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FOR KINETIC TRANSPORT EQUATIONS IN

HYPERBOLIC SOBOLEV SPACES
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Abstract. We study the smoothing effect of averaging over spheres for
solutions of kinetic transport equations in hyperbolic Sobolev spaces.

1. Introduction

In this paper we consider solutions f : Rt × Rd
x × Rd

v → R of the kinetic
transport equation

∂tf + v · ∇xf = g, (1.1)

and study their averages over spheres

ρ(t, x) =

∫
Sd−1

f(t, x, v)dσ(v). (1.2)

These averages come up in the radiative transfer equation which describes
the scattering of photons in a hot medium [1, 2, 16, 25, 8].
Averages over balls of solutions of (1.1),

ρ
B
(t, x) =

∫
|v|≤1

f(t, x, v)dv, (1.3)

are known to be smoother than f , in all dimensions, by half a derivative.
More precisely,∥∥(1 + |τ |+ |ξ|)1/2ρ̃

B
(τ, ξ)

∥∥
L

2
(R1+d)

≤ C(d)
(
‖f‖L2 (R1+d×B) + ‖g‖L2 (R1+d×B)

)
(1.4)

where B := {v ∈ Rd : |v| ≤ 1} and ρ̃
B

denotes the space-time Fourier
transform of ρ

B
. The same gain of half a derivative is observed in all dimen-

sions for averages over balls of solutions f : Rd
x × Rd

v → R of the stationary
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equation

v · ∇xf = g. (1.5)

These smoothing effects were first discovered in [18] and [17] and later
developed in several papers [4, 7, 9, 10, 11, 12, 13, 15, 19, 20, 21, 22, 23, 26].
See [24] for a review and an extended bibliography.

We now turn our attention to averages over spheres whose study was
initiated in [6]. For solutions of the stationary equation (1.5) averages over
spheres gain half a derivative in all dimensions, even in dimension d = 2.

Proposition 1.1. Let d ≥ 2. Let f : Rd
x × Rd

v → R be a solution of (1.5)
and define

[f ](x) =

∫
Sd−1

f(x, v)dσ(v) (1.6)

Then∥∥∥(1 + |ξ|)1/2 [̂f ](ξ)
∥∥∥

L2(Rd)
≤ C

(
‖f‖L2(Rd×Sd−1) + ‖g‖L2(Rd×Sd−1)

)
. (1.7)

The proof uses the standard technique of [17] and is sketched in Section 2.
The situation is different for averages over spheres of solutions of the

time-dependent equation (1.1). It is important to notice here that in the
case of the stationary equation the ambient x-space has dimension d and
we averaging over d− 1 dimensional spheres, while in the case of the time-
dependent equation the ambient (t, x)-space has dimension d+1 and we are
again averaging over d − 1 dimensional spheres. It was proved in [6] that
in dimensions d ≥ 3 averages over spheres gain half a derivative, exactly
the same gain as for balls, although spheres have higher codimension. In
dimension d = 2 however averages over spheres only gain a quarter of a
derivative. It was also shown in [6] that the loss of 1/4 derivatives in two
dimensions occurs near the characteristic cone |τ | = |ξ| in phase space and
that we can recover the missing regularity by working in hyperbolic Sobolev
spaces (see (1.10) below). Both in the case d = 2 and in the case d ≥ 3
these estimates for averages over spheres imply the classical estimate (1.4)
for balls and in that sense they are stronger.

There is a simple geometric explanation for this discrepancy between two
and higher dimensions. Suppose we can show that for some α ∈ (0, 2) the
following estimate holds, for all τ ∈ R, all unit vectors ξ ∈ Rd and all λ > 0:

σ
{
v ∈ Sd−1 : |τ + v · ξ| < λ

}
. λα(1) (1.8)

1A . B means that there is a positive constant C, depending only on the dimension
(and possibly on various other harmless parameters) such that A ≤ CB.
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where σ denotes the usual surface measure on Sd−1. We can then show(2)
that averages over spheres gain α/2 derivatives. To see how the mea-
sure of the set in estimate (1.8) behaves let us take ξ = (0, . . . , 0, 1) and
consider the following two extreme cases: if τ = 0 then the set becomes{
v ∈ Sd−1 : |vd| < λ

}
and it is a strip around the equator of ‘width’ λ whose

surface measure is . λ. If τ = ±1 then the set is
{
v ∈ Sd−1 : |±1 + vd| < λ

}
and it is a ‘cap’ centered at the South or North Pole whose surface measure

is . λ
d−1
2 . We may restrict our attention to small λ’s. If d ≥ 3 then d−1

2
≥ 1

hence λ
d−1
2 ≤ λ (the measure is concentrated near the equator). In this case

α = 1 and the gain is 1/2 derivatives. On the other hand, if d = 2, then

λ ≤ λ
d−1
2 = λ

1
2 , so α = 1/2 and the gain is 1/4 derivatives.

Let us now recall the main estimate of [6]:

Theorem. [6] Let f be a solution of (1.1). Then the average over the unit
sphere defined in (1.2) satisfies the following estimates: If d ≥ 3 then,∥∥∥(1 + |τ |+ |ξ|)

1
2 ρ̃(τ, ξ)

∥∥∥
L2(R1+d)

≤ C
(
‖f‖L2(R1+d×Sd−1) + ‖g‖L2(R1+d×Sd−1)

)
(1.9)

If d = 2 then,∥∥∥(1 + |τ |+ |ξ|)
1
4 (1 + ||τ | − |ξ||)

1
4 ρ̃(τ, ξ)

∥∥∥
L2(R1+2)

≤ C
(
‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1)

)
. (1.10)

In Section 6 we give a counterexample which shows that the pair (s, δ) =
(1/4, 1/4) in two dimensions and the pair (s, δ) = (1/2, 0) in three dimen-
sions are best possible.

The geometric viewpoint discussed above suggests that there should be an
improvement to these estimates in dimensions d ≥ 4. Indeed, the measure
in the left hand side of (1.8) behaves differently depending on the relation
between |τ | and |ξ|, because it is this relation that determines the location
of the set on the unit sphere. We expect better estimates when the set
is near one of the Poles, and this happens when (τ, ξ) is ‘near the light
cone’ |τ | = |ξ|. This improvement will be expressed, as in [6], in hyperbolic
Sobolev spaces. We shall prove in Section 3 the following

Theorem 1. (Hyperbolic Sobolev regularity) Let d ≥ 2 and f solve (1.1).
Let s, δ ∈ R be such that:

s + δ ≤ 1

2
and

{
s ≤ min

{
d−1
4

, 1
}

, if d 6= 5

s < 1, if d = 5.
(1.11)

2The proof uses a standard technique from [17]. See also the presentation in [3]. With
a little care in the proof we can actually replace ‖f‖ + ‖g‖ in the right hand side by
‖f‖1−α

2 ‖g‖α
2 .
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Then the average ρ defined by (1.2) satisfies the following estimate:∥∥(1 + |τ |+ |ξ|)s (1 + ||τ | − |ξ||)δ ρ̃(τ, ξ)
∥∥

L2(R1+d)

. ‖f‖L2(R1+d×Sd−1) + ‖g‖L2(R1+d×Sd−1) (1.12)

Some remarks are in order. In all cases we would like s, the exponent of
the ‘good’ weight 1 + |τ |+ |ξ|, to be as large as possible. For d = 2 the best
that (1.11) allows is s = 1/4, and we can then take δ = 1/4. This recovers
(1.10). For d = 3 we can take s = 1/2 and δ = 0 and this recovers (1.9).
Let us examine more closely dimension d = 4 (3). We can take s = 3/4 and
δ = −1/4. The estimate then is:∥∥(1 + |τ |+ |ξ|)3/4 (1 + ||τ | − |ξ||)−1/4 ρ̃(τ, ξ)

∥∥
L2(R1+4)

. ‖f‖L2(R1+4×S3) + ‖g‖L2(R1+4×S3) (1.13)

Observe first that (1 + |τ |+ |ξ|)3/4 (1 + ||τ | − |ξ||)−1/4 ≥ (1 + |τ |+ |ξ|)1/2,
so (1.13) implies (1.9). However, (1.13) also shows that for (τ, ξ) with
||τ | − |ξ|| . 1 (‘near the cone’) we can control (1 + |τ |+ |ξ|)3/4ρ̃(τ, ξ) i.e.
gain 3/4 derivatives - an extra gain of 1/4 derivatives over the classical
1/2-gain. We have similar gains ‘near the cone’ in all dimensions d ≥ 4.
This is in sharp contrast to what happens in two dimensions where a loss of
regularity occurs ‘near the cone’.

In dimension d = 5, condition (1.11) excludes the end point case s = 1.
Actually, we can take s = 1 (and δ = −1/2) if we allow for a logarithmic
term in 1 + ||τ | − |ξ|| (see (1.15)).

It was noted in [6] that in the ‘elliptic’ region |τ | ≥ |ξ| we have an extra
gain of regularity (see (19) and (20) in [6]). In the present paper estimate
(1.12) will be a consequence of the estimates in the following Theorem which
take into account this gain in the region |τ | ≥ |ξ|. In these estimates x+

denotes the positive part of the real number x.

