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Abstract. In this work we establish certain equivalences between the localisation properties
with respect to spherical Fourier means of the support of a given Borel measure and the L2-
rate of decay of the Fourier extension operator associated to it. This, in turn, is intimately
connected with the property that the X-ray transform of the measure be uniformly bounded.
Geometric properties of sets supporting such a measure are studied.

§1. Introduction.

In this paper we continue with the work initiated in [CS2] and [CS3] concerning the
geometric properties of the sets where the localisation property for the spherical Fourier
means in Rn holds. Let us start by recalling some basic definitions and notation. For a
suitable function f defined on Rn we denote its Fourier transform by f̂ , and for R > 0 we
define

SRf(x) =
∫

|ξ|<R

f̂(ξ) e2πix·ξ dξ.

One of the most interesting and difficult problems in harmonic analysis is that of
determining whether we can recover the values of every function f in L2(Rn) from the
pointwise limit of its spherical means SRf . That is, whether or not we have

lim
R→∞

SRf(x) = f(x) a.e., ∀f ∈ L2(Rn).

The result is known to be true in dimension n = 1; this is the extension to the real line of
the celebrated theorem of Carleson (see [C], [KT]). The problem however remains open
for n ≥ 2.

On the other hand, Riemann’s localisation principle says that for any f ∈ L1(R) we
have

lim
R→∞

SRf(x) = 0
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at every point x off the support of f . In fact the convergence is uniform on compact
subsets of (supp f)c. In [CS1] the first two authors considered the related question of
localisation in higher dimensions. They proved the following:

Theorem [CS1]. For every 0 ≤ γ < 1 there exists a constant Cγ so that

(1)
∫

|x|≤1

sup
R>1

∣∣SR

(
fX|·|>2

)
(x)

∣∣2 dx ≤ Cγ

∫
|f(x)|2 dx

|x|γ .

Taking γ = 0 in the above theorem and using standard approximation arguments, we
conclude (after an appropriate rescaling of the problem) that for f ∈ L2(Rn) the set

{x /∈ suppf : {SRf(x)}R does not converge to 0 as R →∞}

has measure 0. In particular, for every f ∈ L2(Rn), limR→∞ SRf(x) = 0 almost every-
where off the support of f . Moreover, since Lp(Rn) ⊂ L2(Rn, dx)+L2(Rn, dx

|x|γ ) whenever
2 ≤ p < 2n

n−γ , the same result about localisation holds for every function f ∈ Lp(Rn), if
2 ≤ p < 2n

n−1 . This range of p’s is optimal.

As is well known, (see for example Il’in [I], Pinsky [P]), there are functions in L2(Rn),
n ≥ 2, for which the localisation principle fails at at least one point. For n ≥ 3 we have
in fact the following simple example: if X1 denotes the characteristic function of the unit
ball then

SRX1(0) = cn

∫ R

0

Jn−2
2

(t)

tn/2
tn−1dt = cn

∫ R

0

t1/2Jn−2
2

(t)t
n−3

2 dt,

which clearly diverges as R →∞ if n ≥ 3. (Jn−2
2

(t) is the Bessel function of order n−2
2 .)

Now, if φ is a smooth function with compact support so that φ ≡ 1 on {|x| ≤ 1} then 0
is not a point of localisation for the function φ − X1. In this respect, the conclusion of
Theorem [CS1] about the localisation ‘only’ in the almost everywhere sense, is optimal.
A natural question is therefore raised: how big may the sets of divergence be? or more
precisely, how can we determine them? This was the topic of study in [CS2] and [CS3].
We recall that a measurable set E ⊂ B = {|x| < 1} is said to be a set of divergence for the
localisation problem (SDLP) if there exists a function f ∈ L2(Rn) with suppf ∩ B = ∅
so that {SRf(x)}R diverges at every x ∈ E.

Examples of SDLP’s, in addition to singletons, include spheres and with more generality
any collection of concentric spheres indexed by a set F ⊂ (0, 1) whenever the Hausdorff
dimension of F is less than 1/2. Also, any set of the form (A× R) ∩ B, where A ⊂ Rn−1

has n − 1 dimensional Lebesgue measure zero is an SDLP. ([CS3].) We return to the
matter of SDLP’s in Section 4 below.

