
RESTRICTION FOR FLAT SURFACES OF REVOLUTION IN R3

A. CARBERY, C.KENIG AND S. ZIESLER

Abstract. We investigate restriction theorems for hypersurfaces of revolution

in R3, with affine curvature introduced as a mitigating factor. Abi-Khuzam

and Shayya recently showed that a Stein-Tomas restriction theorem can be
obtained for a class of convex hypersurfaces that includes the surfaces Γ(x) =

(x, e−1/|x|m ), m ≥ 1. We enlarge their class of hypersurfaces and give a much

simplified proof of their result.

1. Introduction and Statement of Results

If S is a smooth (n−1)-dimensional submanifold in Rn (n ≥ 3), S0 is a compact
subset with non-vanishing Gaussian curvature and dσ is the induced Lebesgue
measure, then the L(p, q) Stein-Tomas restriction theorem ([13],[14]) says that, for

all f ∈ Lp(Rn),
(∫

S0
|f̂(ξ)|qdσ(ξ)

)1/q

≤ C‖f‖p, for 1 ≤ p ≤ 2n+2
n+3 , q ≤

(
n−1
n+1

)
p′,

where 1
p + 1

p′ = 1.

The key result is when q = 2, p = 2n+2
n+3 , i.e.

(1) ‖f̂‖L2(dσ) ≤ C‖f‖
L

2n+2
n+3

.

The full range then follows by interpolation with the case p = 1.
Iosevich and Lu [7] proved that restriction is equivalent to non-vanishing cur-

vature. More precisely, if (1) holds, then the surface must have non-vanishing
Gaussian curvature.

There are various related results for hypersurfaces whose Gaussian curvature
may vanish but which nevertheless satisfy some other conditions such as being
finite-type or having non-vanishing principal curvatures. See, for example, [13], [5],
[12], [10].

Our interest lies with analogues of the Stein-Tomas restriction theorem for sur-
faces that may be flat, possibly to infinite order. Other authors to consider this case
include Brandolini/Iosevich/Travaglini, [3], Bak, [2], Oberlin, [9], and most recently
Abi-Khuzam/Shayya, [1]. The work of Oberlin and that of Abi-Khuzam/Shayya
plays a major role in our result. This will be discussed further in a moment.

In this paper we consider surfaces Γ(ξ, µ) = (ξ, µ, γ(ξ, µ)), in R3, where ξ, µ ∈ R
and γ : R2 −→ R. To compensate for the possible flatness we replace the in-
duced Lebesgue measure with affine surface area. So we insert a mitigating factor
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2 A. CARBERY, C.KENIG AND S. ZIESLER

|KΓ(ξ, µ)|1/4 = |detHessγ(ξ, µ)]|1/4 into the left-hand-side of (1) and look for in-
equalities of the form

(2)
(∫

|f̂(Γ(ξ, µ))|2|KΓ(ξ, µ)|1/4dξdµ

)1/2

≤ C‖f‖4/3.

With this choice of mitigating factor the affine invariance of the restriction in-
equality is preserved. Moreover (2) is invariant under reparametrisation of the
hypersurface. Because of this, we consider |KΓ|1/4 to be the optimal choice of
mitigating factor. We note that in general, for surfaces in Rn, the corresponding
mitigating factor is |KΓ|

1
n+1 .

The analogous inequality for n = 2 holds for all convex curves γ, with a constant
independent of γ. This was shown by Sjőlin in [11]. (In fact, Sjőlin proved the opti-
mal result, namely L(p, q) restriction for p < 4

3 , q ≤ p′

3 .) Thus, there is a universal
restriction theorem for convex curves in R2. We would like to know whether there
is a universal restriction theorem for an analogous class of surfaces in R3. For radial
surfaces (Γ(ξ, µ) = (ξ, µ, γ(|(ξ, µ)|))) some progress has been made on this question,
most recently in [9] and [1], and our Theorem 1.2 below is a further step. We note
that for radial surfaces in R3, KΓ(r) = γ′′(r)γ′(r)

r .

The standard approach to prove L2 restriction theorems is via decay estimates
for the Fourier transform of the measure supported on the surface. More precisely,
in [8], it was shown that, for γ defined on [0, b), (2) follows from a decay estimate of
the form

∣∣∣∫ b

0
eitγ(r)J0(r|(x, y)|)|KΓ(r)|1/2+iαrdr

∣∣∣ ≤ C (1+|α|)N

|t| , for all (x, y, t) with
C independent of γ.