Theorem 2. Let d ≥ 2 and f be a solution of the equation (1.1). Then, the
average over the sphere in (1.2) satisfies the following estimates:

(i) If d 6= 5, define s = 1 + min
{

d−5
4

, 0
}

and

δ1 = −min

{
d− 5

4
, 0

}
, δ2 = −1

2
−min

{
d− 5

4
, 0

}
.

Then:∥∥(1 + |τ |+ |ξ|)s (1 + (|τ | − |ξ|)+)δ1 (1 + (|ξ| − |τ |)+)δ2 ρ̃(τ, ξ)
∥∥

L2(R1+d)

. ‖f‖L2(R1+d, Sd−1) + ‖g‖L2(R1+d, Sd−1) (1.14)

3It turns out that one can use the corresponding pointwise four dimensional estimate
to improve considerably estimates (50) and (51) of [6] (see Theorem 3 below and Remark
4.1 on p. 18. ). The new estimates we present in this paper are best possible.
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(ii) If d = 5,∥∥∥(1 + |τ |+ |ξ|) (1 + (|ξ| − |τ |)+)−
1
2(

1 + log

(
1 + |τ |+ |ξ|
1 + ||τ | − |ξ||

))− 1
2

ρ̃(τ, ξ)

∥∥∥∥∥
L2(R1+5)

. ‖f‖L2(R1+5, S4) + ‖g‖L2(R1+5, S4) (1.15)

The proof of this Theorem uses the methods of [6] together with a detailed
study and sharp estimates for the integrals Jm

l (see Proposition 3.1). In the
region |τ | ≥ |ξ| (inside the cone) we use estimates for the integrals Ha

b (see
Lemma 3.2) introduced by Foschi and Klainerman in [14] in connection with
sharp bilinear null form estimates for solutions of the wave equation . To
deal with the region |τ | ≤ |ξ| we introduce and estimate the new integrals
F a

b and Ga
b (see Lemmata 3.3 and 3.4).

Estimates on averages of solutions of kinetic equations with right hand-
sides which contain derivatives with respect to v are used in the study of the
Maxwell-Vlasov equations. In Section 4 we will study averages over spheres
for the equation

∂tf + v · ∇xf = Ωi,j
v g (1.16)

where Ωi,j
v = vi

∂
∂vj

− vj
∂

∂vi
are tangential derivatives. We restrict ourselves

to tangential derivatives because we need to be able to integrate by parts
on the sphere. Moreover, if we take the point of view that f and g are only
defined on the sphere then only tangential derivatives make sense. In [6]
it was shown that if d ≥ 3 then ρ gains 1/4 derivatives (exactly the same
gain as for balls), but gains only 1/8 derivatives if d = 2. The operators
Ωi,j introduce a special structure which is reminiscent of the null forms
structure for the wave equation and allows better than expected estimates
(see the Remarks in Section 4 of [6]). Taking this into account the following
improvement to the 1/8 gain in two dimensions was established in [6].

Theorem. [6] Let f solve equation (1.16) in d = 2 dimensions and define
ρ by (1.2). Let (s, δ) =

(
1
7
, 0
)

or
(

1
16

, 3
16

)
. Then

∥∥(1 + ||τ | − |ξ||)δ(1 + |τ |+ |ξ|)sρ̃(τ, ξ)
∥∥

L2(R1+2)

≤ C
(
‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1)

)
(1.17)

In this paper we improve these results to (s, δ) =
(

1
6
, 0
)

and (s, δ) =
(

1
8
, 1

8

)
and show that the new results are best possible. We shall prove the following

Theorem 3. Let f, g : R1+2 × S1 −→ R satisfy

∂tf + v · ∇xf = Ωi,j
v g, (1.18)
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where Ωi,j
v = vi

∂
∂vj

− vj
∂

∂vi
. Then, the average ρ defined in (1.2) satisfies:

‖(1 + |τ |+ |ξ|)
1
6 ρ̃(τ, ξ)‖L2(R1+2) .

(
‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1)

)
(1.19)

and the hyperbolic Sobolev estimate:

‖(1 + |τ |+ |ξ|)
1
8 (1 + ||τ | − |ξ||)

1
8 ρ̃(τ, ξ)‖L2(R1+2)

.
(
‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1)

)
. (1.20)

In Section 5 we study the Initial Value Problem

∂tf + v · ∇xf = 0 , f(0) = f0 (1.21)

and prove averaging lemmas in hyperbolic Sobolev spaces in all dimensions.
These estimates improve and generalize those of [6]. We present here a
proof which works in all dimensions and also provides a pointwise estimate
for ρ̃(τ, ξ) (see (5.5) ) while the proof in [6] only gave an estimate for a certain
weighted τ -integral of ρ̃(τ, ξ) (see (5.4)). We shall prove the following

Theorem 4. Let d ≥ 2 and f be a solution of the IVP (5.2). Then the
corresponding average ρ satisfies

‖(1+|τ |+|ξ|)
d−1
4 (1+||τ | − |ξ||)−

d−3
4 ρ̃(τ, ξ)‖L2(R1+d) . ‖f0‖L2(Rd×Sd−1). (1.22)

Notation: We use f̂(ξ) to denote the Fourier transform of a function f on

Rd and F̃ (τ, ξ) to denote the space-time Fourier transform of a function F on
Rd+1. For simplicity we assume that all initial data and right hand sides of
our equations are smooth functions which decay sufficiently fast at infinity.
Throughout the paper, p . q means that p ≤ C q for some positive constant
C which may depend on the dimension. Also p ≈ q means q . p . q.

Acknowledgements: The authors acknowledge with pleasure several
helpful discussions with Benoit Perthame and Luis Vega.

2. Averages over spheres for solutions of the stationary
equation

In this section we sketch the proof of Proposition 1.1 and show that the
exponent 1/2 is best possible.

Proof of Proposition 1.1. We have f̂(ξ, v) = ĥ(ξ,v)
1+iv·ξ , where h = f + g, there-

fore [̂f ](ξ) =
∫

Sd−1

ĥ(ξ,v)
1+iv·ξdσ(v). Applying the Cauchy-Schwarz inequality we

get ∣∣∣[̂f ](ξ)
∣∣∣ ≤ (∫

Sd−1

∣∣∣ĥ(ξ, v)
∣∣∣2 dσ(v)

)1/2

J(τ, ξ)
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where J(ξ)2 =
∫

Sd−1

dσ(v)
1+(v·ξ)2 , so it suffices to show that J(ξ)2 ≤ C

1+|ξ| . This

integral can easily be estimated in all dimensions as follows:

J(ξ)2 ≈
∫ π

0

(sin θ)d−2

1 + |ξ|2 cos2 θ
dθ

.
∫ π

0

1

1 + |ξ|2 cos2 θ
dθ

≈
∫ 1

0

1

(1 + |ξ|2x2)
√

1− x2
dx (x := cos θ)

.
∫ 1/2

0

1

1 + |ξ|2x2
dx +

1

|ξ|2

∫ 1

1/2

1√
1− x2

dx

=
1

|ξ|

∫ |ξ|
2

0

1

1 + y2
dy +

1

|ξ|2

.
1

|ξ|
.

This settles the case |ξ| ≥ 1. The case |ξ| ≤ 1 is trivial. �

To see that the exponent 1/2 in Proposition 1.1 is the best possible we
observe that estimate (1.7) implies the corresponding estimate for averages
over balls (4). If (1.7) was true with an exponent larger than 1/2 then the
same argument would show that averages on balls gained more than 1/2
derivatives. Since 1/2 is the best possible exponent for balls [23], it follows
that it is the also the best possible exponent for spheres.

3. Averages over spheres for ∂tf + v · ∇xf = g

The proof of Theorem 2 relies on sharp estimates for the integrals

Jm
l (τ, ξ) =

∫ π

0

(sin θ)m

[1 + (τ + |ξ| cos θ)2]l
dθ, τ ∈ R , ξ ∈ Rd. (3.1)

Proposition 3.1. Let m > −1, l > 1/2 and define α = min
{

m+1−4l
2

, 0
}
.

Then the integrals Jm
l (τ, ξ) satisfy the following pointwise estimates:

(i). If |τ | ≥ |ξ|,

Jm
l (τ, ξ) ≈


(1 + |τ | − |ξ|)α

(1 + |τ |+ |ξ|)2l+α
, if m + 1 6= 4l

1

(1 + |τ |+ |ξ|)2l

(
1 + log

1 + |τ |+ |ξ|
1 + |τ | − |ξ|

)
, if m + 1 = 4l

(3.2a)

4write
∫
|v|≤1

f(x, v)dv =
∫ 1

0

∫
Sd−1

r
f(x, v)dσ(v)dr and use the analogue of (1.7) for the

sphere of radius r.
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(ii). If |τ | ≤ |ξ|,

Jm
l (τ, ξ) .


(1 + |ξ| − |τ |)2l−1+α

(1 + |ξ|+ |τ |)2l+α
, if m + 1 6= 4l

(1 + |ξ| − |τ |)2l−1

(1 + |ξ|+ |τ |)2l

(
1 + log

1 + |ξ|+ |τ |
1 + |ξ| − |τ |

)
, if m + 1 = 4l

(3.2b)

Estimate (3.2) is sharp, except in a certain case explained in Remark 3.5 on
page 14. In the next three Lemmata we collect some estimates that come
up repeatedly in the proof of Proposition 3.1.