In this work we continue studying the problem of localisation but from a different point
of view. Our approach here will be specifically the more positive one of determining, in
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analogy with (1) above, for which positive, finite Borel measures µ supported in the unit
ball of Rn one has the following inequality

(A)
∫

sup
R>1

∣∣SR

(
fX|·|>2

)
(x)

∣∣2 dµ(x) ≤ Cµ

∫
|f(x)|2 dx, ∀f ∈ L2(Rn),

for a certain constant Cµ < ∞. Whenever this holds, then, for every function f ∈ L2(Rn)
with suppf ⊂ {|x| ≥ 2} there exists at least one point x ∈ supp µ (in fact a set of full
µ-measure) for which {SRf(x)}R converges. Hence, supp µ cannot be an SDLP.

One of the things that was observed in [CS3] is that the maximal condition (A) is in
fact equivalent to a uniform estimate for each of the spherical means; that is,

(B) sup
R>1

∫ ∣∣SR

(
fX|·|>2

)
(x)

∣∣2 dµ(x) ≤ Cµ

∫
|f(x)|2 dx.

An indication of this equivalence was given using heuristic arguments, via the “folk-
calculation” of C. Fefferman. This calculation in turn leads to a direct formulation of
the problem in terms of the order of decay of the L2-average over the unit sphere of the
Fourier transform of gdµ, for every g ∈ L2(dµ). In other words, both (A) and (B) hold if
and only if the following holds:

(C)
(∫

Sn−1

∣∣∣ĝdµ(Rω)
∣∣∣
2

dσ(ω)
)1/2

≤ C

R
n−1

2

(∫
|g|2dµ

)1/2

,

with C independent of g ∈ L2(dµ) and R > 1. In Theorems 1 and 2 below we give formal
proofs of all these results.

The dual statement of (C) is the condition that

(C*)
(∫ ∣∣∣ĥdσ(Ry)

∣∣∣
2

dµ(y)
)1/2

≤ C

R
n−1

2

(∫

Sn−1
|h|2dσ

)1/2

, ∀h ∈ L2(Sn−1).

This condition was considered independently by Barceló, Ruiz and Vega in [BRV] in
connection with weighted inequalities for solutions to the Helmholtz equation. We shall
come back to this point later.

Condition (B) can be interpreted as an L2-weighted inequality for each operator SR.
This is reminiscent of a problem posed by E.M. Stein (see [St1]) during the famous con-
ference on harmonic analysis at Williamstown, in 1978. The proposed problem was to
determine the operator or operators which control the L2-inequalities for the Bochner-
Riesz means. To be more precise, if Sδ denotes the (smooth) Fourier multiplier operator
associated to the annulus {ξ : 1− δ < |ξ| < 1} then the question is to find a pairing which
associates to a given weight u another weight U so that the following holds

∫
|Sδf(x)|2 u(x) dx ≤ C

∫
|f(x)|2 U(x) dx.
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After the work of C. Fefferman [F] and A. Córdoba [Co], it was natural to conjecture
that the pairing u → U should be given by some appropriate modification of the maximal
function, MN , on integral averages over rectangles of eccentricity N with N = δ−1/2.
The limiting case of the Bochner-Riesz means corresponds to the disc multiplier and so
the question here is whether or not the limiting operator for the MN ’s, the Besicov-
itch/Kakeya maximal function M∞, controls the L2-weighted inequalities for the disc
multiplier. A good indication that this may be the case is hinted at by condition (C∗).
For if we take h to be the characteristic function of a spherical cap O, then the absolute
value of ĥdσ is (essentially) constant on a “tube” passing through the origin in the direc-
tion of the centre of O. Then (C∗) tells us that certain averages of µ over such a set are
uniformly bounded. Since the problem is invariant under translations, the tubes may be
in any position in space. We give an alternative proof of the necessity of this condition
based on the assumption (B) (see Theorem 1 below). This was also shown by different
arguments in [BRV].

In [CRS] it was proved that Stein’s conjecture is correct for radial weights:

Theorem [CRS]. Let w be a positive, radial and locally integrable function in Rn. Then
for each α > 1 there exists Cα so that

∫

Rn

|SRf(x)|2 w(x) dx ≤ Cα

∫

Rn

|f(x)|2 (M∞wα(x))1/α
dx.

