
THE BRASCAMP–LIEB INEQUALITIES: RECENT
DEVELOPMENTS

NAFSA 8 LECTURES – ANTHONY CARBERY

1. Introduction

In these notes we intend to survey some recent developments in the area of
Brascamp–Lieb inequalities which are due mainly to Bennett, Christ, Tao and
the present author ([BCCT1], [BCCT2]). The notes are intended to be informal
and expository, and there are exercises throughout designed to engage the reader’s
attention – as befits a NAFSA Spring School. In every case, the reader should
consult the published works [BCCT1] and [BCCT2] for precise statements, details
and attributions. It is hoped that the present notes might provide an introduction to
these papers, especially [BCCT1]. It is to be emphasised that we make no attempt
here to document accurately the history of the subject, nor the very important
contributions of other authors in this field. We refer again to [BCCT1] and [BCCT2]
for matters of this nature.

We begin by setting the scene with some inequalities which are familiar to all
analysts. The setting we take is of euclidean space, although some of the inequalities
clearly live in more general settings.

• (Hölder’s inequality.) Let
∑

j pj = 1 and fj ∈ L1(Rn). Then
∏

j f
pj

j ∈ L1

and ∫ ∏
j

f
pj

j ≤
∏
j

(
∫

fj)pj .

• (Loomis–Whitney inequality [LW].) Let Πj denote orthogonal projection
onto the hyperplane perpendicular to the xj axis. If fj ∈ L1(Rn−1) then∏

j fj(Πj ·)1/(n−1) ∈ L1(Rn) and∫
Rn

∏
j

fj(Πjx)1/(n−1)dx ≤
∏
j

(
∫

Rn−1
fj)1/(n−1).

• (Beckner’s sharp Young inequality [Be].) Let fj ∈ L1(Rk), 1 ≤ j ≤ 3 and∑3
j=1 pj = 2. Then∫

Rk×Rk

fp1
1 (x)fp2

2 (x− y)fp3
3 (y)dxdy

≤

 3∏
j=1

(1− pj)1−pj

p
pj

j

k/2
3∏

j=1

(
∫

Rk

fj)pj .
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Note: pj in each of these inequalities corresponds to the usual 1/pj . This will
simplify our notation significantly in what follows.

To set these inequalities in the framework we wish to consider, we proceed as follows.
Let Bj : Rn → Rnj , (1 ≤ j ≤ m) be linear maps, and pj non-negative exponents
(1 ≤ j ≤ m). We consider inequalities of the form∫

Rn

m∏
j=1

fj(Bjx)pj dx ≤ C
m∏

j=1

(
∫

Rnj

fj)pj(1)

which we shall call Brascamp–Lieb inequalities after Brascamp and Lieb who first
considered them, established them in certain cases and proposed their further study
in [BL].

The three examples above are recovered as follows:
• Hölder’s inequality: Take nj = n, Bj = In,

∑
j pj = 1.

• Loomis–Whitney inequality: Take nj = n − 1, Bj = projection onto
e⊥j , pj = 1/(n− 1).

• Young’s convolution inequality: m = 3, nj = k, n = 2k, B1(x, y) = x,
B2(x, y) = x− y, B3(x, y) = y,

∑3
j=1 pj = 2.

We shall always be interested in the sharp value of the constant in (1) and C =
C{Bi, pi} is always interpreted as the best constant in (1).

Immediately, several natural questions arise:

Questions
• What is C{Bi, pi}?
• When is C{Bi, pi} finite?
• When is it achieved, i.e. when do there exist fj such that (1) holds with

equality?
• If it is achieved, is there “uniqueness” of extremals in any sense?
• What is the structure of the Brascamp–Lieb inequalities (1)?

A Partial Answer: An expression for C{Bi, pi} is given by Lieb’s theorem:

Theorem (Lieb, [L].) The Brascamp–Lieb inequality (1) is exhausted by gaussians.

To explain what this means more precisely, let Aj be a positive definite nj × nj

matrix. Let
fj(x) = exp{−π〈Ajx, x〉}.

Then the left hand side of (1) is
1

det(
∑m

j=1 pjB∗
j AjBj)1/2

while the right hand side is
m∏

j=1

(detAj)−pj/2.

So obviously

C{Bi, pi} ≥ sup
Aj>0

∏m
j=1(detAj)pj/2

det(
∑m

j=1 pjB∗
j AjBj)1/2

:= G{Bi, pi}.
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The (highly nontrivial) content of Lieb’s theorem [L] is that C{Bi, pi} = G{Bi, pi}.
F. Barthe gave a different proof of Lieb’s theorem in [Bar], and we shall give a
further proof at the end of these notes.

But what is not obvious is under which circumstances this common value of C{Bi, pi}
and G{Bi, pi} is finite. This we turn to next.

2. Finiteness

We first look at necessary conditions for finiteness of C{Bi, pi} = G{Bi, pi}.

Necessary conditions for finiteness of G{Bi, pi}:
• If there is a non-zero ξ ∈

⋂
j ker Bj , then

〈
∑

j

pjB
∗
j AjBjξ, ξ〉 =

∑
j

pj〈AjBjξ, Bjξ〉 = 0,

whence
∑

j pjB
∗
j AjBj is not invertible. Thus⋂

j

ker Bj = {0}.

• If some Bj is not surjective, take fj to be a smooth gaussian bump living
on a slight fattening of imBj . Thus

∫
fj will be very small while the left

hand side of (1) will not be small. Thus:

Each Bj is surjective.

• Perform the scaling fj(·) → fj(λ·). For the powers of λ to cancel we require∑
j

pjnj = n.

Exercise 1 Check in detail the necessity of these three conditions. We shall call
these the standard necessary conditions for finiteness of G{Bi, pi}.

What about sufficiency? The first guess would be that the standard necessary
conditions are sufficient for finiteness of G{Bi, pi}. But this is not so, because of the
Loomis–Whitney example: the condition

∑n
j=1 pj = n/(n−1) defines a hyperplane

containing the point (1/(n−1), . . . , 1/(n−1)) which is the only point for which the
constant is finite.

Exercise 2 Check that (1/(n − 1), . . . , 1/(n − 1)) is the only point for which the
constant in the Loomis–Whitney inequality is finite.