Lemma 3.2. Let b > −1, a ∈ R. For λ > 0 define

Ha
b (λ) =

∫ 1

0

(λ + t)a tb dt (3.3)

Then

Ha
b (λ) ≈ λa, if λ & 1, (3.4a)

Ha
b (λ) ≈ λmin{a+b+1,0}, if 0 < λ . 1, a + b + 1 6= 0, (3.4b)

Ha
b (λ) ≈ 1 + |log λ| , if 0 < λ . 1, a + b + 1 = 0. (3.4c)

Proof. See Lemma 4.2 in [14]. �

Lemma 3.3. Let a > −1 and b > 1. For λ1 ≥ 0, λ2 ≥ 1 define

F a
b (λ1, λ2) =

∫ λ2

0

(y + λ1)
a

(1 + y)b
dy. (3.5)

Then,

(1) If λ1 ≥ λ2,

F a
b (λ1, λ2) ≈ λa

1. (3.6)

(2) If 0 ≤ λ1 ≤ 1 ≤ λ2,then

F a
b (λ1, λ2) ≈

{
1 + log λ2, if a− b + 1 = 0,

λ
max{a−b+1,0}
2 , if a− b + 1 6= 0.

(3.7)

(3) If 1 ≤ λ1 ≤ λ2,then

F a
b (λ1, λ2) . λa

1 + λa−b+1
2 , if a− b + 1 > 0, (3.8a)

F a
b (λ1, λ2) ≈ λa

1 + log
λ2

λ1

, if a− b + 1 = 0, (3.8b)

F a
b (λ1, λ2) ≈ λa

1, if a− b + 1 < 0. (3.8c)
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Proof. First assume that λ1 ≥ λ2. Then y + λ1 ≈ λ1 therefore,

F a
b (λ1, λ2) =

∫ λ2

0

(y + λ1)
a

(1 + y)b
dy ≈ λa

1

∫ λ2

0

dy

(1 + y)b
≈ λa

1

Next, assume that 0 ≤ λ1 ≤ 1 ≤ λ2. Split F a
b as follows:

F a
b (λ1, λ2) =

∫ 1

0

(y + λ1)
a

(1 + y)b
dy +

∫ λ2

1

(y + λ1)
a

(1 + y)b
dy (3.9)

The first integral is clearly ≈ 1. For the second integral we have y + λ1 ≈ y
and 1 + y ≈ y, therefore,∫ λ2

1

(y + λ1)
a

(1 + y)b
dy ≈

∫ λ2

1

ya−b dy ≈

{
log λ2, if a− b + 1 = 0,

λ
max{a−b+1,0}
2 , if a− b + 1 6= 0.

Finally, assume that 1 ≤ λ1 ≤ λ2. Split F a
b as follows:

F a
b (λ1, λ2) =

∫ λ1

0

(y + λ1)
a

(1 + y)b
dy +

∫ λ2

λ1

(y + λ1)
a

(1 + y)b
dy := A + B (3.10)

In A, y + λ1 ≈ λ1 therefore,

A ≈ λa
1

∫ λ1

0

1

(1 + y)b
dy ≈ λa

1

In B, y + λ1 ≈ y and 1 + y ≈ y, therefore

B ≈
∫ λ2

λ1

ya−b dy

≈


λa−b+1

2 − λa−b+1
1 ≤ λa−b+1

2 , if a− b + 1 > 0

log λ2

λ1
, if a− b + 1 = 0

λa−b+1
1 − λa−b+1

2 ≤ λa−b+1
1 = λa

1λ
−(b−1)
1 ≤ λa

1, if a− b + 1 < 0

�

Lemma 3.4. Let a > −1, b > 1. For λ ≥ 1, define Ga
b (λ) =

∫ λ

0
(λ−y)a

(1+y)b dy.

Then Ga
b (λ) ≈ λa.

Proof.

Ga
b (λ) =

∫ λ
2

0

(λ− y)a

(1 + y)b
dy +

∫ λ

λ
2

(λ− y)a

(1 + y)b
dy

≈ λa

∫ λ
2

0

1

(1 + y)b
dy +

1

λb

∫ λ

λ
2

(λ− y)ady

≈ λa + λa−b+1 ≈ λa

�
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Proof of proposition 3.1. We may assume that τ > 0 because Jm
l (−τ, ξ) =

Jm
l (τ, ξ) (to see this change variables θ → π−θ). When τ + |ξ| . 1 estimates

(3.2) are easily seen to be true as Jm
l (τ, ξ) . 1 and all the right-hand sides

are then ≈ 1. From now on we assume that τ + |ξ| & 1. Performing the
change of variables θ → x = cos θ, we have

Jm
l (τ, ξ) =

∫ 1

−1

(1− x2)
m−1

2

[1 + (τ + |ξ|x)2]l
dx. (3.11)

Write Jm
l (τ, ξ) = J+ + J− where

J+ =

∫ 1

0

(1− x2)
m−1

2

[1 + (τ + |ξ|x)2]l
dx (3.12a)

J− =

∫ 0

−1

(1− x2)
m−1

2

[1 + (τ + |ξ|x)2]l
dx (3.12b)

=
x→−x

∫ 1

0

(1− x2)
m−1

2

[1 + (τ − |ξ|x)2]l
dx (3.12c)

Observe that J+ ≤ J−, hence Jm
l (τ, ξ) ≈ J−, so it suffices to estimate J−.

We split the proof into two cases depending on the region where the pair
(τ, ξ) lies.
Case 1: Estimates inside the cone: Fix (τ, ξ) such that τ ≥ |ξ|. If τ ≥ 2 |ξ|
use the fact that for 0 ≤ x ≤ 1, 1 + (τ − |ξ|x)2 ≈ 1 + τ 2 ≈ τ 2 to get,

J− =

∫ 1

0

(1− x2)
m−1

2

[1 + (τ − |ξ|x)2]l
dx

≈ 1

τ 2l

∫ 1

0

(1− x2)
m−1

2 dx

≈ 1

τ 2l
≈ (1 + τ − |ξ|)α

(1 + τ + |ξ|)2l+α
(3.13)

It remains to deal with the case |ξ| < τ < 2 |ξ|. Recall that we are assuming
τ + |ξ| & 1, hence |ξ| & 1. Using 1−x2 ≈ 1−x and then changing variables
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x → y = 1− x we have:

J− =

∫ 1

0

y
m−1

2[
1 + (τ − |ξ|+ |ξ| y)2]l dy

≈
∫ 1

0

y
m−1

2

[1 + τ − |ξ|+ |ξ| y]2l
dy

=
1

|ξ|2l

∫ 1

0

y
m−1

2[
1+τ−|ξ|

|ξ| + y
]2l

dy

=
1

|ξ|2l
H−2l

m−1
2

(
1 + τ − |ξ|

|ξ|

)
(3.14)

where H−2l
m−1

2

is defined in (3.3). Notice that 1+τ−|ξ|
|ξ| ≤ 1+|ξ|

|ξ| . 1. If m+1−4l 6=
0 then, by (3.4b),

H−2l
m−1

2

(
1 + τ − |ξ|

|ξ|

)
≈
(

1 + τ − |ξ|
|ξ|

)min{m+1
2

−2l,0}
=

(
1 + τ − |ξ|

|ξ|

)α

which gives,

J− ≈
(1 + τ − |ξ|)α

|ξ|2l+α
≈ (1 + τ − |ξ|)α

(1 + τ + |ξ|)2l+α
(3.15)

If m + 1− 4l = 0 then, by (3.4c),

H−2l
m−1

2

(
1 + τ − |ξ|

|ξ|

)
≈ 1 +

∣∣∣∣log
1 + τ − |ξ|

|ξ|

∣∣∣∣
which gives,

J− ≈
1

|ξ|2l

[
1 +

∣∣∣∣log
1 + τ − |ξ|

|ξ|

∣∣∣∣] (3.16)

≈ 1

(1 + τ + |ξ|)2l

[
1 + log

1 + τ + |ξ|
1 + τ − |ξ|

]
(3.17)

Case 2: Estimates outside the cone: Fix (τ, ξ) such that 0 < τ < |ξ|. Recall
that we are assuming |τ |+ |ξ| & 1, hence |ξ| & 1. By an appropriate choise
of the constants we may assume that |ξ| ≥ 4.

Suppose first that |ξ| ≥ 2τ . Write J− = J
(1)
− + J

(2)
− where

J
(1)
− =

∫ 3/4

0

(1− x2)
m−1

2 dx

[1 + (τ − |ξ|x)2]l
, J

(2)
− =

∫ 1

3/4

(1− x2)
m−1

2 dx

[1 + (τ − |ξ|x)2]l
.

For J
(1)
− use 1− x2 ≈ 1 and then change variables x → y = τ − |ξ|x to get

J
(1)
− ≈ 1

|ξ|

∫ τ

−(
3|ξ|
4
−τ)

dy

[1 + y2]l
≤ 1

|ξ|

∫ +∞

−∞

dy

[1 + y2]l
≈ 1

|ξ|
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Since 3|ξ|
4
− τ ≥ |ξ|

4
≥ 1, we also have

∫ τ

−(
3|ξ|
4
−τ)

dy

[1+y2]l
≥
∫ 0

−1
dy

[1+y2]l
& 1,

therefore J
(1)
− ≈ 1

|ξ| . For J
(2)
− use |ξ|x− τ ≈ |ξ|, to get:

J
(2)
− ≈ 1

|ξ|2l

∫ 1

3/4

(1− x)
m−1

2 dx .
1

|ξ|
.

