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1. Introduction

In this note we consider almost-orthogonality in the Cp classes of Schatten and von
Neumann, whose definition we now briefly recall. Let H be a Hilbert space. When
1 ≤ p < ∞, Cp is defined as the space of compact operators T on H such that if λ2

j

is the sequence of eigenvalues of T ∗T , then

‖T‖p := ‖λj‖lp < ∞.

When p = ∞, C∞ is the space L(H) of all bounded linear operators on H with the
usual operator norm.

The basic properties of the Schatten–von Neumann classes are set out for example
in [2]. Amongst them are the following, which we shall use in what follows without
further comment.

• Cp is a Banach space under this norm (and a Hilbert space when p = 2)
• ‖T‖p = ‖T ∗‖p = ‖(T ∗T )1/2‖p

• If S ≥ 0 and pa ≥ 1, then ‖Sa‖p = ‖S‖a
pa

• Hölder’s inequality: if 1 ≤ p, q, r ≤ ∞, 1/r = 1/p+1/q, S ∈ Cp and T ∈ Cq,
then ST ∈ Cr and

‖ST‖r ≤ ‖S‖p‖T‖q

Using merely the triangle inequality for Cp, we see that if Tj ∈ Cp and
∑

j ‖Tj‖p <

∞, then
∑

j Tj ∈ Cp and

‖
∑

j

Tj‖p ≤
∑

j

‖Tj‖p.

In this note we shall be interested in obtaining the same conclusion
∑

j Tj ∈ Cp,
but we do not wish to make the rather strong assumption that

∑
j ‖Tj‖p < ∞.

A first indication of what we are aiming for is an instance of the Clarkson-McCarthy
inequalities (see [2] again)

2(‖S‖p
p + ‖T‖p

p) ≤ ‖S + T‖p
p + ‖S − T‖p

p, 2 ≤ p ≤ ∞

and
2(‖S‖p

p + ‖T‖p
p) ≥ ‖S + T‖p

p + ‖S − T‖p
p, 1 ≤ p ≤ 2;
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equality holds for p 6= 2 if and only if ST ∗ = S∗T = 0. So if the operators S and
T are orthogonal in the sense that ST ∗ = S∗T = 0, we have (S + T )∗(S + T ) =
(S − T )∗(S − T ) = S∗S + T ∗T and so

‖S + T‖p =
(
‖S‖p

p + ‖T‖p
p

)1/p
,

which can also be seen in a variety of other ways. (Of course this is just the non-
commutative analogue of the statement that if on a measure space f and g have
disjoint supports, then ‖f + g‖p =

(
‖f‖p

p + ‖g‖p
p

)1/p, where ‖ · ‖p denotes the Lp

norm.)

Consequently, if we have a family of operators Tj such that for j 6= k TjT
∗
k =

T ∗
j Tk = 0 (i.e. the operators are mutually orthogonal), then

‖
∑

j

Tj‖p =

∑
j

‖Tj‖p
p

1/p

.

In this note we wish to examine what happens if we do not have exact mutual orthog-
onality of the operators Tj , but only some “almost-orthogonality”. For example,
what if we just know that the sizes of TjT

∗
k and T ∗

j Tk decay at some reasonable rate
as |j − k| → ∞? In the commutative case, if fj ∈ Lp are not necessarily disjointly
supported, but nevertheless “most of the mass” of fj lives far from where “most of
the mass” of the other fk’s lives, can we deduce that

∑
j fj belongs to Lp?

There are a few cases where we can give a satisfactory answer to this question more
or less directly. The first is when p = 2. Suppose that H is a Hilbert space, xj ∈ H,
and let βjk be the cosine of the angle between xj and xk, i.e.

〈xj , xk〉 = βjk‖xj‖‖xk‖.