This approach was pursued in [4]. The result there showed restriction for a
class of convex surfaces satisfying some additional curvature and normalization
conditions. This class included the examples γ(r) = rm, m ≥ 2, and γ(r) =
rm log 1

r , m > 2, but did not include the exponentially flat surfaces γ(r) = e−
1

rm ,
m > 0. In fact, as was shown in [4] the decay for these surfaces is of the order
(log |t|)1/2

|t| and no better.
The R2 result of Sjőlin mentioned above was proved without decay estimates.

Instead the proof exploited the relationship
(

4
3

)′ = 4 = 22. Recently, in [9], Oberlin
developed an approach for surfaces in R3 via this relationship, thus avoiding decay
estimates. Oberlin was able to prove a uniform restriction theorem for the class of
γ that are C3[0, b), γ(0) = γ′(0) = 0, γi(r) > 0, for r > 0, i = 1, 2, 3. However the

mitigating factor used was not |KΓ|1/4, but the smaller factor
(

γ′(r)
r

)1/2

. Oberlin’s
class includes the asymptotically flat examples.

Most recently Abi-Khuzam and Shayya, [1], used the ideas of [9], as well as
some very intricate calculations to prove restriction with the optimal mitigating
factor, |KΓ|1/4, for a class of radial hypersurfaces that includes the examples γ(r) =
e−

1
rm . This result includes that of [4]; however the restriction theorem they give is

not universal as stated, since the constant depends on γ. Nevertheless a universal
restriction theorem may be deduced from their result; see Remark 2 below.

In the following we use the notation a ≈ b if there are absolute constants c and
C such that cb ≤ a ≤ Cb.
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Theorem 1.1. (Abi-Khuzam and Shayya 2004)[1]
Suppose that γ : [0, b) −→ R, γ ∈ C3[0, b), γ′′(r) > 0, for 0 < r < b, γ′′′ ≥ 0

for 0 ≤ r < b, γ(0) = γ′(0) = 0. Then L2 restriction (2) holds for the surface

Γ(ξ, µ) = (ξ, µ, γ(|(ξ, µ)|), with constant C ≈ sup
r∈(0,b)

[
γ(r)γ′′(r)

γ′(r)2

]1/8

.

Our result improves on that of [1], however the most notable aspect of our result
may be the simplicity of our proof.

Theorem 1.2. Let γ ∈ C1[0, b) and C2(0, b), γ(0) = 0, γ′(r) ≥ 0, for r ∈ [0, b),
γ′′(r) > 0, for r ∈ (0, b). Suppose, for k ≥ 0,

(3) sup
r∈[2−k−1,2−k+1]

γ(r)γ′′(r)
γ′(r)2

≤ C1 inf
r∈[2−k−1,2−k+1]

γ(r)γ′′(r)
γ′(r)2

γ(r1)γ
′′(r1)

γ′(r1)2
γ(r2)γ′(r2) + γ(r2)γ

′′(r2)
γ′(r2)2

γ(r1)γ′(r1) ≥(4)
1
2 (γ(r1)− γ(r2))(γ′(r1)− γ′(r2)),

∀ 2−k−1 ≤ r2 ≤ r1 ≤ 2−k+1. Then L2 restriction (2) holds with constant C ≈ C
1/8
1 .

Remark 1: a) We first point out that conditions (3) and (4) are implied by
the conditions in [1], and thus our theorem contains Theorem 1.1. To see this we
begin by noting that the conditions of Theorem 1.1 in fact give 1

2 ≤
γ(r)γ′′(r)

γ′(r)2 ≤ C,

for all r ∈ (0, b). The left-hand inequality is a consequence of γ′′′ ≥ 0, and the
normalization conditions γ(0) = γ′(0) = 0. This is easily seen:

1
2
γ′(r)2 =

∫ r

0

γ′(u)γ′′(u)du = γ(r)γ′′(r)−
∫ r

0

γ(u)γ′′′(u)du

≤ γ(r)γ′′(r).