Therefore J− ≈ 1
|ξ|(

5).

Suppose next that τ < |ξ| < 2τ and |ξ| − τ ≤ 1. Changing variables
x → y = |ξ| (1− x) we get:

J− ≈
∫ 1

0

(1− x)
m−1

2 dx

[1 + (τ − |ξ|x)2]l
=

1

|ξ|
m+1

2

∫ |ξ|

0

y
m−1

2 dy

[1 + (y − (|ξ| − τ))2]l

Observe that, since 0 ≤ |ξ| − τ ≤ 1, we have 1 + (y − (|ξ| − τ))2 ≈ 1 + y2

(if y . 1 then both sides are ≈ 1, and if y & 1 then both sides are ≈ y2),
therefore, using (3.7), we have

J− ≈
1

|ξ|
m+1

2

∫ |ξ|

0

y
m−1

2 dy

[1 + y2]l

≈ 1

|ξ|
m+1

2

F
m−1

2
2l (0, |ξ|)

≈


1

|ξ|min{m+1
2 ,2l} , if m + 1− 4l 6= 0

1

|ξ|2l [1 + log |ξ|] , if m + 1− 4l = 0

≈


(1+|ξ|−τ)2l−1+α

(1+|ξ|+τ)2l+α , if m + 1− 4l 6= 0
(1+|ξ|−τ)2l−1

(1+|ξ|+τ)2l

[
1 + log 1+|ξ|+τ

1+|ξ|−τ

]
, if m + 1− 4l = 0

(3.18)

5Note that the decay rate is independent of the parameters m and l. This estimate
shows that, in the various versions of the averaging Lemmas, we cannot expect a gain
better than 1/2 derivatives. Also note that this ‘worse decay’ occurs when |ξ| >> τ .
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It remains to deal with the case τ < |ξ| < 2τ and |ξ| − τ > 1. Change
variables x → y = τ − |ξ|x and then split J− as follows:

J− ≈
∫ 1

0

(1− x)
m−1

2 dx

[1 + (τ − |ξ|x)2]l

=
1

|ξ|
m+1

2

∫ τ

−(|ξ|−τ)

(y + |ξ| − τ)
m−1

2 dy

[1 + y2]l

=
1

|ξ|
m+1

2

∫ τ

0

(y + |ξ| − τ)
m−1

2 dy

[1 + y2]l
+

1

|ξ|
m+1

2

∫ |ξ|−τ

0

(−y + |ξ| − τ)
m−1

2 dy

[1 + y2]l

≈ 1

|ξ|
m+1

2

F
m−1

2
2l (|ξ| − τ, τ) +

1

|ξ|
m+1

2

G
m−1

2
2l (|ξ| − τ)

≈ 1

|ξ|
m+1

2

F
m−1

2
2l (|ξ| − τ, τ) +

(|ξ| − τ)
m−1

2

|ξ|
m+1

2

(3.19)

where we have used Lemma 3.4 in the last step. If m + 1 − 4l < 0 then,
using (3.8c) of Lemma 3.3, we obtain:

J− ≈
(|ξ| − τ)

m−1
2

|ξ|
m+1

2

≈ (1 + |ξ| − τ)2l−1+α

(1 + |ξ|+ τ)2l+α

If m+1− 4l = 0 (hence m−1
2

= 2l− 1 > 0) then, using (3.8b) of Lemma 3.3,
we obtain:

J− ≈
(|ξ| − τ)

m−1
2

|ξ|
m+1

2

+
1

|ξ|
m+1

2

log
τ

|ξ| − τ
(3.20)

.
(|ξ| − τ)

m−1
2

|ξ|
m+1

2

[
1 + log

τ

|ξ| − τ

]
≈ (1 + |ξ| − τ)2l−1

(1 + |ξ|+ τ)2l

[
1 + log

1 + |ξ|+ τ

1 + |ξ| − τ

]
(3.21)
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If m + 1− 4l > 0 then, using (3.8a) of Lemma 3.3, we obtain:

J− ≈
(|ξ| − τ)

m−1
2

|ξ|
m+1

2

+
τ

m+1
2

−2l

|ξ|
m+1

2

(3.22)

≈ (|ξ| − τ)2l−1

|ξ|2l

(
|ξ| − τ

|ξ|

)m+1
2

−2l

+
1

|ξ|2l

.
(|ξ| − τ)2l−1

|ξ|2l

≈ (1 + |ξ| − τ)2l−1+α

(1 + |ξ|+ τ)2l+α
(α = 0 in this case) (3.23)

�

Remark 3.5. Our proof shows that estimate (3.2b) is sharp in all cases
except when m + 1 − 4l ≥ 0 and (τ, ξ) is in the region |τ | − |ξ| > 1 and
|τ | < |ξ| < 2 |τ |. In this case the sharp estimate is (see (3.20) and (3.22)):

Jm
l (τ, ξ) ≈ (|ξ| − |τ |)m−1

2

|ξ|
m+1

2

+
|τ |

m+1
2

−2l

|ξ|
m+1

2

, if m + 1− 4l > 0 (3.24)

Jm
l (τ, ξ) ≈ (|ξ| − |τ |)

m−1
2

|ξ|
m+1

2

+
1

|ξ|
m+1

2

log
|τ |

|ξ| − |τ |
, if m + 1− 4l = 0 (3.25)

In particular in the case |τ | ≤ |ξ| and m + 1− 4l < 0 (3.2b) is sharp and
gives:

Jm
l (τ, ξ) ≈ (1 + |ξ| − |τ |)m−1

2

(1 + |ξ|+ |τ | |)m+1
2

. (3.26)

Proof of Theorem 2. By taking the Fourier transform with respect to the
spacetime variables in (1.1) it is easy to see that

ρ̃(τ, ξ) =

∫
Sd−1

f̃(τ, ξ, v) dσ(v) =

∫
Sd−1

h̃(τ, ξ, v)

1 + i(τ + v · ξ)
dσ(v).

where h = f + g. Apply the Cauchy-Schwarz inequality to get:

|ρ̃(τ, ξ)|2 ≤
(∫

Sd−1

dσ(v)

1 + (τ + v · ξ)2

) (∫
Sd−1

|h̃(τ, ξ, v)|2 dσ(v)

)
.

We can use a basis in v-space such that ξ = (0, . . . , 0, |ξ|). Thus, using
spherical coordinates we get that∫

Sd−1

dσ(v)

1 + (τ + v · ξ)2
.
∫ π

0

(sin θ)d−2

1 + (τ + |ξ| cos θ)2
dθ = Jd−2

1 (τ, ξ) (3.27)
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The estimates in Theorem 2 are proved by first applying the pointwise es-
timates for Jd−2

1 (τ, ξ) given in Proposition 3.1, and then integrating with
respect to (τ, ξ). �

Proof of Theorem 1. We present the proof in the case d 6= 5. The case
d = 5 is similar. Fix (s, δ) with s + δ ≤ 1

2
and s ≤ 1 + m, where m =

min {(d− 5)/4, 0}. Set w+(τ, ξ) = 1 + |τ | + |ξ| and w− = 1 + ||τ | − |ξ||.
Theorem 2 implies that∥∥∥w1+m

+ w
− 1

2
−m

− ρ̃
∥∥∥

L2(R1+d)
. ‖f‖L2(R1+d×Sd−1) + ‖g‖L2(R1+d×Sd−1)

so it suffices to show that

ws
+wδ

− ≤ w1+m
+ w

− 1
2
−m

−

Indeed,

ws
+wδ

− ≤ ws
+w

1
2
−s

− (because δ ≤ 1

2
− s)

= w1+m
+ w

− 1
2
−m

−

(
w−

w+

)1+m−s

≤ w1+m
+ w

− 1
2
−m

− (because 1 + m− s ≥ 0)

�

4. Averaging Lemmas for ∂tf + v · ∇xf = Ωi,j
v g in 2 + 1 dimensions

Proof of Theorem 3. Since d = 2, we can set (i, j) = (1, 2). Take the space-

time Fourier transform in (1.18) and add λf̃(τ, ξ, v) to both sides to obtain
that

(λ + i(τ + v · ξ))f̃(τ, ξ, v) = Ω1,2
v g̃(τ, ξ, v) + λf̃(τ, ξ, v)

The parameter λ = λ(τ, ξ) depends on (τ, ξ) and will be chosen later. Then,

ρ̃(τ, ξ) =

∫
S1

Ω1,2
v g̃(τ, ξ, v)

λ + i(τ + v · ξ)
dσ(v) +

∫
S1

λf̃(τ, ξ, v)

λ + i(τ + v · ξ)
dσ(v).

Integrate by parts in the first term to get:

ρ̃(τ, ξ) = −i

∫
S1

g̃(τ, ξ, v)
v1ξ2 − v2ξ1

(λ + i(τ + v · ξ))2
dσ(v) +

∫
S1

λf̃(τ, ξ, v) dσ(v)

λ + i(τ + v · ξ)
.