Theorem 1. ([BCCT2], [BCCT1], [V1].) The best constant C{Bi, pi} in the
Brascamp–Lieb inequality (1) is finite if for all subspaces V ∈ Latt (ker Bj),

dim V ≤
∑

j

pj dim(BjV )(2)

and ∑
j

pjnj = n.(3)

Conversely, if G{Bi, pi} is finite, then (3) holds, and (2) holds for all subspaces V
of Rn.
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Here, Latt(Vj) is the lattice of subspaces of a vector space generated by the sub-
spaces Vj , i.e. the smallest collection of subspaces containing each Vj which is closed
under intersections and subspace sums.

So (3) and (2) for all V ∈ Latt (ker Bj) =⇒ C{Bi, pi} < ∞ =⇒ G{Bi, pi} <
∞ =⇒ (3) and (2) for all subspaces V of Rn.

Exercise 3 By taking V = Rn in (2) show that each Bj must be surjective, and by
taking V =

⋂
j ker Bj show that

⋂
j ker Bj = {0}. (Thus we recover the standard

necessary conditions.)

Exercise 4 By taking V = kerBj in (2) show that pj ≤ 1 is necessary for finiteness
of G{Bi, pi}. (This we had not noticed previously.)

The necessity in Theorem 1 is easy: test on fj a gaussian associated to an ε−
neighbourhood of the unit ball of BjV and let ε → 0.

Exercise 5 Complete the details of the necessity argument.

Here, although we do not do so systematically, it is appropriate to mention some his-
torical antecedents of Theorem 1. Apart from Hölder’s inequality and the Loomis–
Whitney inequality [LW], there are papers of Calderón (1976) [C] and Finner (1992)
[F] giving combinatorial versions of Theorem 1; in the rank-one case (see below)
there are also papers of Barthe (1998) [Bar] (with a different formulation) and
Carlen–Lieb–Loss (2004) [CLL].

But is Theorem 1 really an improvement over Lieb’s theorem in terms of it being
easier to verify in any given case? That is, is it easier to check that the hypotheses
of Theorem 1 are verified than to check that the quantity defining G{Bi, pi} is
finite?

In the first place, we “only” have to check (2) over all subspaces in Latt(kerBj)
rather than calculating the quantity in the definition of G for all nj × nj positive
definite matrices Aj . But in general it is an unsolved problem (as far as I am aware)
as to whether the subspace lattice generated by a finite number of subspaces of a
finite dimensional vector space is itself finite.

On the other hand, there are only finitely many different conditions

dim V ≤
∑

j

pj dim(BjV )

as V varies over all subspaces of Rn. These finitely many conditions thus identify
the set

K = {p : (1) holds with finite constant}
as a convex polytope contained in [0, 1]m ∩ {p :

∑
pjnj = n}.

Effectively these conditions describe the faces of the polytope K. A previous ap-
proach by F. Barthe in the rank one case characterised instead the extreme points
of K in a quite explicit way, see below. Valdimarsson [V1] has obtained extreme
point characterisations in the rank two, mixed rank one and two and co-rank one
cases, and has given an algorithm for “knowing when to stop” checking conditions
(2) and be sure one has the full list.

Rank one case (F. Barthe (1998), [Bar].) This is when each Bj maps Rn onto
R1. Thus Bj is given by Bj(x) = 〈x, vj〉 for a certain vector vj in Rn.
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Exercise 6 (i) If S ⊆ {1, 2, ...., m}, |S| = n and {vj : j ∈ S} is a basis for Rn, show
that ∫

Rn

∏
j∈S

fj(Bjx)dx = detW
∏
j

∫
R

fj

where W is the linear change of variables such that Wvj = ej .
(ii) Let S be the collection of subsets S ⊆ {1, 2, ....., m} such that {vj : j ∈ S} is

a basis for Rn. Show that the constant C in the rank-one Brascamp–Lieb inequality
is finite if p = (p1, p2, ..., pm) lies in the convex hull K of χS as S ranges over S.

(iii) (Harder) Show that the converse to (ii) is true.

We now turn to the proof of the sufficiency part of Theorem 1. We break the
argument into several steps.

• By multilinear interpolation, it is enough to show that the constant in the
Brascamp–Lieb inequality (1) is finite at extreme points of⋂

V ∈L
{p : dim V ≤

∑
j

pj dim(BjV )} ∩ {p ≥ 0}

∩{p : p · n = n}

where L = Latt(kerBj).
• Except when some pi = 0 (which is handled by induction on the degree

of multilinearity m), for p to be an extreme point there must be a proper
subspace V ∈ L such that

dim V =
∑

j

pj dim BjV.

Such a subspace is called a critical subspace for {Bi, pi} and is used to
reduce the problem to a lower-dimensional version of itself .

• If {Bi} are given and U is now any subspace of Rn then there are lower-

dimensional B̃j ,
˜̃Bj such that

C{Bi, pi} ≤ C{B̃i, pi}C{ ˜̃Bi, pi}.

Indeed, define

B̃j :U → BjU : x 7→ Bjx

˜̃Bj :U⊥ → (BjU)⊥ : x 7→ Π(BjU)⊥Bjx

Γj :U⊥ → BjU : x 7→ ΠBjUBjx

where Π(BjU)⊥ and ΠBjU denote the orthogonal projection onto the rele-
vant spaces.

Then, we can calculate as follows, (with the dependence on pj in C{Bj , pj}
suppressed):

∫
Rn

m∏
j=1

f
pj

j (Bjx)dx
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=
∫

U⊥

∫
U

m∏
j=1

f
pj

j (B̃j x̃ + Bj
˜̃x)dx̃d˜̃x

≤ C{B̃j}
∫

U⊥

m∏
j=1

(∫
BjU

fj(ỹ + Bj
˜̃x)dỹ

)pj

d˜̃x

= C{B̃j}
∫

U⊥

m∏
j=1

(∫
BjU

fj(ỹ + Γj
˜̃x + ˜̃Bj

˜̃x)dỹ

)pj

d˜̃x

= C{B̃j}
∫

U⊥

m∏
j=1

(∫
BjU

fj(ỹ + ˜̃Bj
˜̃x)dỹ

)pj

d˜̃x

≤ C{B̃j}C{ ˜̃Bj}
m∏

j=1

(∫
BjU⊥

∫
BjU

fj(ỹ + ˜̃y)dỹd˜̃y

)pj

= C{B̃j}C{ ˜̃Bj}
m∏

j=1

(∫
Rnj

fj(y)dy

)pj

.