It is now trivial to see that (3) follows from the conditions of [1]. For (4) we have
γ(r1)γ

′′(r1)
γ′(r1)2

γ(r2)γ′(r2) + γ(r2)γ
′′(r2)

γ′(r2)2
γ(r1)γ′(r1)

≥ 1
2 (γ(r2)γ′(r2) + γ(r1)γ′(r1))

≥ 1
2 (γ(r1)− γ(r2))(γ′(r1)− γ′(r2)).

b) Our condition (3) implies sup
0≤r≤b

γ(r)γ′′(r)
γ′(r)2

≤ 4
3
C1. This is because, for all k,

inf
2−k−1≤r≤2−k+1

γ(r)γ′′(r)
γ′(r)2

≤ 2k+1

3

∫ 2−k+1

2−k−1

γ(u)γ′′(u)
γ′(u)2

du

≤ 2k+1

3

∫ 2−k+1

0

γ(u)γ′′(u)
γ′(u)2

du

=
2k+1

3

∫ 2−k+1

0

(
1− γ

γ′

)′
(u)du

=
2k+1

3

(
2−k+1 − γ(2−k+1)

γ′(2−k+1)

)
≤ 4

3
.
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Remark 2: Universal Theorems
If γ(0) = 0, γ ∈ C2 is convex and increasing and γγ′′

γ′2
is monotone (either increas-

ing or decreasing) then γ(r)γ′′(r)

γ”(r)2
≤ 2, for all r. (For details of this, see Corollary

3.1 below.) Consequently Theorem 1.1 gives a universal restriction theorem for the
class of γ ∈ C3[0, b), with γ(0) = γ′(0) = 0, γ′′ > 0 on (0, b), γ′′′ ≥ 0 on [0, b), and
γγ′′

γ′2
monotone.

It is shown below in §3 that if γ ∈ C1[0, b), γ ∈ C2(0, b), γ(0) = 0, γ′ ≥ 0 on

[0, b), γ′′ > 0 on (0, b), γγ′′

γ′2
monotone, and lim

r−→0

γγ′′

γ′2
6= 0 then (3) and (4) hold

automatically, and therefore Theorem 1.2 gives a universal restriction theorem for
this class of curves.

If γγ′′

γ′2
is monotone-increasing and lim

r−→0

γγ′′

γ′2
= 0 then (4) (with 2 replaced by 5

4 )

holds automatically, but (3) need not. In this case we obtain a universal restriction
theorem if we also assume, for example, that γγ′′

γ′2
is concave, since then (3) holds.

Further details pertaining to this remark can be found in Section 3 below.
Remark 3: Although conditions (3) and (4) are perhaps unwieldy, they do allow

for examples not previously covered. For example, γ(r) = rm and γ(r) = rmlog 1
r

can now be dealt with for m > 1. Other examples are γ(r) = r
(log 1

r )m , m > 0 and
γ(r) = r

(m+1−rm)1/m , m > 0. These examples are of particular interest since, in

both cases, we have lim
r−→0

γ(r)γ′′(r)
γ′(r)2

= 0.

2. Proof of Theorem 1.2

Proof. We assume that b = 3
2 and supp û0 ⊂ {(ξ, µ) : |(ξ, µ)| ≤ 3

2}. We let

U(t)u0(x, y) =
∫ ∫

eitγ(ξ,µ)ei(xξ+yµ)ûo(ξ, µ)|KΓ(ξ, µ)|1/8dξdµ.

Then the desired restriction theorem is equivalent to

(5) ‖U(t)u0‖L4
xyt

≤ C‖u0‖L2
xy

, or equivalently, ‖[U(t)u0]2‖L2
xyt

≤ C‖u0‖2L2
xy

.

We now define the radial function φ(ξ, µ) =

{
1 1 ≤ |(ξ, µ)| ≤ 3

2

0 |(ξ, µ)| ≤ 1
2 or |(ξ, µ)| ≥ 2.

We

then define φk(ξ, µ) = φ(2kξ, 2kµ) and P̂kf(ξ, µ) = φk(ξ, µ)f̂(ξ, µ). We may choose
φ such that

∑
k≥0 |φk(ξ, µ)|4 ≥ c, for |(ξ, µ)| ≤ 3

2 , and then {Pk} and {PkPk} are
both Littlewood-Paley families of operators, i.e.,

(6)
∥∥∥∥(∑ |Pkf |2

)1/2
∥∥∥∥

Lp
xy

≈ ‖f‖Lp
xy

, 1 < p < ∞.

and

(7)
∥∥∥∥(∑ |PkPkf |2

)1/2
∥∥∥∥

Lp
xy

≈ ‖f‖Lp
xy

, 1 < p < ∞.