Then

‖
∑

j

xj‖2 =
∑
j,k

〈xj , xk〉 =
∑
j,k

βjk‖xj‖‖xk‖ ≤ B
∑

j

‖xj‖2

where B is the l2-operator norm of the matrix (βjk). Since when p = 2, C2

is a Hilbert space with inner product 〈S, T 〉 = trace(T ∗S), we conclude that
|trace (T ∗

j Tk)| ≤ βjk‖Tj‖2‖Tk‖2 implies

‖
∑

j

Tj‖2 ≤ B1/2
∑

j

(
‖Tj‖2

2

)1/2
(1)

where B is the l2-operator norm of the matrix (βjk).

Secondly, when p = 1, the formulation of the problem does not admit any improve-
ment on the trivial triangle bound ‖

∑
j Tj‖1 ≤

∑
j ‖Tj‖1.

Finally, when p = ∞, this problem has already been well studied. Let us first look
at the commutative case. Suppose that fj are functions defined on some measure
space and are such that ‖fjfk‖∞ ≤ γ2

jk supm ‖fm‖2
∞ for some nonnegative γjk.
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Then

(
∑

j

|fj(x)|)2 =
∑
j,k

|fj(x)fk(x)|

≤
∑
j,k

|fj(x)|1/2|fk(x)|1/2γjk sup
m
‖fm‖∞

≤ Γ
∑

j

|fj(x)| sup
m
‖fm‖∞ .

where Γ is the l2-operator norm of the matrix (γjk). Therefore

‖
∑

j

fj‖∞ ≤ Γ sup
j
‖fj‖∞.

The fact that this result continues to hold in the non-commutative setting is the
celebrated Cotlar–Stein Lemma whose elegant proof can for example be found in [3],
together with a large collection of applications in harmonic analysis. Incidentally,
in most applications, γjk can be taken to have exponential decay away from the
diagonal.

Theorem 1. (Cotlar–Stein Lemma). Suppose Tj ∈ L(H) satisfy

‖T ∗
j Tk‖L(H) ≤ γ2

jk sup
m
‖Tm‖2

L(H)

and
‖TjT

∗
k ‖L(H) ≤ γ2

jk sup
m
‖Tm‖2

L(H)

for certain γjk ≥ 0. If the l2-operator norm of (γjk) (or indeed its spectral ra-
dius with respect to any sequence space) is denoted by Γ and is finite, then

∑
j Tj

converges in the strong operator topology and

‖
∑

j

Tj‖L(H) ≤ Γ sup
j
‖Tj‖L(H).

Remark. This result can of course be used to give estimates for the operator
norm of the operator T 7→

∑
j AjTBj where Aj , Bj ∈ L(H). It is a matter of some

interest to determine the exact operator norm of this operator in terms of the data
Aj , Bj . See for example [4] and the references therein.

Turning now to other values of p, our main result is as follows:

Theorem 2. Suppose for some p ≥ 2 and some real symmetric matrix (αjk) with
nonnegative entries the operators Tj satisfy

‖T ∗
j Tk‖p/2 ≤ α2

jk‖Tj‖p‖Tk‖p

and
‖TjT

∗
k ‖p/2 ≤ α2

jk‖Tj‖p‖Tk‖p.

Let A = supj

∑
k αjk be the Schur norm of the matrix (αjk). If p is an even integer,

then
‖
∑

j

Tj‖p ≤ A1/p′(
∑

j

‖Tj‖p
p)

1/p.
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Note that by Hölder’s inequality we may assume that each αjk ≤ 1.

We make some remarks concerning the shortcomings of this theorem and other
matters in the final section.

2. Proof of Theorem 2

The proof begins in a way reminiscent of that of the Cotlar–Stein Lemma. The
additional ingredient that we employ is multilinear interpolation.

Let p = 2k and T =
∑

j Tj . Then

‖T‖p
p = ‖T ∗TT ∗T . . . T ∗T‖1

(where there are k copies of T ∗T )

≤
∑

j1,...,j2k

‖T ∗
j1Tj2T

∗
j3 . . . Tj2k

‖1.