Let us explain the arguments used in this chain of inequalities. We have
used for the first inequality that for almost any ˜̃x ∈ U⊥ the tuple (fj(· +
Bj

˜̃x)) consists of non-negative integrable functions defined on BjU and we
can therefore use the Brascamp–Lieb inequality for {B̃j , pj}. For the next

equality we use the definitions of Γj and ˜̃Bj , and for the one below that
we use the translation invariance of the inner integral and the fact that
Γjx ∈ BjU for any x ∈ U⊥. For the second inequality we use the fact that

for any j the inner integral defines a non-negative function of ˜̃Bj
˜̃x with

domain (BjU)⊥ and we can therefore use the Brascamp–Lieb inequality

for the datum { ˜̃Bj , pj}.)
• If we take U = V to be a critical subspace, then the condtion

dim W ≤
∑

j

pj dim BjW for all W ∈ Latt(kerBj)

is inherited by {B̃j , pj} and { ˜̃Bj , pj}.

Exercise 7 Check this.

Gathering things together, we have a proof of sufficiency by induction. Formally,
we do a double induction on m and then n. For the case m = 1 the subspace
lattice is just kerB1 and of course we need this to be {0} and p1 = 1. Assuming
inductively that the result is true some fixed m−1, and all n, we want to show it is
true for m and all n. For this m, and n = 1, we need each kerBj = {0} (i.e. each
Bj 6= 0), and things reduce to Hölder’s inequality. Now assume that the result is
true for this m and n = 1, 2, . . . , n0− 1. Using the main argument presented above
with underlying dimension n0, one possibility leads to a case from the previous level
of multilinearity (m − 1), and the other leads to a critical subspace of dimension
less than n0 for which we may assume inductively that the corresponding C{B̃i, pi}
and C{ ˜̃Bi, pi} are finite, hence also C{Bi, pi} is finite.
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Exercise 8 Convince yourself that the subspace lattice generated by the {ker Bj}
is the smallest class of subspaces on which to assume (2) in order for the proof to
work.

The original version of the theorem was stated in [BCCT1] and [BCCT2] assuming
(2) for all subspaces V of Rn. The variant presented here is from Valdimarsson’s
thesis [V1].

3. Factorisation and Structure

In reading the arguments presented above, we naturally ask ourselves to what
extent have we factorised the Brascamp–Lieb problem over critical subspaces?
The next theorem gives a partial answer.

Theorem 2. ([BCCT1], [BCCT2].) If V is critical, and B̃j and ˜̃Bj are as in the
previous section, then

C{Bi, pi} = C{B̃i, pi}C{ ˜̃Bi, pi}

and

G{Bi, pi} = G{B̃i, pi}G{ ˜̃Bi, pi}.

The “≤” inequality for G is not so obvious (but is not hard either, and does not
need criticality, see [BCCT1], towards the end of Section 4). For C we have just
done it.

For the inequalities “≥” the obvious strategy is to take tensor products of lower
dimensional test functions approximating the respective suprema. (Note that we
may assume (3) as otherwise there is no content.)

Here we come across a subtlety: even if the two problems {B̃i, pi} and { ˜̃Bi, pi} admit
(for example) gaussian extremals, it may not be the case that tensor products of
these give exact gaussian extremals for {Bi, pi}.

The reason for this is, the way things are set up, we can represent the operator Bj

by the matrix (
˜̃Bj 0
Γj B̃j

)
acting on a column vector with components in V ⊥ followed by V . The presence of
Γj is an obstruction to exact factorisation. Let us see why this is so.

It is very easy to check that if {Ai} are positive definite matrices giving gaussian
extremals for (1) then so are {λAi} for all λ > 0. Thus if Ãi and ˜̃Ai are gaussian
extremals for the problems {B̃i, pi} and { ˜̃Bi, pi}, it is therefore very natural to test
on

Aj :=

(
λ ˜̃Aj 0

0 µÃj

)
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(where λ and µ are arbitrary positive scalars) to obtain

G{Bj , pj} ≥

 ∏
j(detAj)pj

det
(∑

j pjB∗
j AjBj

)
1/2

=

∏j(det ˜̃Aj)pj
∏

j(det Ãj)pj

detR

1/2

where R = ( ∑
pj

˜̃B∗
j

˜̃Aj
˜̃Bj + µ

λ

∑
pjΓ∗j ÃjΓj

(
µ
λ

) 1
2
∑

pjΓ∗j ÃjB̃j(
µ
λ

) 1
2
∑

pjB̃
∗
j ÃjΓj

∑
pjB̃

∗
j ÃjB̃j

)
.

So in the limit as µ
λ tends to zero, ∏

j(detAj)pj

det
(∑

j pjB∗
j AjBj

)
1/2

approaches  ∏
j(det ˜̃Aj)pj

det
(∑

j pj
˜̃B∗

j
˜̃Aj

˜̃Bj

)
1/2 ∏

j(det Ãj)pj

det
(∑

j pjB̃∗
j ÃjB̃j

)
1/2

which is as close to G{B̃j , pj} G{ ˜̃Bj , pj} as we desire.

Exercise 9 (i) Carry out the details of the above calculation. Note that criticality
enters by making certain powers of λ, µ arising equal to 0. (You will also need to
use (3).)

(ii) Do a similar calculation to establish the lower bounds for C{Bj , pj}.
(iii) Assume (2) and (3) hold. Show that V is critical for {Bj , pj} if and only if

the constant in (1) for datum (
˜̃Bj 0

λΓj B̃j

)
is independent of λ > 0. (Replace fj by fj(α·, β·).)

The upshot of all this is that the factorisation is in general “analytic” rather than
“algebraic” as we need to take limits to make the effect of Γj disappear.

On the other hand, if Γj happens to be 0 for all j, that is BjV
⊥ ⊆ (BjV )⊥ for all j,

then the problem {Bi, pi} factorises algebraically over the critical subspace V into
two orthogonal subproblems (in a way which is independent of the {pi}); tensor
products of any extremals for {B̃i, pi} and { ˜̃Bi, pi} are now indeed extremals for
{Bi, pi}. We do not need to employ λ, µ, and we do not need the (p-dependent)
notion of criticality to make powers disappear in the above calculation.