We now claim that (5) follows once we have
(8)
‖U(t)Pku0‖L4

xyt
≤ C‖u0‖L2

xy
, or equivalently, ‖[U(t)Pku0]2]‖L2

xyt
≤ C‖u0‖2L2

xy
.
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To see this, we first use a vector-valued version of (7), then (8), followed by (6)
to obtain

‖U(t)u0‖L4
xyt

≤ C

∥∥∥∥(∑ |P 2
k (U(t)u0)|2

)1/2
∥∥∥∥

L4
xyt

≤ C
(∑

‖U(t)P 2
k u0‖2L4

xyt

)1/2

≤ C
(∑

‖Pku0‖2L2
xy

)1/2

=
∥∥∥∥(∑ |Pku0|2

)1/2
∥∥∥∥

L2
xy

≤ C‖u0‖L2
xy

.

This proves the claim and so we are left with showing (8), i.e.

∥∥∫ ∫ ∫ ∫ eit[γ(ξ1,µ1)+γ(ξ2,µ2)]+i[x(ξ1+ξ2)+y(µ1+µ2)]û0(ξ1, µ1) · û0(ξ2, µ2)(9)

|KΓ(ξ1, µ1)|
1
8 |KΓ(ξ2, µ2)|

1
8 φk(ξ1, µ1)φk(ξ2, µ2)dξ1dµ1dξ2dµ2

∥∥∥
L2

xyt

≤ C‖u0‖2L2
xy

.

Next we change variables.

u = ξ1 + ξ2

v = µ1 + µ2

w = γ(ξ1, µ1) + γ(ξ2, µ2)
z = to be chosen later

Then, with J = ∂(u,v,w,z)
∂(ξ1,ξ2,µ1,µ2)

, (9) becomes∥∥∥∥∫ ∫ ∫ ∫ ei[tw+xu+yv]F (u, v, w, z)
dudvdwdz

J

∥∥∥∥
L2

xyt

≤ C‖u0‖2L2
xy

.

By Plancherel in u, v, w, this is
∥∥∥∫ F (u,v,w,z)

J dz
∥∥∥

L2
u,v,w

≤ C‖u‖2L2
xy

.

Now, by Cauchy-Schwarz we can bound the left-hand side by∥∥∥∥(∫ |û0(ξ1, µ1)|2|û0(ξ2, µ2)|2 dz
|J|

)1/2

·(∫
|KΓ(ξ1, µ1)|

1
4 |KΓ(ξ2, µ2)|

1
4 φk(ξ1, µ1)2φk(ξ2, µ2)2 dz

|J|

) 1
2

∥∥∥∥
L2

uvw

≤ C sup
u,v,w

(∫
Rk

|KΓ(ξ1, µ1)|
1
4 |K(ξ2, µ2)|

1
4

dz

|J |

) 1
2

‖u0‖2L2
xy

,

where Rk = Rk(u, v, w) = {z ∈ R|2−k−1 ≤ |(ξ1, µ1)|, |(ξ2, µ2)| ≤ 2−k+1} and ξ1,
µ1, ξ2, µ2 are understood to be functions of u, v, w, z.

Thus to prove (9) and hence the restriction theorem (2), it suffices to prove that

(10) sup
u,v,w

(∫
Rk

|KΓ(ξ1, µ1)|1/4|KΓ(ξ2, µ2)|1/4 dz

|J |

)
≤ C.

The choice of z is at our disposal.
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If we carry out the same process using polar coordinates

u = r1 cos θ1 + r2 cos θ2

v = r1 sin θ1 + r2 sin θ2

w = γ(r1) + γ(r2)
z = to be chosen later,

then J = ∂(u,v,w,z)
∂(r1,r2,θ1,θ2)

and (10) becomes

(11) sup
u,v,w

(∫
Rk

(
γ′′(r1)γ′(r1)

r1

)1/4(
γ′′(r2)γ′(r2)

r2

)1/4

r1r2
dz

|J |

)
≤ C.