The original theorem was only stated for the case R = 1, the disc multiplier, but the
invariance of M∞ obviously gives the result for all R > 0.

A quick look at the arguments in the proof of this theorem shows that if w is supported
in the unit ball and f ≡ 0 in {x : |x| ≤ 2} then

(2)
∫

|x|≤1

|SRf(x)|2 w(x) dx ≤ Cε

∫

|x|≥2

|f(x)|2 |x|εM∞w(x) dx,

for every ε > 0 if R ≥ 1. In this form the inequality makes sense for measures also. An
explicit expression of the Kakeya maximal function for radial weights, which was used
to prove the correct boundedness estimates for this operator on Ln

rad(Rn), was given in
[CHS]:

Theorem [CHS]. If w is as above and we denote by w0 is radial projection on R+ then

M∞w(x) ∼ sup
0<r<|x|

1√
|x|2 − r2

∫ |x|

r

w0(s)
s ds√
s2 − r2

+ sup
h>0

1
h

∫ |x|+h

|x|
w0(s) ds.

In particular, if µ is rotationally invariant, has compact support, say in the unit ball,
and we take x ∈ Rn with |x| ≥ 2 then

(3) M∞(dµ)(x) ∼ 1
|x| sup

0<r<1

∫ 1

r

s dµ0(s)√
s2 − r2

,
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where µ0 denotes the radial projection of µ (see Theorem 3). Observe that the second
term in the right hand side of (3), the “sup” term, is just a constant which only depends
on µ, call it |||µ0|||. Then, (2) becomes in the case of a rotationally invariant measure µ

(4)
∫

|x|≤1

|SRf(x)|2 dµ(x) ≤ Cε|||µ0|||
∫

|x|≥2

|f(x)|2 dx

|x|1−ε
.

The constant |||µ0||| is easily seen to be equivalent, after a change of variables to polar
coordinates, to the L∞ norm of the averages on tubes that we mentioned above for general
measures. So, one of the consequences of (2) is that in the case of rotationally invariant
measures the maximal estimate (A) follows from, and in fact is equivalent to the finiteness
of |||µ0|||. We give all the details in Theorem 3 below.

In [BRV] the authors study conditions on the radial weight V for the inequality
∫

Rn

|u(x)|2V (x)dx ≤ CV

∫

Rn

|(∆ + 1)u(x)|2V −1(x)dx

to hold. Their result is that this is true if and only if |||V ||| is finite; this is referred to as
the “radial Mizohata-Takeuchi” condition. In fact one can take CV ∼ |||V |||2. If u satisfies
the so-called Sommerfeld outgoing radiation condition then u is given by the convolution
of f = (∆+1)u with a kernel which is more singular than that of SR. However, for radial
weights the problems are, as we see, equivalent.

The paper is organised as follows. In the next section we give a proof of the equivalence
between the conditions (A), (B), (C) described in this introduction. Section 3 addresses
the problem for the special case of rotationally invariant measures, for which we have
a complete solution. In the last section we analyse the geometry of those measures for
which the “norm” ||| · ||| is finite and further explore the relation between sets supporting
such a measure and SDLP’s. We would like to thank Laura Wisewell for a number of
illuminating and very helpful discussions on the material of the last section.

§2. The maximal localisation theorem for general measures.

For a general finite Borel measure µ we want to investigate the connection between the
localisation property that it inherits, the L2 behaviour of the spherical means SR with
respect to it and the decay of the restriction of its Fourier transform to spheres. To this
end, let us look at the conditions

(B)
∥∥SR

(
fX|·|≥2

)∥∥
L2(dµ)

≤ C ‖f‖2
and

(C)
∥∥∥ĝdµ(R·)

∥∥∥
L2(Sn−1)

≤ C

R
n−1

2

‖g‖L2(dµ) ,
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as well as the two seemingly weaker conditions

(B′)
∫

|x|≥2

|(SR+1 − SR) (gdµ)|2 dx ≤ C

∫
|g|2 dµ,

and

(C′)
∫ R+1

R

∫

Sn−1

∣∣∣ĝdµ(tω)
∣∣∣
2

dσ(ω)tn−1dt ≤ C

∫
|g|2 dµ.