In this case, by Exercise 8 (iii), V will be automatically critical for {Bi} for all
values of p such that (2) and (3) hold.



THE BRASCAMP–LIEB INEQUALITIES: RECENT DEVELOPMENTS 9

Moreover, in this situation the roles of V and V ⊥ are completely interchangeable,
and so V ⊥ is likewise a critical subspace for {Bi} for all values of p such that (2)
and (3) hold.

In fact it is this property of a critical subspace V possessing a complementary
critical subspace which characterises when we have exact algebraic factorisation –
once we have also taken into account the affine invariance of the whole problem.
We first need a definition:

Definition An ultracritical subspace for {Bj} is a subspace V of Rn such that
there exists a complementary subspace W for V such that for all j BjV and BjW
are complementary in Rnj .

Notice that this is symmetric in V,W . The terminology “ultracritical” is justified
by:

Proposition 1. ([BCCT1].) Fix {Bj , pj} such that (2) and (3) hold. The following
conditions on a subspace V of Rn are equivalent:

(1) V is ultracritical
(2) V is critical for {Bj , pj} and possesses a complementary space which is also

critical for {Bj , pj}
(3) V is critical for {Bj , pj} and there exist linear changes of variables of Rn

and Rnj after which the corresponding Γj are all zero.

For now we note that according to all this, if V is ultracritical and if the problems
{B̃i, pi} and { ˜̃Bi, pi} have extremals for C or G, then {Bi, pi} has a family of
corresponding extremals indexed by two real parameters.

It also raises the possibility that there may be no extremals to a problem which
has a critical subspace but which is not ultracritical. We shall see in Section 5 that
this is indeed the case.

It is in the problem of understanding the existence of gaussian extremals that the
importance of the distinction between ultracritical and merely critical subspaces
lies. For this problem one can develop an appropriate structural theory, under the
assumption that C{Bi, pi} < ∞, i.e. by Theorem 1, that (2) and (3) hold.

Structural perspective on Brascamp–Lieb inequalities with data {Bi, pi}
(satisfying (2), (3)).

We describe this structure algorithmically.
• First seek ultracritical subspaces (independent of {pi}) until none are left
• Next seek critical (but non-ultracritical) subspaces inside the ultracritical

ones
• Repeat the first step for the orthogonal complements of such critical sub-

spaces; enter a loop which halts when no further critical subspaces are to
be found

• If we have a (1-parameter family of) gaussian extremals for each of a pair of
“ultracritical components”, then the original problem has a two-parameter
family of gaussian extremals

Exercise 10 Check that the third bullet point in the above “algorithm” is really
needed.
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It is amusing to note that one can use quiver theory to study the uniqueness (up
to certain equivalence relations) of the above decomposition, but this will be of no
relevance for us. A more formal approach to this structural perspective is given in
[BCCT1].

4. Gaussian Extremals

In this section we begin to study whether or not the Brascamp–Lieb inequality
(1) possesses gaussian extremals of the form fj(x) = exp{−π〈Ajx, x〉}, and related
question of whether the expression

G{Bi, pi} := sup
Aj>0

∏m
j=1(detAj)pj/2

det(
∑m

j=1 pjB∗
j AjBj)1/2

has extremisers. It turns out that these questions are equivalent, and we begin with
a characterisation of such extremals {Aj}.
We recall that the three standard necessary conditions for finiteness of C{Bj , pj}
or G{Bi, pi} are: each Bj surjective, ∩j ker Bj = {0} and (3).

Theorem 3. ([BCCT1].) Suppose {Bi, pi} satisfy the three standard necessary
conditions. Let {Ai} be positive definite ni × ni matrices. The following are equiv-
alent:

(1) {exp{−π〈Ajx, x〉}} gives an extremal for (1)
(2) {Aj} gives an extremal for

sup
Aj>0

∏m
j=1(detAj)pj/2

det(
∑m

j=1 pjB∗
j AjBj)1/2

:= G{Bi, pi}

(3) M :=
∑

pjB
∗
j AjBj is invertible and M ≥ B∗

l AlBl for all l

(4) BjM
−1B∗

j = A−1
j for all j.

The scheme of the proof is 3 =⇒ 1 =⇒ 2 =⇒ 4 =⇒ 3.

That 1 =⇒ 2 is trivial, 2 =⇒ 4 is a variational argument, and 4 =⇒ 3 is
linear algebra. See below for these implications. The main part of the argument is
3 =⇒ 1, and for this several approaches are available. One of these is via heat
flow (cf. Carlen, Lieb and Loss, [CLL]) and is presented in [BCCT1]. However, we
have chosen a different route for these notes, taken from [BCT]. Note that 2 =⇒ 1
is not obvious.

Exercise 11: (i) Give a simple direct proof of Beckner’s sharp Young inequality
[Be] by taking Aj = (pj(1− pj))−1Ik and verifying condition 4 of Theorem 3.

(ii) Prove Keith Ball’s Geometric Brascamp–Lieb theorem [Ball], [Bar]: Let Ej

be linear subspaces of Rn and let Pj : Rn → Rn be orthogonal projection onto Ej .
If
∑m

j=1 pjPj = In, then∫ m∏
j=1

fj(Pjx)pj dx ≤
m∏

j=1

(∫
Ej

fj

)pj

,

and the standard gaussians exp{−π|x|2} are extremals.

Proof of 2 =⇒ 4. Suppose that {Aj} forms a local maximum for the functional
defining G. Then M and each Aj are invertible. Fix j, and let x ∈ Rnj \{0}. Define



THE BRASCAMP–LIEB INEQUALITIES: RECENT DEVELOPMENTS 11

the rank-one operator x⊗x by (x⊗x)(y) = 〈x, y〉x. Note that for sufficiently small
|h|, Aj + hx⊗ x is still positive definite. Now replace Aj by Aj + hx⊗ x and leave
all the other Al unchanged.

Then for sufficiently small |h|,
det(Aj + hx⊗ x)pj

det(
∑

i piB∗
i AiBi + pjB∗

j hx⊗ xBj)

≤ (detAj)pj

det(
∑

i piB∗
i AiBi)

.