Each term in the sum can be estimated via Hölder’s inequality by both

‖T ∗
j1Tj2‖p/2 . . . ‖T ∗

j2k−1
Tj2k

‖p/2

and

‖T ∗
j1‖p‖Tj2T

∗
j3‖p/2 . . . ‖Tj2k−2T

∗
j2k−1

‖p/2‖Tj2k
‖p.(2)

By hypothesis these are dominated respectively by

α2
j1j2 . . . α2

j2k−1j2k
‖Tj1‖p . . . ‖Tj2k

‖p

and
α2

j2j3 . . . α2
j2k−2j2k−1

‖Tj1‖p . . . ‖Tj2k
‖p

and hence by their geometric mean

αj1j2αj2j3 . . . αj2k−1j2k
‖Tj1‖p . . . ‖Tj2k

‖p.

Therefore

‖T‖p
p ≤

∑
αj1j2αj2j3 . . . αj2k−1j2k

‖Tj1‖p . . . ‖Tj2k
‖p.(3)

Lemma 1. Let Ω be any measure space and K(x, y) a nonnegative symmetric
integral kernel defined on Ω×Ω. Suppose κ is the Schur norm of the operator with
kernel K, i.e. κ = supx

∫
K(x, y)dy. Let p be an integer greater than 1. Then∫

Ωp

K(x1, x2)K(x2, x3) . . .K(xp−1, xp)
p∏

s=1

Fs(xs)dxs

≤ κp−1

p∏
s=1

‖Fs‖p.

Proof. By symmetry and multilinear interpolation, (see for example [1]), it is enough
to show that the left hand side is dominated for each j by

κp−1‖Fj‖1

∏
k 6=j

‖Fk‖∞.

To show this, we may assume that Fk ≡ 1 when k 6= j. The left hand side is now∫
K(x1, x2)K(x2, x3) . . .K(xp−1, xp)Fj(xj)dx1 . . . dxp.
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Integrating in turn with repsect to x1, x2, . . . , xj−1; xp, xp−1 . . . , xj+1 gives a factor
κ each of p− 1 times; finally integrating with respect to xj gives the result.

�

We apply Lemma 1 with counting measure on Z, K(xr, xs) = αjrjs and Fs(x) =
‖Tj‖p for all s. Then ‖Fs‖p

p =
∑

j ‖Tj‖p
p and so (3) is dominated by Ap−1

∑
j ‖Tj‖p

p;
upon taking p’th roots we obtain what we desire.

3. Concluding Remarks and Open Questions

1. The most striking deficiency of our theorem is that it is only proved for even
integers p. In the commutative case, the proof given works for all integers p because
we do not then need the preliminary step ‖T‖p = ‖T ∗T‖p/2. But even in this case
we do not know whether the theorem holds for other values of p > 2.

2. Is it possible to formulate a meaningful question or result in the case 1 < p < 2?

3. The statement of the theorem does not formally recover the Cotlar–Stein Lemma
in the limiting case p = ∞. At the other endpoint p = 2, estimate (2) is inefficient,
and so neither does the statement of the theorem recover the discussion of the case
p = 2 (see (1)) from the Introduction.

In fact, the Cotlar–Stein Lemma and the discussion of the case p = 2 (see (1)) actu-
ally suggest (via näıve “interploation”) that an alternative result may be possible.
Under the hypotheses of Theorem 2, let Ap be the l2-operator norm of (αp′

jk). Do
we have

‖
∑

j

Tj‖p ≤ A1/p′

p (
∑

j

‖Tj‖p
p)

1/p?(4)

(Note that Ap ≤ A since the Schur norm is dominated by the l2-operator norm
and since we may assume via Hölder’s inequality that each αjk ≤ 1.) We do not
know, even in the commutative case, whether (4) holds, even when p is an integer.
As an easier question, what about (4) with the Schur norm of (αp′

jk) replacing the
operator norm?