Therefore,

|ρ̃(τ, ξ)|2 ≤ ‖g̃(τ, ξ, v)‖2
L2

v
I1(τ, ξ) + ‖f̃(τ, ξ, v)‖2

L2
v
I2(τ, ξ), (4.1)

where

I1(τ, ξ) =

∫
S1

|v1ξ2 − v2ξ1|2

(λ2 + (τ + ξ · v)2)2
dσ(v)
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and

I2(τ, ξ) = λ2

∫
S1

dσ(v)

λ2 + (τ + ξ · v)2
.

Set τ ′ = τ
λ

and ξ′ = ξ
λ
. Then

I1(τ, ξ) =
|ξ|2

λ4

∫
S1

|v1
ξ2
|ξ| − v2

ξ1
|ξ| |

2

(1 + (τ ′ + ξ′ · v)2)2
dσ(v)

.
|ξ|2

λ4

∫ π

0

(sin θ)2

[1 + (τ ′ + |ξ′| cos θ)2]2
dθ

=
|ξ|2

λ4
J2

2 (τ ′, ξ′) (4.2)

and

I2(τ, ξ) =

∫
S1

dσ(v)

1 + (τ ′ + ξ′ · v)2
.
∫ π

0

dθ

1 + (τ ′ + |ξ′| cos θ)2
= J0

1 (τ, ξ) (4.3)

with the Jm
l -integrals defined as in (3.1). As a consequence of (3.2) we have,

in all regions,

Jm
l (τ ′, ξ′) .

(1 + ||ξ′| − |τ ′||)2l−1+α

(1 + |ξ′|+ |τ ′|)2l+α
(4.4)

provided that α = min
{

m+1−4l
2

, 0
}
6= 0.

With (τ, ξ) fixed, choose λ = λ(τ, ξ) such that

λ > 1 and λ = (λ + |ξ|+ |τ |)
1
4 (λ + ||ξ| − |τ ||)

1
4 (4.5)

Then

I1(τ, ξ) .
|ξ|2

λ4
J2

2 (τ ′, ξ′)

.
|ξ|2

λ4

(1 + ||ξ′| − |τ ′||)
1
2

(1 + |ξ′|+ |τ ′|)
3
2

≤ (λ + |ξ|+ |τ |)2

λ4

λ (λ + ||ξ| − |τ ||)
1
2

(λ + |ξ|+ |τ |)
3
2

=
(λ + |ξ|+ |τ |)

1
2 (λ + ||ξ| − |τ ||)

1
2

λ3

=
1

(λ + |ξ|+ |τ |)
1
4 (λ + ||ξ| − |τ ||)

1
4

≤ 1

(1 + |ξ|+ |τ |)
1
4 (1 + ||ξ| − |τ ||)

1
4

(4.6)
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and

I2(τ, ξ) . J0
1 (τ ′, ξ′)

.
1

(1 + |ξ′|+ |τ ′|)
1
2 (1 + ||ξ′| − |τ ′||)

1
2

=
λ

(λ + |ξ|+ |τ |)
1
2 (λ + ||ξ| − |τ ||)

1
2

=
1

(λ + |ξ|+ |τ |)
1
4 (λ + ||ξ| − |τ ||)

1
4

≤ 1

(1 + |ξ|+ |τ |)
1
4 (1 + ||ξ| − |τ ||)

1
4

(4.7)

Combining (4.1), (4.6) and (4.7) in the usual way we get (1.20). Next we
prove (1.19). With (τ, ξ) fixed, choose a new λ = λ(τ, ξ) such that

λ > 1 and λ = (λ + |ξ|+ |τ |)
1
6 (λ + ||ξ| − |τ ||)

1
2 (4.8)

Then

I1(τ, ξ) .
|ξ|2

λ4
J2

2 (τ ′, ξ′)

.
|ξ|2

λ4

(1 + ||ξ′| − |τ ′||)
1
2

(1 + |ξ′|+ |τ ′|)
3
2

(4.9)

.
|ξ|2

λ4

(1 + ||ξ′| − |τ ′||)
5
2

(1 + |ξ′|+ |τ ′|)
3
2

.
(λ + |ξ|+ |τ |)2

λ4

(λ + ||ξ| − |τ ||)
5
2

λ (λ + |ξ|+ |τ |)
3
2

=
(λ + |ξ|+ |τ |)

1
2 (λ + ||ξ| − |τ ||)

5
2

λ5

=
1

(λ + |ξ|+ |τ |)
1
3

≤ 1

(1 + |ξ|+ |τ |)
1
3

(4.10)
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and

I2(τ, ξ) . J0
1 (τ ′, ξ′)

.
1

(1 + |ξ′|+ |τ ′|)
1
2 (1 + ||ξ′| − |τ ′||)

1
2

=
λ

(λ + |ξ|+ |τ |)
1
2 (λ + ||ξ| − |τ ||)

1
2

=
1

(λ + |ξ|+ |τ |)
1
3

≤ 1

(1 + |ξ|+ |τ |)
1
3

(4.11)

Combining (4.1), (4.10) and (4.11) in the usual way we get (1.19). �

Remark 4.1. The estimates for the Jm
l integrals are applied with m = d−2

(see for example (3.27) in last Section). In this sense J2
2 corresponds to d = 4

and behaves like a four dimensional term while J0
1 corresponds to d = 2 and

it is a two dimensional term. It is the sharp estimates for these integrals in
higher dimensions that allow us to improve the results of [6].

Corollary 4.2. Under the assumptions and notation of Theorem 3, the
average over the sphere satisfies:

‖(1 + |τ |+ |ξ|)s(1 + ||τ | − |ξ||)δρ̃(τ, ξ)‖L2(R1+2)

.
(
‖f‖L2(R1+2,S1) + ‖g‖L2(R1+2,S1)

)
, (4.12)

whenever the pair (s, δ) satisfies

s + δ ≤ 1/4, 6s + 2δ ≤ 1, and s ≤ 1/6. (4.13)

Proof. Define w+ = 1 + |ξ| + |τ | and w− = 1 + ||ξ| − |τ ||. Interpolating
between the two estimates in Theorem 3 we easily get (4.12) for any pair
(s, δ) lying on the line segment with endpoints (s, δ) = (1/6, 0) and (s, δ) =
(1/8, 1/8). Now fix (s, δ) as in (4.13). If s ≤ 1

8
then

ws
+wδ

− ≤ ws
+w

1
4
−s

− = w
1
8
+w

1
8
−

(
w−

w+

) 1
8
−s

≤ w
1
8
+w

1
8
−

and the result follows from (1.20). If on the other hand 1
8
≤ s ≤ 1

6
then

ws
+wδ

− ≤ ws
+w

1−6s
2

−

and again the result follows as
(
s, 1−6s

2

)
lies on the line segment with end-

points (s, δ) = (1/6, 0) and (s, δ) = (1/8, 1/8). �
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5. Averaging Lemmas for the Initial Value Problem

In this section, we continue the investigation started in [6] on studying
the smoothing effect on the averages over the sphere:

ρ(t, x) =

∫
Sd−1

f(t, x, v) dσ(v), (5.1)

where f : R1+d × Sd−1 → R is a solution of the homogeneous initial value
problem: {

∂tf + v · ∇xf = 0,

f(0, x, v) = f0(x, v).
(5.2)

Proof of Theorem 4. We have

ρ̃(τ, ξ) =

∫
Sd−1

f̂0(ξ, v) δ(τ + ξ · v) dσ(v). (5.3)

and supp ρ̃ ⊆ {(τ, ξ) : |ξ| ≥ |τ |}. We prove first the following two pointwise
estimates:∫ |ξ|

−|ξ|
|ξ|

d−1
2 (|ξ| − |τ |)−

d−3
2 |ρ̃(τ, ξ)|2 dτ .

∫
Sd−1

|f̂0(ξ, v)|2 dσ(v), (5.4)

|ρ̃(τ, ξ)|2 .
(|ξ| − |τ |)

d−3
2

|ξ|
d−1
2

∫
Sd−1

∣∣∣f̂0(ξ, v)
∣∣∣2 dσ(v) (5.5)

Fix (τ, ξ) with |τ | < |ξ|. Then

ρ̃(τ, ξ) =

∫
Sd−2

∫ π

0

f̂0(ξ, ω sin θ, cos θ) δ(τ + |ξ| cos θ)(sin θ)d−2 dθ dσ(ω)

=
1

|ξ|

∫
Sd−2

∫ τ+|ξ|

τ−|ξ|
f̂0

ξ, ω

√
1−

(
x− τ

|ξ|

)2

,
x− τ

|ξ|

 ·
·

(
1−

(
x− τ

|ξ|

)2
) d−3

2

δ(x) dxdσ(ω)

=
1

|ξ|

∫
Sd−2

f̂0

ξ, ω

√
1−

(
τ

|ξ|

)2

,− τ

|ξ|

 (
1−

(
τ

|ξ|

)2
) d−3

2

dσ(ω) (5.6)

where we have performed the change of variables x = τ+|ξ| cos θ in obtaining
the second identity. Using a trivial Cauchy-Schwarz inequality on Sd−2, we
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get that

|ξ|2|ρ̃(τ, ξ)|2

.
∫

Sd−2

∣∣∣∣∣∣f̂0

ξ, ω

√
1−

(
τ

|ξ|

)2

,− τ

|ξ|

∣∣∣∣∣∣
2 (

1−
(

τ

|ξ|

)2
)d−3

dσ(ω),

or, equivalently,

|ξ|2(
1−

(
τ
|ξ|

)2
) d−3

2

|ρ̃(τ, ξ)|2

.
∫

Sd−2

∣∣∣∣∣∣f̂0

ξ, ω

√
1−

(
τ

|ξ|

)2

,− τ

|ξ|

∣∣∣∣∣∣
2(

1−
(

τ

|ξ|

)2
) d−3

2

dσ(ω).