So we differentiate the left hand side of the previous inequality with respect to h
and then set h = 0 to obtain

〈A−1
j x, x〉 = 〈BjM

−1B∗
j x, x〉.

(Here we have used the elementary fact that det(A + hx⊗ x) = det(A) + h〈Ãx, x〉
where Ã denotes the adjugate matrix of A.) So 4 holds.

Proof of 4 =⇒ 3. Suppose that M and A are invertible n× n and q× q matrices
respectively, where q ≤ n, and that BM−1B∗ = A−1. We claim that M ≥ B∗AB.
To see this, let 〈x, y〉M = 〈Mx, x〉, and observe that M−1B∗AB is a self-adjoint
projection on Rn with respect to the inner product 〈·, ·〉M . Thus ‖M−1B∗ABx‖M ≤
‖x‖M for all x. Now

〈B∗ABx, x〉
=〈M−1B∗ABx, x〉M
≤‖x‖M‖M−1B∗ABx‖M

≤‖x‖2M
=〈Mx, x〉.

The claim follows and so does the implication 4 =⇒ 3.

Now we turn to the main implication 3 =⇒ 1, which is that M =
∑

B∗
j AjBj

invertible and M ≥ B∗
l AlBl for all l implies that exp{−π〈Ajx, x〉} gives an extremal

for (1). This statement will follow from a more general result which we now describe.

If A is a positive semidefinite n× n real matrix, we say that a real-valued function
f is of class A if it is the convolution of the centred gaussian exp{−π〈Ax, x〉} with
a positive finite measure on Rn.

Exercise 12 Show that exp{−π〈Qx, x〉} where Q ≤ A in the sense of positive
definite matrices is of class A.

The standard gaussian of class A is defined to be exp{−π〈Ax, x〉}.
Now let 1 ≤ i ≤ m. Let Ai be a positive semidefinite real matrix, µi a positive
finite measure on Rn and pi > 0. Let p = (p1, ......, pm). If t ≥ 0 define

fi(x, t) =
∫

exp{−π〈Ai(x− tv), (x− tv)〉}dµi(v).

(Thus fi(x, 1) is a typical function of class Ai.) Finally define

F (x, t)p =
m∏

i=1

fi(x, t)pi .
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Theorem 4. ([BCT].) Suppose that Ai, µi, pi and F p are as above. If
∑

i piAi ≥ Al

for all l and
∑

i piAi is invertible, then
∫

F (x, t)pdx is a decreasing function of t.

We can translate Theorem 4 into the language of solutions to heat equations:

Proposition 2. Suppose Ai are positive definite n × n matrices. Let 4Ai
−1 =

∇ ·A−1
i ∇. Suppose that ui are functions on Rn × (0,∞) satisfying

4Ai
−1ui = ∂sui

with initial data positive finite measures. If
∑

i piAi ≥ Al for all l, then∫
s−n/2

∏
i

{ui(x, s)sn/2}pidx

is increasing in s.

Taking m = 1 and A = I, we draw the conclusion that for solutions u to the heat
equation with nonnegative integrable initial data, when p ≥ 1 the quantity

sn(p−1)/2

∫
Rn

u(x, s)pdx

is increasing in s. This appears to be a new result. The corresponding question
for harmonic functions, that is, solutions to Laplace’s equation on the upper half
space seems to be open.

How does Theorem 4 give 3 =⇒ 1 in Theorem 3?

Take fj to be of class Aj . So for y ∈ Rnj we have

fj(y) = (det Aj)1/2

∫
Rnj

e−π〈Aj(y−w),(y−w)〉 dµj(w)

for some finite non–negative measure µj on Rnj . For each j we define a measure
µ̃j on Rn by ∫

Rn

φ dµ̃j =
∫

Rnj

φ
(
B∗

j (BjB
∗
j )−1w

)
dµj(w),

(here we have used the surjectivity of Bj) and observe that for x ∈ Rn,

fj(Bjx) = (det Aj)1/2

∫
Rn

e−π〈B∗
j AjBj(x−v),(x−v)〉dµ̃j(v).

Hence ∫ ∏
f

pj

j (Bjx)dx

=
(∏

(detAj)pj

)1/2
∫

Rn

∏
gj(x, 1)pj dx,

where for each t ∈ R,

gj(x, t) =
∫

Rn

e−π〈B∗
j AjBj(x−tv),(x−tv)〉dµ̃j(v).
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Now, by Theorem 4, (using ∩ ker Bj = {0} to check invertibilty in the hypothesis!),∫ ∏
j

f
pj

j (Bjx)dx

≤

∏
j

(detAj)pj

1/2 ∫
Rn

∏
j

gj(x, 0)pj dx.

The result now follows for fj of class Aj on observing that

∫
Rn

∏
j

gj(x, 0)pj dx = det

∑
j

pjB
∗
j AjBj

−1/2∏
j

‖µ̃j‖pj ,

and ‖µ̃j‖ = ‖µj‖ =
∫

fj for all j.

Finally, in the presence of the scaling condition (3) we can simply drop the hypotheis
fj of class Aj by a limiting argument.

Now we turn to the proof of Theorem 4. It is this proof which turns out to be
essential in the study of the multilinear Kakeya maximal function [BCT]. (The
multilinear Kakeya maximal function was discussed in the NAFSA lectures, but we
have decided to omit it from the written version presented here.)

We begin by considering the case when p ∈ Nm. Then the quantity Qp(t) can be
expanded as∫

Rn

∫
(Rn)p1

· · ·
∫

(Rn)pm

e−π
∑m

j=1
∑pj

k=1〈Aj(x−vj,kt),(x−vj,kt)〉

m∏
j=1

pj∏
k=1

dµj(vj,k)dx.

On completing the square we find that
m∑

j=1

pj∑
k=1

〈Aj(x− vj,kt), (x− vj,kt)〉

= 〈A∗(x− vt), (x− vt)〉+ δt2,

where A∗ :=
∑m

j=1 pjAj is a positive definite matrix, v := A−1
∗
∑m

j=1 Aj

∑pj

k=1 vj,k

is the weighted average velocity, and δ is the weighted variance of the velocity,

δ :=
m∑

j=1

pj∑
k=1

〈Ajvj,k, vj,k〉 − 〈A∗v, v〉.