4. Applying the commutative version of Theorem 2 in the situation when there are
only two summands we obtain an Lp inequality: if f, g ∈ Lp and p ∈ N, p ≥ 2, then

‖f + g‖p ≤
[
1 +

{ ‖fg‖p/2

‖f‖p‖g‖p

}1/2
]

(‖f‖p
p + ‖g‖p

p)
1/p.(5)

(The Schur and the operator norms of the 2× 2 symmetric matrix with 1’s on the
diagonal and α off-diagonal are both 1 + α.) However this is not in general best
possible in terms of the exponents of the curly and square brackets. For example,
if (4) held, we would be able to improve (5) to

‖f + g‖p ≤
[
1 +

{ ‖fg‖p/2

‖f‖p‖g‖p

}p′/2
]1/p′

(‖f‖p
p + ‖g‖p

p)
1/p.

Even this is may not be best possible. When p = ∞ we have

‖f + g‖∞ ≤ [1 +
‖fg‖∞

max{‖f‖∞, ‖g‖∞}2
]max{‖f‖∞, ‖g‖∞},(6)
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(since a ≤ A, b ≤ B ≤ A, ab ≤ λ implies a + b ≤ A + λ/A). This suggests that the
inequality

‖f + g‖p ≤
[
1 +

{ ‖fg‖p/2

‖f‖p‖g‖p

}]1/p′

(‖f‖p
p + ‖g‖p

p)
1/p(7)

might hold for 2 ≤ p ≤ ∞.

Proposition 1. If f and g are characteristic functions of sets and p ≥ 2, then (7)
does indeed hold.

Proof. We see quickly that it suffices to prove the inequality

a + b + (2p − 2)c ≤
[
1 +

c2/p

a1/pb1/p

]p−1

(a + b)

for 0 ≤ c ≤ a, b. Fix λ and c and consider a, b with a + b = 2λ and λ ≥ c. The
the worst case is when a and b are both equal to λ, and we are reduced to showing
1 + (2p−1 − 1)s ≤ [1 + s2/p]p−1 for 0 ≤ s ≤ 1. This in turn follows from concavity
of s 7→ [1 + s2/p]p−1 on 0 ≤ s ≤ 1 when p ≥ 2. �

The power 1/p′ occuring in (7) is optimal (consider f = g) but we do not know
whether the power 1 of

{
‖fg‖p/2

‖f‖p‖g‖p

}
is optimal. Indeed, for the function s 7→ [1 +

sγ ]p−1 to be concave on [0, 1] we need that γ ≤ 2/p, but in general 1+(2p−1−1)s ≤
[1+sγ ]p−1 for 0 ≤ s ≤ 1 holds for some γ > 2/p. For example if p = 3 then it holds
for all γ ≤ 3/4.

5. The previous remark – in particular (6) – suggests that when p = ∞, it might
be the case that

‖
∑

j

fj‖∞ ≤

(
sup

j

∑
k

α2
jk

)
sup

j
‖fj‖∞

where ‖fjfk‖∞ ≤ α2
jk‖fj‖∞‖fk‖∞. If so, näıve “interpolation” with

‖
∑

j

fj‖2 ≤

(
sup

j

∑
k

α2
jk

)1/2∑
j

‖fj‖2
2

where ‖fjfk‖1 ≤ α2
jk‖fj‖2‖fk‖2 (which follows from (1)) would suggest that for

p ≥ 2

‖
∑

j

fj‖p ≤

(
sup

j

∑
k

α2
jk

)1/p′∑
j

‖fj‖p
p

where ‖fjfk‖p/2 ≤ α2
jk‖fj‖p‖fk‖p. Again, this is open.

6. We state a combinatorial corollary which is obtained by applying Chebychev’s
inequality to the commutative version of Theorem 2 with fj = χEj :

Corollary 1. Suppose Ej are finite subsets of a set A and that

#(Ej ∩ Ek) ≤ βjk{#Ej#Ek}1/2.
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Then if p ∈ N,

#{a ∈ A | a is in at least M Ej’s} ≤ Ap−1

∑
j #Ej

Mp

where A = supj

∑
k β

1/p
jk .
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