Now integrate with respect to τ (recall that |τ | < |ξ|) and then change
variables τ → θ where cos θ = −τ/|ξ| to obtain:∫ |ξ|

−|ξ|

|ξ|d−1

(|ξ| − |τ |) d−3
2 (|ξ|+ |τ |) d−3

2

|ρ̃(τ, ξ)|2 dτ

.
∫ |ξ|

−|ξ|

∫
Sd−2

∣∣∣∣∣∣f̂0

ξ, ω

√
1−

(
τ

|ξ|

)2

,− τ

|ξ|

∣∣∣∣∣∣
2(

1−
(

τ

|ξ|

)2
) d−3

2

dσ(ω) dτ

= |ξ|
∫ π

0

∫
Sd−2

(sin θ)d−2|f̂0(ξ, ω sin θ, cos θ)|2dσ(ω) dθ

= |ξ|
∫

Sd−1

|f̂0(ξ, v)|2 dσ(v).

Using |τ |+ |ξ| ≈ |ξ| we obtain (5.4) (6).
Going back to (5.3) and applying Cauchy-Schwarz we get

|ρ̃(τ, ξ)|2 ≤ I(τ, ξ)

∫
Sd−1

∣∣∣f̂0(ξ, v)
∣∣∣2 dσ(v) (5.7)

where

I(τ, ξ) =

∫
Sd−1

δ(τ + v · ξ)dσ(v) = C

∫ π

0

δ(τ + |ξ| cos θ)(sin θ)d−2dθ (5.8)

6Strictly speaking our proof of (5.4) makes sense only for d ≥ 3, but the case d = 2
requires only minor modifications of the argument. See Section 5 of [6] for the proof in
two dimensions.
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We change of variables θ → x = τ + |ξ| cos θ and use |ξ|+ |τ | ≈ |τ | to get:

I(τ, ξ) =

∫ |ξ|+τ

−(|ξ|−τ)

(
1−

(
x− τ

|ξ|

)2
) d−3

2
δ(x) dx

|ξ|

=
1

|ξ|

(
1−

(
τ

|ξ|

)2
) d−3

2

=
(|ξ| − |τ |)

d−3
2

|ξ|
d−1
2

(5.9)

This proves (5.5). Now we write

‖(1 + |τ |+ |ξ|)
d−1
4 (1 + ||τ | − |ξ||)−

d−3
4 ρ̃(τ, ξ)‖2

L2(R1+d) = A + B

where

A =

∫
Rd

∫
0≤|ξ|−|τ |≤1

(1 + |τ |+ |ξ|)
d−1
2 (1 + |ξ| − |τ |)−

d−3
2 |ρ̃(τ, ξ)|2 dτdξ

(5.10)

B =

∫
Rd

∫
|ξ|−|τ |≥1

(1 + |τ |+ |ξ|)
d−1
2 (1 + |ξ| − |τ |)−

d−3
2 |ρ̃(τ, ξ)|2 dτdξ (5.11)

To estimate A we first use 1 + |τ | + |ξ| ≈ 1 + |ξ| and 1 + |ξ| − |τ | ≈ 1 and
then apply estimate (5.5) to get:

A .
∫

Rd

∫
Sd−1

∣∣∣f̂0(ξ, v)
∣∣∣2 [(1 + |ξ|) d−1

2

|ξ|
d−1
2

∫
0≤|ξ|−|τ |≤1

(|ξ| − |τ |)
d−3
2 dτ

]
dσ(v)dξ

If |ξ| ≥ 1 then

(1 + |ξ|) d−1
2

|ξ|
d−1
2

∫
0≤|ξ|−|τ |≤1

(|ξ| − |τ |)
d−3
2 dτ .

∫ |ξ|

|ξ|−1

(|ξ| − x)
d−3
2 dx . 1

and if |ξ| ≤ 1 then

(1 + |ξ|) d−1
2

|ξ|
d−1
2

∫
0≤|ξ|−|τ |≤1

(|ξ| − |τ |)
d−3
2 dτ .

1

|ξ|
d−1
2

∫ |ξ|

0

(|ξ| − x)
d−3
2 dx . 1

therefore

A . ‖f0‖2
L2(Rd×Sd−1)

For B we have 1 + |τ | + |ξ| ≈ |ξ| and 1 + |ξ| − |τ | ≈ |ξ| − |τ |, therefore the
corresponding estimate follows by integrating (5.4) w.r.t ξ.

�
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Remark 5.1. Integrating (5.5) w.r.t. ξ we obtain that the following esti-
mate is also true:

‖(|τ |+ |ξ|)
d−1
4 ||τ | − |ξ||−

d−3
4 ρ̃(τ, ξ)‖L2(R1+d) . ‖f0‖L2(Rd×Sd−1). (5.12)

This is slightly better than (1.22) near the cone {|ξ| = |τ |}∩{|ξ| ≥ 1} when
d ≥ 4.

Corollary 5.2. Let d ≥ 2. Under the assumptions and notation of Theorem
4 we have

‖(1 + |τ |+ |ξ|)s(1 + ||τ | − |ξ||)δρ̃(τ, ξ)‖L2(R1+d) . ‖f0‖L2(Rd×Sd−1). (5.13)

provided that s + δ ≤ 1
2

and s ≤ d−1
4

.

Proof. Fix (s, δ) with s + δ ≤ 1
2

and s ≤ d−1
4

. Define w+(τ, ξ) = 1 + |ξ|+ |τ |
and w−(τ, ξ) = 1 + ||ξ| − |τ ||. Then,

ws
+wδ

− ≤ ws
+w

1
2
−s

− = w
d−1
4

+ w
− d−3

4
−

(
w−

w+

) d−1
4
−s

≤ w
d−1
4

+ w
− d−3

4
−

and the result follows.
�

6. Counterexamples

In this Section we show that the conditions on s and δ in Theorem 1
and Corollary 4.2 are necessary. We use the following notation: For ξ =
(ξ1, . . . , ξd) ∈ Rd we set ξ′ = (ξ1, . . . , ξd−1) and write ξ = (ξ′, ξd). We denote
the Lebesgue measure in R1+d by µ and its restriction on Sd−1 by σ.

Proposition 6.1. The conditions (1.11) in Theorem 1 are necessary.

Proof. We prove first that s + δ ≤ 1
2

is necessary. Fix N >> 1. Fix
(s, δ) ∈ R× R. Define

A =
{
(τ, ξ) ∈ R1+d : 5 ≤ τ ≤ 10 , |ξ′| ≤ 1 , N ≤ ξd ≤ 2N

}
(6.1)

B =

{
v ∈ Sd−1 : |vd| ≤

1

N

}
(6.2)

Define g ∈ L2
(
R1+d × Sd−1

)
by

g̃(τ, ξ, v) = χA(τ, ξ)χB(v) (6.3)

Observe that σ(B) ≈ 1
N

(7) and

‖g‖L2(R1+d×Sd−1) ≈ ‖g̃‖L2(R1+d×Sd−1) = µ(A)
1
2 σ(B)

1
2

For (τ, ξ) ∈ A and v ∈ B we have

|ξ · v| ≤ |ξ′| |v′|+ |ξd| |vd| ≤ 3

7B is a strip of width 1
N around the equator.
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and since 5 ≤ τ ≤ 10 we have

τ + ξ · v ≈ 1 (6.4)

Moreover,
1 + |τ |+ |ξ| ≈ 1 + ||τ | − |ξ|| ≈ N

Define f ∈ L2
(
R1+d × Sd−1

)
by

f̃(τ, ξ, v) =
g̃(τ, ξ, v)

i(τ + ξ · v)
(6.5)

Then f is well defined thanks to (6.4), and satisfies ∂tf + v · ∇xf = g in the
sense of distributions. Also,∣∣∣f̃(τ, ξ, v)

∣∣∣ =
g̃(τ, ξ, v)

τ + ξ · v
≈ g̃(τ, ξ, v)

therefore

‖f‖L2(R1+d×Sd−1) + ‖g‖L2(R1+d×Sd−1) ≈ ‖g̃‖L2(R1+d×Sd−1) = µ(A)
1
2 σ(B)

1
2

(6.6)
On the other hand

ρ̃(τ, ξ) = −i

∫
Sd−1

g̃(τ, ξ, v)

τ + ξ · v
dσ(v) = −iχA(τ, ξ)

∫
B

dσ(v)

τ + ξ · v
(6.7)

therefore

(1 + |τ |+ |ξ|)s (1 + ||τ | − |ξ||)δ |ρ̃(τ, ξ)| ≈ N s+δσ(B)χA(τ, ξ)

which gives∥∥∥(1 + |τ |+ |ξ|)s (1 + ||τ | − |ξ||)δ |ρ̃(τ, ξ)|
∥∥∥

L2(R1+d×Sd−1)
≈ N s+δσ(B)µ(A)

1
2

(6.8)
If estimate (1.12) is true then (6.6) and (6.8) imply that N s+δσ(B)1/2 . 1,

and since σ(B) ≈ 1
N

we have N s+δ− 1
2 . 1. Since N >> 1 was arbitrary we

conclude that s + δ ≤ 1
2
.