Using translation invariance in x, we have Q′
p(t) =

−2πt

∫
Rn

∫
(Rn)p1

· · ·
∫

(Rn)pm

δ
m∏

j=1

pj∏
k=1

e−π〈Aj(x−vj,kt),(x−vj,kt)〉 dµj(vj,k)dx,
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(and since δ ≥ 0 we have result for pj ∈ N). Let vj be vj regarded as a random
variable associated to the probability measure

e−π〈Aj(x−vjt),(x−vjt)〉dµj(vj)
fj(t, x)

,

and let vj,1, . . . ,vj,pj
be pj independent samples of these random variables (with

the vj,k being independent in both j and k). Then

Q′
p(t) = −2πt

∫
Rn

E(δ)
m∏

j=1

fj(t, x)pj dx

where δ is now considered a function of the vj,k, and E(·) denotes probabilistic
expectation.

Recalling that

δ :=
m∑

j=1

pj∑
k=1

〈Ajvj,k, vj,k〉 − 〈A∗v, v〉

and using linearity of expectation we have

E(δ) =
m∑

j=1

pj∑
k=1

E(〈Ajvj,k,vj,k〉)−E(〈A∗v,v〉),

(where v is v := A−1
∗
∑m

j=1 Aj

∑pj

k=1 vj,k regarded as a random variable).

By symmetry, the first term is
∑m

j=1 pjE(〈Ajvj ,vj〉).

The second term is E(〈A∗v,v〉)

= E(〈A−1
∗

m∑
j=1

pj∑
k=1

Ajvj,k,
m∑

j′=1

pj′∑
k′=1

Aj′vj′,k′〉)

=
m∑

j=1

m∑
j′=1

pj∑
k=1

pj′∑
k′=1

E(〈A−1
∗ Ajvj,k, Aj′vj′,k′〉)

=
m∑

j=1

m∑
j′=1

pj∑
k=1

pj′∑
k′=1

E(〈A−1
∗ Ajvj,k, Aj′vj′,k′〉)

=
∑

j=j′,k=k′

+
∑

(j,k) 6=(j′,k′)

=
m∑

j=1

pjE(〈A−1
∗ Ajvj , Ajvj〉) +

∑
j; k 6=k′

+
∑

j 6=j′; k,k′

.
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When (j, k) 6= (j′, k′) we can factorise the expectation using independence and
symmetry to obtain

E(〈A∗v,v〉) =
m∑

j=1

pjE(〈A−1
∗ Ajvj , Ajvj〉)

+
m∑

j=1

pj(pj − 1)〈A−1
∗ AjE(vj), AjE(vj)〉

+
∑

1≤j 6=j′≤m

pjpj′〈A−1
∗ AjE(vj), Aj′E(vj′)〉.

So

E(〈A∗v,v〉) =
m∑

j=1

pjE(〈A−1
∗ Ajvj , Ajvj〉)

−
m∑

j=1

pj〈A−1
∗ AjE(vj), AjE(vj)〉

+
∑

1≤j,j′≤n

pjpj′〈A−1
∗ AjE(vj), Aj′E(vj′)〉,

and after a little more algebra we arrive at
E(δ) =

m∑
j=1

pjE(〈(Aj −AjA
−1
∗ Aj)vj ,vj〉)

−
m∑

j=1

pj〈(Aj −AjA
−1
∗ Aj)E(vj),E(vj)〉

+
m∑

j=1

pj〈AjE(vj),E(vj)〉

−
∑
j,j′

pjpj′〈A−1
∗ AjE(vj), Aj′E(vj′)〉

=
m∑

j=1

pjE(〈(Aj −AjA
−1
∗ Aj)(vj −E(vj)), (vj −E(vj))〉

+
n∑

j=1

pj〈Aj(E(vj)−E(v)), (E(vj)−E(v))〉.

Note that this last expression is nonnegative by hypothesis, makes sense for all
nonnegative values of pj and, after multiplication by det A∗, is polynomial in p.
In particular, as in the preceding arguments, E(v) = A−1

∗
∑m

j=1 pjAjE(vj) makes
sense for all pj > 0.

In summary, what we have done is show that for pj ∈ N, there is a formula

(detA∗)Q′
p(t) = −2πt

∫
Rn

G(p, t, x)
∏
j

fj(x, t)pj dx

where



16 NAFSA 8 LECTURES – ANTHONY CARBERY

• G(·, t, x) is defined for all pj > 0
• G(·, t, x) is polynomial
• under the hypothesis of the theorem, G ≥ 0.

So if we could see that the formula above remained valid for all pj > 0, we would
be finished. That this is so is a consequence of a simple uniqueness lemma:

Lemma 1. ([BCT].) Let f1, . . . , fm : Rn → R be non-negative bounded measurable
functions whose product f1 · · · fm is rapidly decreasing. Let G : Rm × Rn → R be
polynomial in its first variables p = (p1, . . . , pm), with measurable coefficients of
polynomial growth in its second. If the identity∫

Rn

G(p, x)f1(x)p1 · · · fm(x)pmdx = 0

holds for all p ∈ Nm, then it also holds for all p ∈ (0,∞)m.

Exercise 13 Prove this in the (already typical) case where m = 1 and G is a
polynomial of degree 1. (Hint: Do so first for p > 1, when the function t 7→ tp is
approximable in the norm ‖φ‖∞+‖φ′‖∞ by polynomials with zero constant term.)

It is an easy matter to find another suitable representation of (det A∗)Q′
p(t) with

which to compare the one we constructed above in order to apply Lemma 1, and
hence to conclude the proof of the theorem.

5. Existence and uniqueness of Gaussian extremals, and Lieb’s
Theorem again

Given data (Bj , pj) we established in the last section a necessary and suffi-
cient condition on Aj for the Brascamp–Lieb inequality (1) to be extremised by
exp{−π〈Ajx, x〉}.
But the form of this condition does not make it clear whether such an extremiser
exits, and, if it does, whether it is unique up to the trivial 1-parameter family given
by λAj where λ > 0. We do know that if Bj has an ultracritical subspace over
which the two factors both possess gaussian extremals, then the original problem
possesses a 2-parameter family of gaussian extremals. We also saw the possibility
that it might be the case that when there are critical but not ultracritical subspaces,
then there may not be gaussian extremals.

