
|θg(x)± (1− θ)x|

to “graft the identity onto the outside of f̂” to obtain a map to which the Brouwer
argument applies. So the “bad” g are those for which there exist x and y with
g(x) = x and g(y) = −y. For such g we might hope instead to be able to graft an
equivariant hemisphere-preserving g† onto the outside of f̂ – or what is almost as
good, to find such a g† and a smooth family of diffeomorphisms ψt : S2 → S2 such
that ψ0 is the identity and ψ1 = ψ where g†(x) 6= −g ◦ ψ(x) for all x.

Lemma 2. If g : S2 → S2 is a smooth equivariant map, then there exists a smooth
equivariant g† : S2 → S2 which preserves the upper and lower hemispheres of S2,
and a smooth family of diffeomeorphisms ψt such that ψ0 = I, ψ1 = ψ and such
that for all x,

g†(x) 6= −g ◦ ψ(x).

Proof. Pick points ±A in the target S2 whose inverse images under g are at most
finite. This we can do by Sard’s theorem as the image under g of the set {x ∈
S2 : rank Dg(x) < 2} has Lebesgue measure zero in S2. So there are plenty of
points A ∈ S2 at all of whose preimages x (if there are any at all), Dg(x) has full
rank 2. By the inverse function theorem, for each such x there is a neighbourhood
B(x, r) such that B(x, r) ∩ g−1(A) = {x}. The whole of the compact set g−1(A)
is covered by such balls, from which we can extract a finite subcover: so indeed
g−1(A) consists of (at most) finitely many points. We may assume without loss of
generality that A is the north pole.

Pick now ±B in the domain S2 such that the merdinial projections of the members
of g−1(±A) on the equator whose plane is perpendicular to the axis joining ±B
are distinct. Assume without loss of generality that B is the north pole. Now
applying Lemma 1 (and the remarks following it) with X = g−1(A) we see there
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is an equivariant diffeomorphism ψ : S2 → S2 such that g−1(A) ⊆ ψ(S2
+). Thus

g∗ := g◦ψ is a smooth equivariant map from S2 to itself and g−1
∗ (A) ⊆ S2

+. Moreover
ψ = ψ1 where ψt is a smooth family of diffeomorphisms such that ψ0 = I.

Let E be the equator and define g̃ : E → E as the meridinial projection of g∗(x)
on E. It is well-defined since g−1

∗ (±A) ∩ E = ∅. Then g̃ is clearly smooth and
equivariant.

We next extend g̃ to a small strip around E. For x ∈ S2 let l(x) ∈ [−π/2, π/2]
denote its latitude with respect to E, and (if x 6= ±B) let x denote its meridinial
projection on E. For 0 < r < π/2 let Er = {x ∈ S2 : |l(x)| ≤ r}. Consider only r
so small that Er ∩ g−1

∗ (±A) = ∅. Let d = dist (±A, g∗(E)). Since g∗ is uniformly
continuous, there is an r > 0 such that for x ∈ Er we have d(g∗(x), g∗(x)) < d/10.
Now extend g̃ to Er by defining g̃(x) to be the point with the same longitude
(merdinial projection) as g̃(x) and with latitude πl(x)/2r. This extension is still
equivariant and smooth.

Finally extend g̃ to a map from S2 to itself by defining g̃(x) = A for l(x) > r and
g̃(x) = −A for l(x) < −r. We see that g̃ is continuous, equivariant, preserves the
upper and lower hemispheres and – except possibly on the sets {x : l(x) = ±r} –
is smooth.

Consider, for x ∈ Er, the three points g∗(x), g∗(x) and g̃(x). Now g∗(x) and g̃(x)
lie on the same meridian, and g∗(x) is distant at least d from ±A. On the other
hand, g∗(x) is at most d/10 from g∗(x). Thus g∗(x) is at least 9d/10 from ±A
and lives in a d/10-neighbourhood of the common meridian containing g∗(x) and
g̃(x). So for x ∈ Er, g∗(x) cannot equal −g̃(x). For l(x) > r we have g̃(x) = A
and g∗(x) 6= −A because g−1

∗ (−A) is contained in the lower hemisphere. Similarly
for l(x) < −r, g̃(x) 6= −g∗(x). Thus for all x ∈ S2 we have g̃(x) 6= −g∗(x). By
continuity, g̃(x) and −g∗(x) are positively separated on S2. So for any sufficiently
small uniform perturbation ˜̃g of g̃ we will have the same property ˜̃g(x) 6= −g∗(x)
for all x.