Next we show that the conditions{
s ≤ min

{
d−1
4

, 1
}

if d 6= 5

s < 1 if d = 5

are necessary. Define

A = {(τ, ξ) : 10 ≤ τ − |ξ| ≤ 20 , |ξ′| ≤ 1 , N ≤ ξd ≤ 2N} (6.9)

B =

{
v ∈ Sd−1 : −1 +

1

N
≤ vd ≤ 0

}
(6.10)

For (τ, ξ) ∈ A and v ∈ B we have

τ + ξ · v = τ + ξdvd + ξ′ · v′
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and

τ + ξdvd ≥ τ + |ξ|
(
−1 +

1

N

)
= τ − |ξ|+ |ξ|

N
≥ τ − |ξ| ≥ 10

while |ξ′ · v′| ≤ 1. Therefore

τ + ξ · v ≈ τ + ξdvd & 1 (6.11)

Moreover

1 + |τ |+ |ξ| ≈ N , 1 + ||τ | − |ξ|| ≈ 1

Define f, g ∈ L2
(
R1+d × Sd−1

)
by

g̃(τ, ξ, v) =
χA(τ, ξ)χB(v)

τ + ξ · v

f̃(τ, ξ, v) =
g̃(τ, ξ, v)

i (τ + ξ · v)
=

χA(τ, ξ)χB(v)

i(τ + ξ · v)2

Both f and g are well defined thanks to estimate (6.11) and satisfy ∂tf + v ·
∇xf = g in the sense of distibutions. For fixed (τ, ξ) ∈ A we have∫

Sd−1

|g̃(τ, ξ, v)|2 dσ(v) = χA(τ, ξ)I(τ, ξ) (6.12)

where

I(τ, ξ) :=

∫
B

1

(τ + ξ · v)2dσ(v) (6.13)

Using (6.11) and changing to spherical coordinates (φ is the angle between
v and (0, . . . , 0, 1)) we get

I(τ, ξ) ≈
∫

B

1

(τ + ξdvd)
2dσ(v)

≈
∫ arccos(−1+ 1

N
)

π
2

(sin φ)d−2

(τ + ξd cos φ)2dφ

x:=− cos φ
=

∫ 1− 1
N

0

(1− x2)
d−3
2

(τ − ξd x)2
dx

≈
∫ 1− 1

N

0

(1− x)
d−3
2

(τ − ξd x)2
dx (6.14)

Now change variables x 7→ t := ξd

τ−ξd
(1− x) to get:

I(τ, ξ) ≈ 1

(τ − ξd)2

(
τ − ξd

ξd

) d−1
2
∫ ξd

τ−ξd

ξd
τ−ξd

1
N

t
d−3
2

(1 + t)2
dt
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Recall that ξd ≈ N , |ξ′| ≤ 1 and τ − |ξ| ≈ 1. Therefore τ − ξd ≈ 1, hence

I(τ, ξ) ≈ 1

N
d−1
2

∫ N

1

t
d−3
2

(1 + t)2
dt

≈


1

N
min{ d−1

2 ,2} if d 6= 5

log N
N2 if d = 5

=: Id,N (6.15)

Therefore ∫
Sd−1

|g̃(τ, ξ, v)|2 dσ(v) ≈ χA(τ, ξ)Id,N (6.16)

hence
‖g‖L2(R1+d×Sd−1) ≈ µ(A)1/2I

1/2
d,N (6.17)

For f we have, since τ + ξ · v & 1 by (6.11), that∣∣∣f̃(τ, ξ, v)
∣∣∣ . |g̃(τ, ξ, v)|

therefore

‖f‖L2(R1+d×Sd−1) + ‖g‖L2(R1+d×Sd−1) ≈ ‖g‖L2(R1+d×Sd−1) ≈ µ(A)1/2I
1/2
d,N

(6.18)
For the average ρ we have:

ρ̃(τ, ξ) = −iχA(τ, ξ)I(τ, ξ)

therefore
|ρ̃(τ, ξ)| ≈ χA(τ, ξ)Id,N

therefore∥∥(1 + |τ |+ |ξ|)s(1 + ||τ | − |ξ||)δρ̃(τ, ξ)
∥∥

L2(R1+d) ≈ N sµ(A)1/2Id,N (6.19)

If estimate (1.12) is true then

N sµ(A)1/2Id,N . µ(A)1/2I
1/2
d,N

hence
N sI

1/2
d,N . 1

If d 6= 5 this gives

N s−min{ d−1
4

,1} . 1

therefore s ≤ min
{

d−1
4

, 1
}
. If d = 5 then

N s−1(log N)1/2 . 1

therefore s < 1.
�

Proposition 6.2. The conditions (4.13) in Corollary 4.2 are necessary.
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Proof. We show first that 6s + 2δ ≤ 1 is necessary. The construction is
similar to those used in Proposition 6.1 but because we need to integrate
by parts we replace the characteristic function χB(v) by a smooth cut-off
function φ(v). Recall that we are working in 2 + 1 dimensions. Given a
non-zero vector ξ ∈ R2 we denote by arg ξ the angle in [0, 2π) formed by
ξ and (1, 0). For v ∈ S1 we write v = (cos θ, sin θ) with θ ∈ [0, 2π). Then
Ω1,2

v = v1∂v2 − v2∂v1 = ∂
∂θ

. For ξ ∈ R2 r {0} and v ∈ Sd−1 we denote by
](ξ, v) the angle in [0, π] between these two vectors.

Fix N >> 1. Define αk = arcsin k
N1/3 (k ∈ N). Define

A =
{
(τ, ξ) : N ≤ |ξ| ≤ 2N, 0 ≤ arg ξ ≤ α5, N1/3 ≤ τ − |ξ| ≤ 2N1/3

}
(6.20)

Choose a smooth cut-off function φ : S1 → [0, 1] such that

φ(v) = φ(cos θ, sin θ) = 1 when π − α4 ≤ θ ≤ π − α2 (6.21a)

φ(v) = φ(cos θ, sin θ) = 0 when 0 ≤ θ ≤ π − α5 or 2π ≥ θ ≥ π − α1

(6.21b)∣∣Ω1,2
v φ(v)

∣∣ = |∂θ [φ(cos θ, sin θ)]| . N1/3 (6.21c)

Observe that

σ(supp φ) ≈ 1

N1/3
(6.21d)

For (τ, ξ) ∈ A and v ∈ supp φ we have

π − 2α5 ≤ ](ξ, v) ≤ π − α1 (6.22)

therefore

1− cos α1 ≤ 1 + cos ](ξ, v) ≤ 1− cos(2α5)

Now 1 − cos α1 ≈ 1
N2/3 and 1 − cos(2α5) ≈ 1

N2/3 therefore 1 + cos ](ξ, v) ≈
1

N2/3 . Hence

τ + ξ · v = τ − |ξ|+ |ξ| (1 + cos ](ξ, v)) ≈ N1/3 + N
1

N2/3
≈ N1/3 (6.23)

From (6.22) we also get sin ](ξ, v) ≈ 1
N1/3 , therefore

v2ξ1 − v1ξ2 = |ξ| sin ](ξ, v) ≈ N2/3 (6.24)

We define f, g ∈ L2(R1+2 × S1) by

g̃(τ, ξ, v) = χA(τ, ξ)φ(v) and f̃(τ, ξ, v) =
Ω1,2

v g̃(τ, ξ, v)

i(τ + ξ · v)
(6.25)

Thanks to (6.23) they are well defined and satisfy ∂tf + v · ∇xf = g in the
sense of distributions. Integrating by parts we find that the corresponding
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average is given by:

ρ̃(τ, ξ) =

∫
S1

f̃(τ, ξ, v)dσ(v)

= −iχA(τ, ξ)

∫
S1

Ω1,2
v φ(v)

τ + ξ · v
dσ(v)

= iχA(τ, ξ)

∫
S1

φ(v)
v2ξ1 − v1ξ2

(τ + ξ · v)2
dσ(v) (6.26)

and using (6.23), (6.24) and the fact that
∫

S1 φ(v)dσ(v) ≈ 1
N1/3 we obtain,

|ρ̃(τ, ξ)| ≈ χA(τ, ξ)

N1/3

therefore∥∥(1 + |τ |+ |ξ|)s(1 + ||τ | − |ξ||)δρ̃(τ, ξ)
∥∥

L2(R1+d)
≈ N s+ δ

3
− 1

3 µ(A)1/2 (6.27)

On the other hand

f̃(τ, ξ, v) =
−iχA(τ, ξ)Ω1,2

v φ(v)

τ + ξ · v
and using (6.21c), (6.23) and (6.21d) we find

‖f‖L2(R1+2×S1) . µ(A)1/2σ(supp φ)1/2 ≈ µ(A)1/2N−1/6

Also,

‖g‖L2(R1+2×S1) ≤ µ(A)1/2σ(supp φ)1/2 . µ(A)1/2N−1/6 .