In all the cases, the constant C is understood to be uniform in R ≥ 1 and independent of
the functions f, g, . . . considered.

Theorem 1. Let µ be any positive finite Borel measure whose support lies in the unit
ball of Rn. The four conditions (B), (B′), (C) and (C ′) stated above are equivalent.

Moreover, if we denote by Tε(x, ω), x ∈ Sn, ω ∈ Sn−1 the translation to x and rotation
by ω of the infinite tube {(y′, yn) ∈ Rn−1 × R : |y′| < ε}, then the condition

|||µ||| := sup
ε>0,x,ω

1
εn−1

∫

Tε(x,ω)

dµ < ∞

is necessary for any of the above to hold.

In what follows, we sometimes refer to ||| · ||| as the “triple norm”.

Proof. Let us begin with the observation that, by duality, condition (B) is equivalent to

(B*)
∫

|x|≥2

|SR(gdµ)|2 dx ≤ C

∫
|g|2 dµ,

and that Plancherel’s identity shows that (C′) is the same as

(B′′)
∫

Rn

|(SR+1 − SR) (gdµ)|2 dx ≤ C

∫
|g|2 dµ,

Clearly (B∗) => (B′), so the first part of the theorem will follow from the proof of the
chain of implications (B′) => (C′) => (C) => (B∗).

(C) => (B∗). We will prove first the following:
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Lemma 1. Let ψ be a function in the Schwartz class with ψ(0) = 1. Then, if we denote
by δ0 the Dirac delta at the point 0 and if BR is the ball centred at the origin with radius
R, we have ∣∣∣

(
δ0 − ψ̂

)
∗ XBR(x)

∣∣∣ ≤ 2
∫

|y|≥||x|−R|

∣∣∣ψ̂(y)
∣∣∣ dy.

Proof. Set I(x) =
(
δ0 − ψ̂

)
∗ XBR

(x) =
∫
|x−y|<R

(
δ0 − ψ̂(y)

)
dy and consider the two

cases:
Case 1: |x| > R. Then |I(x)| ≤ ∫

|x−y|<R

∣∣∣ψ̂(y)
∣∣∣ dy ≤ ∫

|y|≥|x|−R

∣∣∣ψ̂(y)
∣∣∣ dy.

Case 2: |x| ≤ R. Observe that |I(x)| ≤
∣∣∣
∫
|y|<R−|x|

(
δ0 − ψ̂(y)

)
dy

∣∣∣ +
∫
|y|≥R−|x|

∣∣∣ψ̂(y)
∣∣∣ dy

= I + II.

Now, using the hypothesis ψ(0) =
∫

ψ̂ = 1 we obtain

I =

∣∣∣∣∣1−
∫

|y|<R−|x|
ψ̂(y)dy

∣∣∣∣∣ =

∣∣∣∣∣
∫

|y|≥R−|x|
ψ̂(y)dy

∣∣∣∣∣ ≤ II.

Therefore, |I(x)| ≤ 2II = 2
∫
|y|≥R−|x|

∣∣∣ψ̂(y)
∣∣∣ dy. Q.E.D.

Now take a smooth function ψ with suppψ ⊂ {|x| ≤ 1} and ψ(0) = 1 and let KR be the
kernel of the operator SR (i.e., K̂R = XBR

). Put KR = ψKR + (1 − ψ)KR = K1
R + K2

R.
Now, if µ has support in the unit ball then K1

R ∗ (gdµ) ∩ {|x| ≥ 2} = ∅. Therefore, from
the lemma we get

∫

|x|≥2

|KR ∗ (gdµ)|2 dx ≤
∫
|(1− ψ)KR ∗ (gdµ)|2 dx

=
∫ ∣∣∣

(
δ0 − ψ̂

)
∗ XBR

(ξ)ĝdµ(ξ)
∣∣∣
2

dξ

≤
∫ (

2
∫

||ξ|−R|≤|y|

∣∣∣ψ̂(y)
∣∣∣ dy

)2 ∣∣∣ĝdµ(ξ)
∣∣∣
2

dξ.