Theorem 5. ([BCCT1].) Let {Bi, pi} be given. Assume that C{Bi, pi} < ∞. Then
gaussian extremals exist for (1) if and only if every critical subspace is ultracritical.

One first proves (under (2), (3)) that if there is no critical subspace, then extremisers
to G{Bi, pi} exist. The difficulty here is that the space of m-tuples of positive
definite matrices in the definition of G{Bi, pi} is not compact. Non-existence of a
critical subspace allows us to argue that this noncompact space may be replaced
by a compact one, and so extremisers to G{Bi, pi} exist. This is the content of
Proposition 3 below. Then by the (nontrivial) 2 =⇒ 1 in Theorem 3, gaussian
extremals for (1) exist. Tensor products of these give gaussian extremals for (1)
when all critical subspaces are ultracritical.

Conversely, if there exist gaussian extremisers to (1), then using 1 =⇒ 4 of
Theorem 3, one may argue that any critical subspace must be ultracritical. This is
the content of Proposition 4 below.
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Proposition 3. Suppose we are given {Bi, pi}, with each pi ≥ 0. If (2) and (3)
hold for all subspaces V , then G{Bi, pi} is finite. If in addition {Bi, pi} has no
critical subspace, then the supremum given by G{Bi, pi} is attained.

The first part of the Proposition is already a consequence of Theorem 1. However,
we need the argument which gives this in order to establish the second part. See
Section 5 of [BCCT1].

Proof Those pj which are zero play no role in the quantitiy G{Bi, pi} and so we
may assume that each pj > 0. We begin with the first assertion.

Fix Aj , and let M :=
∑

j pjB
∗
j AjBj . This matrix is self-adjoint and positive

definite, so by choosing an appropriate orthonormal basis e1, . . . , en we may assume
that M = diag(λ1, . . . , λn) for some λ1 ≥ . . . ≥ λn > 0. Our task is thus to establish
a bound of the form ∏

j

(detAj)pj ≤ K2
∏

i

λi

for some finite K.

Fix j, and let 〈·, ·〉Aj be the positive definite inner product on Rnj defined by

〈x, y〉Aj := 〈x, Ajy〉Rnj

Observe for each basis vector ei that

〈Bjei, Bjei〉Aj
= 〈ei, B

∗
j AjBjei〉Rn ≤ 1

pj
〈ei,Mei〉Rn = λi/pj .

In particular, by the triangle inequality we see that

〈x, x〉Aj = O(1)

for all x in the convex hull H of the vectors Bje1/
√

λ1, . . . Bjen/
√

λn, where the
O(1) is allowed to depend on the pj , nj , and n (but not on the λj). Applying the
linear transformation x 7→ A

1/2
j x to convert the inner product 〈, 〉Aj into the usual

one, we thus see that the Euclidean volume volRnj (H) of H is bounded by

volRnj (H) = O(det(Aj)−1/2).

On the other hand, from elementary geometry we have

volRnj (H) ≥ C−1|
∧
i∈Ij

Bjei/
√

λi|

for any subset Ij ⊂ {1, . . . , n} of cardinality nj . This gives us an upper bound

(4) det(Aj) ≤ C
∏
i∈Ij

λi/|
∧
i∈Ij

Bjei|2.

Thus it will suffice to show that regardless of what the ej and λj are, one can find
sets Ij ⊂ {1, . . . , n} of cardinality |Ij | = nj such that∏

j

(
∏
i∈Ij

λi/|
∧
i∈Ij

Bjei|2)pj ≤ C−1K2
∏

i

λi.

Since the λi are decreasing, it will suffice to establish the lower bound

(5)
∏
j

|
∧
i∈Ij

Bjei|pj ≥ C1/2/K
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for some sets Ij ⊂ {1, . . . , n} of cardinality |Ij | = nj which obey the additional
inequalities

(6)
∑

j

pj |Ij ∩ {k + 1, . . . , n}| ≥ n− k for all 1 ≤ k < n

(the case k = 0 is just (3)).

Indeed, if we can do this, then we only need to check that assuming λ1 ≥ ..... ≥
λn > 0, ∏

j

∏
i∈Ij

λ
pj

i ≤
n∏

i=1

λi.

This is the same as
n∏

i=1

λ

∑
j:i∈Ij

pj

i ≤
n∏

i=1

λi.

Look at the power on the λn terms on the left hand side:
∑

j:n∈Ij
pj = 1 +((∑

j:n∈Ij
pj

)
− 1
)
. The power 1 we keep as a contribution to the right hand

side, and we estimate λ

(∑
j:n∈Ij

pj

)
−1

n by λ

(∑
j:n∈Ij

pj

)
−1

n−1 , noting that by assump-

tion
(∑

j:n∈Ij
pj

)
− 1 ≥ 0. We continue in the same way with the λn−1 terms,

keeping a power 1 as a contribution to the right hand side and transferring a (non-
negative) power

(∑
j pj |Ij ∩ {n− 1, n}|

)
− 2 onto the λn−2 terms. We treat the

powers of λn−2, λn−3, ...., λ2 in turn in the same way, arriving at λ1 with a power
of 1 +

(∑
j pj |Ij ∩ {1, 2, ...., n}|

)
− n = 1 since (

∑
pjnj)− n = 0.

It remains therefore to establish (5) under condition (6).

Observe that if an orthonormal system e1, . . . , en is such that one can find sets Ij

of cardinality |Ij | = nj obeying the inequalities (6), and such that
∧

i∈Ij
Bjei 6= 0

for all 1 ≤ j ≤ m, then we will have the bound (5) for some finite K < ∞, and
furthermore we can perturb this system by a small amount (keeping the sets Ij

fixed) and still obtain the bound (5) for a uniform value of K. Since the space of
all orthonormal bases is compact, we thus see that it now suffices to show that for
each orthonormal system e1, . . . , en, there exists Ij of cardinality |Ij | = nj obeying
(6), such that the vectors {Bjei : i ∈ Ij} span Rnj for all 1 ≤ j ≤ m.