Following [9] (and [1]) we choose z = arctan
√

γ(r1)
γ(r2)

. Then γ(r1) = w sin2 z and

γ(r2) = w cos2 z. Also |J | = r1r2
2

γ′(r1)γ
′(r2)√

γ(r1)γ(r2)
| sin(θ1 − θ2)|. Then (11) becomes

sup
u,v,w

(∫
Rk

[γ′′γ
γ′2

(r1)γ′′γ
γ′2

(r2)]1/4

| sin(θ1 − θ2)|

(
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)

)1/4

dz

)
≤ C.

If we let inf
r∈[2−k−1,2−k+1]

γ(r)γ′′(r)
γ′(r)2

= εk, and use symmetry to reduce to the case

r1 ≥ r2, then, by (3), it suffices to show

(12) sup
u,v,w

∫ π/2

π/4

√
εk

| sin(θ1 − θ2)|

(
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)

)1/4

dz ≤ C.

We now note that u2+v2 = r2
1 +r2

2 +2r1r2 cos(θ1−θ2) and so, for |θ1−θ2| ≤ 1
100 ,

(which we may assume, since it is enough to prove the theorem with û0 having
support in a a narrow angle) we have

sin(θ1 − θ2) =
√

1− cos(θ1 − θ2)
√

1 + cos(θ1 − θ2)

≈

√
(r1 + r2)2 − (u2 + v2)

2r1r2

≈ 2k/2

√
r1 + r2 −

√
u2 + v2

≈
√

r1 + r2√
u2 + v2

− 1.

We note that for |θ1 − θ2| ≤ 1
100 , the quantity r1+r2√

u2+v2 − 1 is always ≥ 0.

We define

f(u, v, w, z) =
r1 + r2√
u2 + v2

− 1 =
γ−1(w sin2 z) + γ−1(w cos2 z)√

u2 + v2
− 1.

Then
∂f

∂z
=

2√
u2 + v2

(
w sin z cos z

γ′(γ−1(w sin2 z))
− w sin z cos z

γ′(γ−1(w cos2 z))

)
=

2√
u2 + v2

√
γ(r1)γ(r2)

(
1

γ′(r1)
− 1

γ′(r2)

)
≤ 0,



RESTRICTION FOR FLAT SURFACES 7

since γ′′ > 0 and r1 ≥ r2. Equality holds if, and only if, z = π
4 . It follows that f is

a decreasing function of z and so there is at most one zero of f, call it z0. In the
event that f has no zero in z we take z0 = π

2 .
Thus (12) now becomes

sup
u,v,w

∫ z0

π/4

√
εk√

f(u, v, w, z)

(
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)

)1/4

dz ≤ C.

The observation that the region of integration stops at z0, and not π
2 was made

in [9]. We now note that, by (4),

−∂2f
∂z2 (u, v, w, z) =

4√
u2+v2

[
γγ′′

γ′2
(r1)

γ(r2)
γ′(r1)

+ γγ′′

γ′2
(r2)

γ(r1)
γ′(r2)

− (γ(r1)−γ(r2))
2

(
1

γ′(r2)
− 1

γ′(r1)

)]
≥ 0.

It follows that −∂f
∂z is increasing in z. Then f(u, v, w, z) ≥ −

∫ z0

z
∂f
∂z (s)ds ≥

−∂f
∂z (z)(z0 − z) and hence

√
−

∂f
∂z

f(u,v,w,z) ≤
1√

z0−z
. Moreover we claim that

(13) −∂f

∂z
≥ Cεk

√
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)
(z − π

4
).

Assuming for a moment that (13) is indeed true, we have

∫ z0

π/4

√
εk√

f(u,v,w,z)

(
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)

)1/4

dz

≤ C
∫ z0

π/4

√
−

∂f
∂z

f(u,v,w,z)
1√

z−π
4
dz

≤ C
∫ z0

π/4
1√

z0−z
1√

z−π
4
dz

≤ C.

Thus it remains to prove (13). We have

γγ′′

γ′2
(r) ≥ εk =⇒ γ′′

γ′
(r) ≥ εk

γ′

γ
(r) =⇒ γ′(r1)

γ′(r2)
≥
(

γ(r1)
γ(r2)

)εk

= (tan z)2εk .
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Then

−∂f

∂z
=

2
√

γ(r1)γ(r2)√
u2 + v2

(
1

γ′(r2)
− 1

γ′(r1)

)
≥ C

√
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)
γ′(r1)− γ′(r2)
γ′(r1) + γ′(r2)

γ′(r1) + γ′(r2)√
γ′(r1)γ′(r2)

≥ C

√
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)

γ′(r1)
γ′(r2)

− 1

1 + γ′(r1)
γ′(r2)

≥ C

√
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)
(tan z)2εk − 1
1 + (tan z)2εk

≥ Cεk

√
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)
tan z − 1
1 + tan z

(14)

≥ Cεk

√
γ(r1)γ(r2)

r1r2γ′(r1)γ′(r2)
(z − π

4
),

�

where (14) follows since εk ≤ 4
3 , for all k. (See Remark 1b) after Theorem1.2.)