Using Cauchy-Schwarz in the y-integral and writing the integral in ξ in polar coordinates
we obtain from (C)

∫

|x|≥2

|KR ∗ (gdµ)|2 dx ≤ 4||ψ̂||1
∫ ∣∣∣ψ̂(y)

∣∣∣
∫

|t−R|≤|y|
tn−1

∫

Sn−1

∣∣∣ĝdµ(tω)
∣∣∣
2

dσ(ω) dt dy

≤ C

∫ ∣∣∣ψ̂(y)
∣∣∣ |y|dy

∫
|g|2dµ ∼ C ′

∫
|g|2dµ.
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(C′) => (C). Fix R ≥ 1 and assume that (C′) holds for all functions in L2(dµ). Take
any g in that class and set

A(t) =
∫

Sn−1

∣∣∣ĝdµ(tω)
∣∣∣
2

dσ(ω).

By hypothesis, there exists at least one t0 ∈ [R, R + 1] so that A(t0) ≤ C
tn−1
0

∫ |g|2dµ.
Observe that

d

dt

(
ĝdµ

)
(tω) = 2πi

∫
(ω · y) g(y)e2πitω·ydµ(y).

Therefore, ∫

Sn−1

∣∣∣∣
d

dt

(
ĝdµ

)
(tω)

∣∣∣∣
2

dσ(ω) ≤
n∑

j=1

|Aj(t)|2 = A(t),

where each Aj is defined as A but with g(y) replaced by yjg(y), if y = (y1, . . . , yn). Since

A(R) = A(t0)−
∫ t0

R

A′(t)dt ≤ A(t0) + 2
∫ R+1

R

(A(t))1/2 (A(t))1/2
dt,

we conclude, using (C′) again, that

Rn−1A(R) ≤ tn−1
0 A(t0) + 2

(∫ R+1

R

tn−1A(t)dt

∫ R+1

R

tn−1A(t)dt

)1/2

≤ C

∫
|g|2dµ.

In the last inequality we have used the support condition on µ.

(B′) => (C′). Fix g ∈ L2(dµ) and R ≥ 1. Define h(x) = (SR+ε − SR) (gdµ)(x). We first
claim that for a sufficiently small ε > 0 (depending only on the dimension) we have

∫

Rn

|h(x)|2dx ≤ 2
∫

|x|≥2

|h(x)|2dx.

This, after rescaling, will do the job, (using (B′) and the equivalence of (B′′) with (C′)).
Take a function ψ in the Schwartz class, so that ψ(x) ≡ 1 on {|x| ≤ 2}. Then

(∫

|x|≥2

|h|2
)1/2

≥
(∫

|h(1− ψ)|2
)1/2

≥
(∫

|h|2
)1/2

−
(∫

|hψ|2
)1/2

.

We show that
∫ |hψ|2 ≤ 1

2

∫ |h|2, and that will prove our claim. Now, we observe that
supp ĥ ⊂ {ξ : R ≤ |ξ| ≤ R + ε} and that

∫
|hψ|2 =

∫
|ĥ ∗ ψ̂|2 ≤

(∫
|ĥ|2

)
||ψ̂||1

(
sup

x

∫

R≤|x−y|≤R+ε

|ψ̂(y)|dy

)
.
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Put D(x) = {y : R ≤ |x− y| ≤ R + ε}. Then,

∫

R≤|x−y|≤R+ε

|ψ̂(y)|dy =
∫

D(x)∩{|y|≤1}
|ψ̂(y)|dy +

∑

k≥0

∫

D(x)∩{|y|∼2k}
|ψ̂(y)|dy

≤ CnC ′nε +
∑

k≥0

C ′nε 2k(n−1)Cn2−kn = C ′′nε,

where we have used that |ψ̂(y)| ≤ Cn
1

1+|y|n for certain constant Cn. It suffices to take
then ε = 1

2|| bψ||1C′′n
.

Finally, we show that if (B) holds then we must have |||µ||| finite. To do that, let us
recall the construction given in Lemma 1 of [CS3]. In fact, we only need the first part of
it:

Lemma 2. Let φ be a smooth bump function supported in {|x| ≤ 1}. Given R >> 1 we
consider the function φR(x) = e2πiRx1φ(x1 − 3, R1/2x′), where x = (x1, x

′) ∈ R × Rn−1.
Then |SRφR(x)| ≥ c on the set {|x1| ≤ 1, |x′| ≤ R−1/2}, while for each k ∈ N, there is a
constant Ck so that |SRφR(x)| ≤ Ck{1+R1/2|x′|}−k for all x. Moreover, for each k ∈ N,
there is a constant Ck so that |SR′φR(x)| ≤ Ck(R′/R)(n−1)/2 max(R,R′)−k when x ∈ B
and R/R′ /∈ [1/2, 2].