In order to obey (6) it is desirable to have Ij consist of as large numbers as possible
(basically this exploits the smaller eigenvalues λj as much as possible, and gives the
best bound on det(Aj) in (4)). We shall thus select these Ij by a greedy algorithm.
Namely, we set Ij equal to those indices i for which Bjei is not in the linear span
of {Bjei′ : i < i′ ≤ n} (thus for instance n will lie in Ij as long as Bjen 6= 0). Since
the Bj are surjective, we see that |Ij | = nj . To prove (6), we apply the hypothesis
(2) with V equal to the span of ek+1, . . . , en, to obtain∑

j

pj dim(BjV ) ≥ n− k.

But by construction of Ij we see that dim(BjV ) = |Ij ∩ {k + 1, . . . , n}|, and (6)
follows.
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Now we turn to the constant in G{Bi, pi} being achieved when there is no critical
subspace. This can be seen by an inspection of the preceding argument. For each
fixed orthonormal basis e1, . . . , en, the above construction now gives a family of Ij

for which we have strict inequality in (6):∑
j

pj |Ij ∩ {k + 1, . . . , n}| > n− k for all 1 ≤ k < n.

This implies that not only is the bound (5) true, but also that we can improve upon
this bound if the gap between the largest eigenvalue λ1 and the smallest eigenvalue
λn is sufficiently large. Indeed, all of the nonnegative powers(∑

j pj |Ij ∩ {k + 1, ..., n}|
)
− (n− k) of the λk+1 (with the exception of the last)

in the argument above are now strictly positive.

Thus in order to locate an extremiser it suffices to work in the regime when
λ1, . . . , λn have bounded ratio; by scaling we may then take all of these eigenvalues
to lie in a fixed compact set. The extremisation problem is now over a compact
domain and so an extremiser will now necessarily exist, and the proof is complete.

Proposition 4. Suppose for some {pi} that V is a critical subspace for {Bi, pi}.
Suppose that the problem {Bi, pi} has gaussian extremals. Then V is ultracritical
for {Bi}.

Proof Suppose that Aj is an extremiser for G. Let M :=
∑

j pjB
∗
j AjBj . Then

Theorem 3 shows that M is invertible and

BjM
−1B∗

j = A−1
j for all j.

In particular if we define the self-adjoint matrices Pj := M−1/2B∗
j AjBjM

−1/2 on
Rn then we see that Pj is the orthogonal projection onto the nj-dimensional sub-
space M−1/2B∗

j Rnj of Rn, and furthermore
∑

j pjPj = I. Writing W := M1/2V ,
we thus see that crtiticality of V is equivalent to the assertion

(7) dim(W ) =
∑

j

pj dim(PjW )

(noting that B∗
j is necessarily injective since Bj is surjective).

On the other hand, if π is the orthogonal projection from Rn to W , we see that
tr(π) = dim(W ) and tr(Pjπ) ≤ dim(PjW ) (the latter inequality follows because
Pjπ is a contraction with range PjW ); since

tr(π) = tr((
∑

j

pjPjπ)) =
∑

j

pjtr(Pjπ)

we deduce that (7) can only hold when tr(Pjπ) = dim(PjW ) for all j, which means
that W is the direct sum of a space in PjRn and a space in kerPj = (PjRn)⊥. So
W = W ∩PjRn ⊕W ∩ ker Pj , and thus PjW = Pj(W ∩PjRn)⊕Pj(W ∩ ker Pj) =
Pj(W ∩ PjRn) ⊆ W since Pj acts as the identity on PjRn.

This basically shows that W and hence V is ultracritical, ending the proof.

Now we look at uniqueness.

If there are gaussian extremals, and if there are critical subspaces, we have just seen
that they must be ultracritical. We can continue decomposing the problem until
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there are no critical subspaces remaining. On each minimal piece we have gaussian
extremals by the Theorem 5 (or Proposition 3. Then the original problem will have
a k-fold family of gaussian extremals where k is the number of subproblems we have
decomposed into. So we have one half of:

Theorem 6. [BCCT1] Assume that gaussian extremals for (1) exist. Then they
are unique (up to the 1-parameter family of scalars) if and only if there are no
critical subspaces.

The converse part uses Theorem 3 once again and some linear algebra. See [BCCT1],
Section 9.

The matter of non-gaussian extremisers to (1) was left somewhat open in [BCCT1].
However, Valdimarsson has recently given a complete characterisation of all ex-
tremals to (1), see [V2].

Finally, we present a Proof of Lieb’s theorem:

Consider {Bi, pi}. If C{Bi, pi} = ∞ then either (2) or (3) fails by Theorem 1,
hence G{Bi, pi} = ∞ by (the proof of) the necessity in Theorem 1. So assume
C{Bi, pi} < ∞. Then

either

there is no critical subspace – in which case Theorem 5 gives existence of gaussian
extremals to (1) so that C{Bi, pi} = G{Bi, pi};

or

there is a critical subspace – so that

C{Bi, pi} ≤ C{B̃i, pi}C{ ˜̃Bi, pi}

= G{B̃i, pi}G{ ˜̃Bi, pi}
≤ G{Bi, pi} ≤ C{Bi, pi}.

Here we use the forward part of multiplicativity of C (i.e. the proof of Theorem
1), induction on the dimension and the easy part of multiplicativity of G which we
presented above The last inequality is obvious.

6. Afterword

It is interesting to reflect upon the various proofs of Lieb’s theorem which are
now available. The first, [BL], (which did not apply in full generality), used re-
arrangement inequalites, in particular the Brascamp–Lieb–Luttinger rearrangement
inequality [BLL]. Barthe’s proof [Bar] used optimal mass transportation, while our
proof ([BCCT1] and the present notes) uses heat flow (as did Carlen Lieb and Loss
[CLL] in the rank one case.) Each of these approaches uses a method to move mass
in some general position to an equivalent mass in a position more suitable for direct
analysis; despite this broad similarity they nevertheless seem to be distinct, each
with their own advantages and disadvantages. However, it does not seem so easy
to cast Lieb’s original proof [L] within this framework.

In [BCCT1] Section 8, we give a further, perhaps more direct proof of Lieb’s theorem
than the one presented here. There, in a regularised situation, the problems with
lack of compactness met in Theorem 5 are avoided completely.
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