3. Universal theorems

We recall that, in Remark 2, we claimed that universal restriction theorems could
be obtained by making certain monotonicity assumptions. In this section we justify
this claim in detail. The following lemma is the key.

Lemma 3.1. a) If γ ∈ C2 is convex and increasing, and γ(0) = 0, then

1
r

∫ r

0

γ(u)γ′′(u)
γ′(u)2

du ≤ 1.

b) If h ≥ 0, and 1
r

∫ r

0
h(u)du ≤ 1, then there is some γ such that γ(0) = 0, γ′′ ≥

0, γ′ ≥ 0, and h = γγ′′

γ′2
. In fact,

(15) γ(r) = γ(1)exp

(
−
∫ 1

r

1
s−

∫ s

0
h(u)du

ds

)
.

Proof. a)
∫ r

0
γγ′′

γ′2
(u)du =

∫ r

0
1 −

(
γ
γ′

)′
(u)du = r − γ(r)

γ′(r) and so, in particular,
1
r

∫ r

0
γγ′′

γ′2
(u)du ≤ 1.

b) The calculation is straightforward.
�

Corollary 3.1. a) If γ ∈ C2 is convex and increasing, γ(0) = 0, and γγ′′

γ′2
is

monotone-increasing then γ(r)γ′′(r)

γ′(r)2
≤ 2, for all r ≥ 0.

b) If γ ∈ C2 is convex and increasing, γ(0) = 0, and γγ′′

γ′2
is monotone-decreasing

then γ(r)γ′′(r)

γ′(r)2
≤ 1, for all r ≥ 0.
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Proof. a) Since γ(r)γ′′(r)

γ′(r)2
is increasing, we use Lemma 3.1a) to obtain γ(r)γ′′(r)

γ′(r)2
≤

1
r

∫ 2r

r
γ(u)γ′′(u)

γ′(u)2
du ≤ 1

r

∫ 2r

0
γ(u)γ′′(u)

γ′(u)2
du ≤ 2.

b) We again use Lemma 3.1a). We have γ(r)γ′′(r)

γ′(r)2
≤ 1

r

∫ r

0
γ(u)γ′′(u)

γ′(u)2
du ≤ 1. �

We are now in a position to give the justification of Remark 2.

Proposition 3.1. Suppose that γ ∈ C1[0, b), C2(0, b), γ(0) = 0, γ′ ≥ 0 on [0, b),
γ′′ > 0 on (0, b).

a) If γ(r)γ′′(r)

γ′(r)2
is continuous, monotone (either increasing or decreasing), and

lim
r−→0

γ(r)γ′′(r)
γ′(r)2

= α, with α > 0, then (3) and (4) hold, for k sufficiently large.

b) If γ(r)γ′′(r)

γ′(r)2
is continuous,monotone-increasing and lim

r−→0

γ(r)γ′′(r)
γ′(r)2

= 0, then

(4) holds, for all
(

5
4

)−k−1 ≤ r2 ≤ r1 ≤
(

5
4

)−k+1
, and for k sufficiently large.

We remark that a change of scale is needed in b). This is a technicality and is
of no consequence since the Littlewood-Paley theory used in the proof of Theorem
1.2 can be done with any λ > 1.

The proof of this proposition is a calculus exercise, which relies on Lemma 3.1.
Finally, we observe that, by Proposition 3.1, we need h to oscillate if (4) is to

fail. An example of a curve for which (4) fails is the curve given by

γγ′′

γ′2
=

{
ε 2−k ≤ s ≤ 2−k(1 + 2−k)
1− 2−k 2−k(1 + 2−k) < s ≤ 2−k+1.

We note that, by Corollary 3.1, it suffices to define the quotient γγ′′

γ′2
, since we can

then recover γ via (15).
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