With our notation, what the lemma says is that |SRφR(x)| ≥ c on the set Tε(0̄, ē1) ∩
{|x| ≤ 1}, where ε = R−1/2, 0̄ denotes the origin and ē1 is just the vector (1, 0, . . . , 0).
Therefore, if µ is supported in the unit ball and (B) holds we must have

∫

Tε(0̄,ē1)

dµ ≤ C

∫
|φR|2 ∼ C R−

n−1
2 .

Since we can translate and rotate SRφR as we wish, without changing the size of φR or
the shape of its support, we obtain then

|||µ||| ≤ C.

This finishes the proof of Theorem 1. Q.E.D.

We now prove the equivalence of the above conditions with (A). The proof is similar
to the one used to prove (C) => (B∗) but rather more technical. This is why we have
decided to present it separately.
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Theorem 2. Let µ be a finite Borel measure µ whose support lies in the unit ball of
Rn, n ≥ 2. Then, if µ satisfies condition (C) it satisfies the maximal condition (A) too.
In particular, we obtain that the set of conditions (A), (B), (C), as well as (B′) and (C ′),
are all equivalent.

Proof. We follow the same line of arguments as in Theorem 2.2 of [CS1]. Take φ a smooth
function supported in the unit ball so that φ ≡ 1 on {|x| ≤ 1/2}. Define ψ(x) = φ(x

2 )−φ(x)
and ψj(x) = ψ( x

2j ) for j = 0, 1, . . . In this way we obtain φ(x) +
∑

j≥0 ψj(x) ≡ 1.
Now, if f ∈ L2(Rn) with supp f ⊂ {|x| ≥ 2} we have for all |x| ≤ 1

KR ∗ f(x) =
∞∑

j=0

k=j+2∑

k=j−2

(ψjKR) ∗ (ψkf) (x).

Writing Kj
R = (ψjKR), it is clear that it suffices to prove the estimate

(5)
∫

sup
R≥1

∣∣∣Kj
R ∗ g(x)

∣∣∣
2

dµ(x) ≤ C 2−j

∫
|g(x)|2dx, ∀g ∈ L2(Rn),

under the assumption

(6)
∫

Sn−1

∣∣∣ĥdµ(rω)
∣∣∣
2

dω ≤ C

rn−1

∫
|h|2dµ, ∀r > 0, ∀h ∈ L2(dµ).

Observe that in (C) we consider only the case r ≥ 1. However (6) is true also for 0 < r < 1
always if ||µ|| (the total variation of µ) is finite since

∫

Sn−1

∣∣∣ĥdµ(rω)
∣∣∣
2

dω ≤ ||ĥdµ||2∞ ≤ ||µ||
∫
|h|2dµ.

We will not require in the rest of the proof the support condition on µ. Using the
Fundamental Theorem of Calculus we obtain

∣∣∣Kj
R ∗ g(x)

∣∣∣
2

≤
∣∣∣Kj

1 ∗ g(x)
∣∣∣
2

+ 2
∫ R

1

∣∣∣∣Kj
t ∗ g(x)

d

dt
Kj

t ∗ g(x)
∣∣∣∣ dt.

Hence, using the Cauchy-Schwarz inequality

∫
sup
R≥1

∣∣∣Kj
R ∗ g(x)

∣∣∣
2

dµ(x) ≤
∫ ∣∣∣Kj

1 ∗ g(x)
∣∣∣
2

dµ(x)

+ 2
(∫ ∫ ∞

1

∣∣∣Kj
t ∗ g(x)

∣∣∣
2

dt dµ(x)
)1/2

(∫ ∫ ∞

1

∣∣∣∣
d

dt
Kj

t ∗ g(x)
∣∣∣∣
2

dt dµ(x)