We now mollify g̃ in small neighbourhoods of {x : l(x) = ±r} (and then renor-
malise to ensure that the target space remains S2 !) to obtain g† which is smooth,
equivariant, preserves the upper and lower hemispheres and, being uniformly very
close to g̃, is such that g†(x) 6= −g∗(x) for all x.

�

Finishing now with the proof of the proposition, for x ∈ S2 and 0 ≤ t ≤ 1, let
f̃ : D3 → S2 be defined by

f̃(tx) =
(3t− 2)g†(x) + (3− 3t)(g ◦ ψ)(x)
|(3t− 2)g†(x) + (3− 3t)(g ◦ ψ)(x)|

when 2/3 ≤ t ≤ 1,

f̃(tx) = g ◦ ψ3t−1(x) when 1/3 ≤ t ≤ 2/3
and

f̃(tx) = f̂(3tx) when 0 ≤ t ≤ 1/3.

This makes sense because for all 2/3 ≤ t ≤ 1 we have (3t − 2)g†(x) + (3 − 3t)(g ◦
ψ)(x) 6= 0; then f̃ has all the desired properties of f† (including continuity) except
possibly for smoothness at t = 1/3 and 2/3. To rectify this we mollify f̃ in a small
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neighbourhood of {t = 1/3} and {t = 2/3} and renormalise once more to ensure
that the target space is indeed still S2. The resulting f† now has all the properties
we need. �

Let C be the cylinder D2× [−1, 1] in R3 with top and bottom faces D± and curved
vertical boundary V = S1 × [−1, 1]. Let S± be the upper and lower halves of
S = ∂C. Let E be the equator of S.

Now C, with the all points on each vertical line of V identified, is diffeomorphic to
D3, and S is also diffeomorphic to S2, so that we immediately get:

Corollary 1. Under the same hypotheses as Proposition 1, there exists a smooth
map from C to S which is equivariant on ∂C, which is constant on vertical lines in
V and which maps D± into S±.

The final argument needed to complete the proof of the Borsuk–Ulam theorem is:

Proposition 2. There is no smooth map f : C → S which is equivariant on ∂C,
which is constant on vertical lines in V and which maps D± into S±.

Proof. If such an f existed, then∫
C

detDf =
∫

C

df1 ∧ df2 ∧ df3

where Df is the derivative matrix of f . On the one hand this is zero as Df has less
than full rank at almost every x ∈ C, and on the other hand it equals, by Stokes’
theorem, ∫

∂C

f3 df1 ∧ df2 =
∫

V

f3 df1 ∧ df2 + 2
∫

D+

f3 df1 ∧ df2

by equivariance.

Now f maps V into E, so that f3 = 0 on V , and the first term on the right vanishes.

As for the second term,∫
D+

f3 df1 ∧ df2 =
∫

D+∩{x : f3(x)=1}
f3 df1 ∧ df2 +

∫
D+∩{x : f3(x)<1}

f3 df1 ∧ df2.

The region ofD+ on which f3(x) < 1 consists of patches on which f2
1 (x)+f2

2 (x) = 1,
and so 2f1 df1 + 2f2 df2 = 0. Taking exterior products with df1 and df2 tells us
that on such patches we have f1 df1 ∧df2 = f2 df1 ∧df2 = 0. Multiplying by f1 and
f2 and adding we get that h df1 ∧ df2 = 0 for all h supported on a patch on which
f3(x) < 1. So for any h we have∫

D+∩{x : f3(x)<1}
h df1 ∧ df2 = 0.

Hence ∫
D+

f3 df1 ∧ df2 =
∫

D+∩{x : f3(x)=1}
df1 ∧ df2

=
∫

D+∩{x : f3(x)=1}
df1 ∧ df2 +

∫
D+∩{x : f3(x)<1}

df1 ∧ df2

=
∫

D+

df1 ∧ df2.
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By Stokes’ theorem once again we have∫
D+

df1 ∧ df2 =
∫

∂D+

f1df2 = −
∫

∂D+

f2df1,

and, since f restricted to ∂D+ is equivariant, this quantity is nonzero (and indeed
is an odd multiple of π), by the remarks in the proof of the case n = 2 above.

So no such f exists and we are done.
�
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