If estimate (4.12) is true then N s+ δ
3
− 1

3 . 1
N1/6 and since N was an arbitrarily

large positive integer this implies 6s + 2δ ≤ 1.

To see that s ≤ 1
6

is necessary replace the set A in (6.20) by

A = {(τ, ξ) : N ≤ |ξ| ≤ 2N, 0 ≤ arg ξ ≤ α5, 1 ≤ τ − |ξ| ≤ 2}
Then (6.23) becomes

τ + ξ · v = τ − |ξ|+ |ξ| (1 + cos ](ξ, v)) ≈ 1 + N
1

N2/3
≈ N1/3

and since now 1 + ||τ | − |ξ|| ≈ 1, (6.27) becomes∥∥(1 + |τ |+ |ξ|)s(1 + ||τ | − |ξ||)δρ̃(τ, ξ)
∥∥

L2(R1+d×S1)
≈ N s− 1

3 µ(A)1/2

Everything else is exactly the same as before and we get N s− 1
3 . 1

N1/6 i.e.

s ≤ 1
6
.

Finally we show that the condition s + δ ≤ 1
4

is necessary. Fix N >> 1.

Define new angles αk by αk = arccos
(
1− k

N

)
(k ∈ N) and a new set A by

A = {(τ, ξ) : 1 ≤ τ ≤ 2, N ≤ |ξ| ≤ 2N, 0 ≤ arg ξ ≤ α5}
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and choose a cut-off function φ : S1 → [0, 1] such that

φ(v) = φ(cos θ, sin θ) = 1 when
π

2
− α4 ≤ θ ≤ π

2
− α2 (6.28a)

φ(v) = φ(cos θ, sin θ) = 0 when 0 ≤ θ ≤ π

2
− α5 or 2π ≥ θ ≥ π

2
− α1

(6.28b)∣∣Ω1,2
v φ(v)

∣∣ = |∂θφ(cos θ, sin θ)| . N1/2 (6.28c)

Observe that

σ(supp φ) ≈ 1

N1/2
(6.28d)

For (τ, ξ) ∈ A and v ∈ supp φ we have

π

2
− 2α5 ≤ ](ξ, v) ≤ π

2
− α1

therefore

cos ](ξ, v) ≈ 1

N1/2
, sin ](ξ, v) ≈ 1

Thus

τ + ξ · v = τ + |ξ| cos ](ξ, v) ≈ 1 + N
1

N1/2
≈ N1/2

and

v2ξ1 − v1ξ2 = |ξ| sin ](ξ, v) ≈ N

Define f and g as in (6.25). Using (6.26) and
∫

S1 φ(v)dσ(v) ≈ 1
N1/2 we find

|ρ̃(τ, ξ)| ≈ χA(τ, ξ)

N1/2

therefore∥∥(1 + |τ |+ |ξ|)s(1 + ||τ | − |ξ||)δρ̃(τ, ξ)
∥∥

L2(R1+d)
≈ µ(A)1/2N s+δ− 1

2

On the other hand it is easy to see that

‖f‖L2(R1+2×S1) + ‖g‖L2(R1+2×S1) . µ(A)1/2σ(supp φ)1/2 ≈ µ(A)1/2N−1/4

If estimate (4.12) is true then N s+δ− 1
2 . N− 1

4 and since N was arbitrary,
s + δ ≤ 1

4
.

�

Proposition 6.3. Let d ≥ 2. The conditions s + δ ≤ 1
2

and s ≤ d−1
4

in
Corollary 5.2 are necessary.

Proof. First we show the necessity of the condition s ≤ (d − 1)/4. Fix
N >> 1 and consider the following sets:

A =
{
ξ ∈ Rd : N ≤ |ξ| ≤ 2N

}
, (6.29)
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and

B =

{
v ∈ Sd−1 : v = (ω sin θ, cos θ),

1

4N1/2
≤ θ ≤ 1

2N1/2
, ω ∈ Sd−2

}
.

(6.30)
Define f0 by

f̂0(ξ, v) = χA(ξ)χB(v). (6.31)

Define

Dξ,N =

[
− |ξ| cos

1

4N1/2
, − |ξ| cos

1

2N1/2

]
We show that

ρ̃(τ, ξ) = c(d)
1

|ξ|

(
1− τ 2

|ξ|2

) d−3
2

χA(ξ)χDξ,N
(τ) (6.32)

Suppose d ≥ 3. Using (5.6) we have

ρ̃(τ, ξ) =
1

|ξ|

(
1− τ 2

|ξ|2

) d−3
2
∫

Sd−2

f̂0

(
ξ,

(
1− τ 2

|ξ|2

)1/2

ω,− τ

|ξ|

)
dσ(ω)

(6.33)

=
1

|ξ|

(
1− τ 2

|ξ|2

) d−3
2

χA(ξ)

∫
Sd−2

χB

((
1− τ 2

|ξ|2

)1/2

ω,− τ

|ξ|

)
dσ(ω)

(6.34)

Fix ξ ∈ A. It is easy to check that if τ ∈ Dξ,N then for all ω ∈ Sd−2 we

have

((
1− τ2

|ξ|2

)1/2

ω,− τ
|ξ|

)
∈ B, and therefore the integrand in (6.34) is

identically equal to one. On the other hand, if τ /∈ Dξ,N then for all ω ∈ Sd−2

we have

((
1− τ2

|ξ|2

)1/2

ω,− τ
|ξ|

)
/∈ B, and therefore, the integrand in (6.34)

is identically equal to zero. This proves (6.32) when d ≥ 3. If d = 2 we
replace (6.33) by (see Section 5 of [6])

ρ̃(τ, ξ) =
1

|ξ|

(
1− τ 2

|ξ|2

)− 1
2

f̂0

(
ξ,

(
1− τ 2

|ξ|2

)1/2

,− τ

|ξ|

)
(6.35)

and work similarly.
It follows from (6.32) that

supp ρ̃ =

{
(τ, ξ) : ξ ∈ A , − |ξ| cos

1

4N1/2
≤ τ ≤ − |ξ| cos

1

2N1/2

}
(6.36)
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therefore, for (τ, ξ) ∈ supp ρ̃, we have |ξ| ≈ N and τ ≈ −N hence |τ |+ |ξ| ≈
N . Also,

− |ξ|
(
1− c

N

)
≤ − |ξ| cos

1

4N1/2
≤ τ ≤ − |ξ| cos

1

2N1/2
≤ − |ξ|

(
1− c′

N

)
therefore

||ξ| − |τ || = |ξ|+ τ ≈ |ξ| 1

N
≈ 1

It follows that

ρ̃(τ, ξ) =
(|ξ| − |τ |) d−3

2 (|ξ|+ |τ |) d−3
2

|ξ|d−1
χA(ξ)χDξ,N

(τ) ≈ N− d−1
2 χA(ξ)χDξ,N

(τ)

therefore∥∥(1 + |ξ|+ |τ |)s(1 + ||ξ| − |τ ||)δρ̃(τ, ξ)
∥∥2

L2(R1+d)

≈ N2s−(d−1)

∫
Rd

∫
R

χA(ξ)χDξ,N
(τ)dτdξ

= N2s−(d−1)

∫
A

|ξ|
(

cos
1

4N1/2
− cos

1

2N1/2

)
dξ

≈ N2s−(d−1)µ(A) (6.37)

On the other hand,

‖f0‖2
L2(Rd×Sd−1) = µ(A)σ(B) ≈ µ(A)

N
d−1
2

. (6.38)

We conclude that in order for the estimate (5.13) to be true it is necessary

that N2s−(d−1) . N− d−1
2 for arbitrarily large N . Thus, s ≤ (d− 1)/4.

Next we show that s+ δ ≤ 1
2

is necessary. We define A as in (6.29), define
a new set B by

B =

{
v ∈ Sd−2 : v = (ω sin θ, cos θ) ,

π

2
+

1

N
≤ θ ≤ π

2
+

2

N
, ω ∈ Sd−2

}
(6.39)

and a new set Dξ,N by

Dξ,N =

[
|ξ| sin 1

N
, |ξ| sin 2

N

]
(6.40)

We define f0 by (6.31). Working as above we can show that

ρ̃(τ, ξ) = c(d)
1

|ξ|

(
1− τ 2

|ξ|2

) d−3
2

χA(ξ)χDξ,N
(τ) (6.41)

Therefore, on the support of ρ̃ we have |ξ| ≈ N and τ ≈ 1, hence |τ |+|ξ| ≈ N
and ||τ | − |ξ|| ≈ N . This gives ρ̃(τ, ξ) ≈ 1

N
χA(ξ)χDξ,N

(τ), and working as in
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the proof of (6.37) we get∥∥(1 + |ξ|+ |τ |)s(1 + ||ξ| − |τ ||)δρ̃(τ, ξ)
∥∥2

L2(R1+d)
≈ N2s+2δ−2µ(A)

On the other hand

‖f0‖2
L2(Rd×Sd−1) = µ(A)σ(B) ≈ µ(A)

N

These two estimates give N2s+2δ−2 . N−1, hence s + δ ≤ 1
2
.

�
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tions, 45 rue d’Ulm, F 75230, Paris, cedex 05, France

E-mail address: S.Gutierrez@ed.ac.uk