)1/2

= I + 2II1 · II2.
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We will show that I, II1 ≤ C2−j‖g‖2 while II2 ≤ C‖g‖2. This will prove (5). By duality,
these estimates are equivalent, respectively, to

∫

Rn

∣∣∣Kj
1 ∗ (hdµ)(x)

∣∣∣
2

dx ≤ C 2−j

∫
|h|2dµ

∫

Rn

∣∣∣∣
∫ ∞

1

Kj
t ∗ [f(·, t)dµ](x)dt

∣∣∣∣
2

dx ≤ C 2−2j

∫ ∫ ∞

1

|f(x, t)|2dt dµ(x)

∫

Rn

∣∣∣∣
∫ ∞

1

(
d

dt
Kj

t

)
∗ [f(·, t)dµ](x)dt

∣∣∣∣
2

dx ≤ C

∫ ∫ ∞

1

|f(x, t)|2dt dµ(x)

and, by Plancherel’s theorem, to

E1 =
∫

Rn

∣∣∣mj
1(ξ)ĥdµ(ξ)

∣∣∣
2

dξ ≤ C 2−j

∫
|h|2dµ

E2 =
∫

Rn

∣∣∣∣
∫ ∞

1

mj
t (ξ)[f(·, t)dµ] (̂ξ)dt

∣∣∣∣
2

dξ ≤ C 2−2j

∫ ∫ ∞

1

|f(x, t)|2dt dµ(x)

E3 =
∫

Rn

∣∣∣∣
∫ ∞

1

(
d

dt
mj

t

)
(ξ)[f(·, t)dµ] (̂ξ)dt

∣∣∣∣
2

dξ ≤ C

∫ ∫ ∞

1

|f(x, t)|2dt dµ(x).

Here mj
t denotes the Fourier transform of Kj

t , that is, mj
t (ξ) = XBt ∗ ψ̂j(ξ). Using the

fact that ψj(0) =
∫

ψ̂j = 0 we have, as in Lemma 1 above,

∣∣∣mj
t (ξ)

∣∣∣ ≤ 2
∫

||ξ|−t|≤2−j |y|

∣∣∣ψ̂(y)
∣∣∣ dy.

In particular, |mj
t (ξ)| ≤ C and

∫∞
0
|mj

t (ξ)| dt ≤ C 2−j . Thus, the first estimate follows
from

E1 ≤ C 2−j ||ĥdµ||2∞ ≤ C 2−j ||µ||
∫
|h|2dµ

since
∫
Rn |mj

1(ξ)|2dξ ≤ 2−j . For the second we use our hypothesis (6)

E2 ≤
∫ (∫ ∞

1

∣∣∣mj
t (ξ)

∣∣∣ dt

) ∫ ∞

1

∣∣∣mj
t (ξ)

∣∣∣
∣∣∣[f(·, t)dµ] (̂ξ)

∣∣∣
2

dt dξ

≤ C 2−j

∫ ∞

1

∫ ∣∣∣ψ̂(y)
∣∣∣
∫

|r−t|≤2−j |y|
rn−1

∫

Sn−1

∣∣∣[f(·, t)dµ] (̂rω)
∣∣∣
2

dω dr dy dt

≤ C 2−2j

∫ ∫ ∞

1

|f(x, t)|2dt dµ(x).

Finally, observe that

d

dt

(
mj

t (ξ)
)

=
n

t
mj

t (ξ) + 2j

∫

|2jξ−y|<2jt

(y − 2jξ)
2jt

· ∇ψ̂(y) dy.
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As in Lemma 1 we obtain here the bound for t ≥ 1
∣∣∣∣
d

dt

(
mj

t (ξ)
)∣∣∣∣ ≤ C 2j

∫

||ξ|−t|≤2−j |y|

(∣∣∣ψ̂(y)
∣∣∣ +

∣∣∣∇ψ̂(y)
∣∣∣
)

dy.

So, the same argument as for E2 gives us E3 ≤ C. Q.E.D.

In the spirit of Stein’s conjecture as discussed in the Introduction, one may ask whether
finiteness of |||µ||| implies the condition (C) and its equivalents. For the purposes of this
paper we shall label the assertion that this is indeed the case as the triple norm conjecture.
In the next section we examine this question in the case of rotationally invariant measures
µ.

§3. The case of rotationally invariant measures.

As we have said in the Introduction, this is the case for which we have the complete
characterisation of condition (C) and its equivalents in terms of the finiteness of the norm
||| · |||. (Thus the triple norm conjecture is true in the rotationally invariant case.)

Theorem 3. Consider a finite Borel measure µ which is invariant under rotations and
whose support lies in the unit ball of Rn, n ≥ 2. Let us denote by µ0 its radial projection
on [0,∞), that is

∫

Rn

φdµ =
∫ ∞

0

(∫

Sn−1
φ(r, θ) dσ(θ)

)
rn−1dµ0(r).

Then the following conditions are equivalent:
(a) For all f ∈ L2(Rn) with suppf ⊂ {|x| ≥ 2}

∥∥∥∥sup
R≥1

|SRf(x)|
∥∥∥∥

L2(dµ)

≤ C ‖f‖2 .

(b) For all f ∈ L2(Rn) with suppf ⊂ {|x| ≥ 2}

sup
R≥1

‖SRf‖L2(dµ) ≤ C ‖f‖2 .

(c) For all g, ∥∥∥ĝdµ(R·)
∥∥∥

L2(Sn−1)
≤ C

R
n−1

2

‖g‖L2(dµ)

(d) µ satisfies

|||µ||| ∼ sup
r>0

∫ ∞

r

s
1
2 dµ0(s)

(s− r)
1
2

< ∞.
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Obviously, the equivalence between (a), (b) and (c) follows from the results of the
previous section. We will not discuss condition (a) here. However, we do consider (b) and
(c) because the arguments that we will use are of a different nature (spherical harmonics
and theory of Bessel functions) and have their own interest. The equivalence between (c)
and (d) appears also in [BRV].

Proof. We will prove first that (b) and (c) are equivalent to the condition

(e) sup
l∈ 1

2N
sup
R>1

∫ ∞

0

∣∣∣J̃l(Rr)
∣∣∣
2

dµ0(r) < ∞,

where J̃l(t) = t1/2Jl(t) and Jl is the Bessel function of order l. We will show later the
equivalence between (d) and (e).

We begin with condition (c). Let us fix an orthonormal basis {Yk}k, of spherical
harmonic in L2(Sn−1). Given g ∈ L2(dµ) we consider its expansion with respect to
that basis g ∼ ∑

k gk(·)Yk(·) (the convergence in the L2-sense). Then, the expansion of
ĝdµ(Rω) is

ĝdµ(Rω) =
1

R
n−1

2

∑

k

(∫ ∞

0

gk(t)J̃k′(Rt)t
n−1

2 dµ0(t)
)
Yk(ω),

where k′ = n−2
2 +degree(Yk) (see [SW]). Therefore, the statement in (c) holds if and only

if ∣∣∣∣
∫ ∞

0

gk(t)J̃k′(Rt)t
n−1

2 dµ0(t)
∣∣∣∣
2

≤ C

∫ ∣∣∣gk(t)t
n−1

2

∣∣∣
2

dµ0(t),

with constant C independent of R and k. Since we can now assume that gk(t)t
n−1

2 is any
arbitrary function in L2(dµ0), the Riesz representation theorem tells us that the above
holds if and only if ∫ ∞

0

∣∣∣J̃l(Rr)
∣∣∣
2

dµ0(r) ≤ C,

(uniformly in R and l) which is precisely (e).

Let us now see the equivalence between (b) and (e). This is the only place where we
will consider the support condition on the measure µ.

Recall that if f ∼ ∑
k fkYk then SRf ∼ ∑

k(TR
k′fk)Yk, where

TR
l h(r) =

C

r
n−1

2

∫ ∞

0

h(s)s
n−1

2 RKl(Rr,Rs)ds,

Kl(r, s) =
r

r2 − s2
J̃l(s)J̃ ′l(r) +

s

r2 − s2
J̃l(r)J̃ ′l(s) = K1

l (r, s) + K2
l (r, s)
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(
here J̃ ′l(t) = t1/2J ′(t)

)

and k′ = n−2
2 + degree(Yk) as above. (See [W], [CRS].) So, the statement in (b) holds if

and only if

(b′)
∫ 1

0

∣∣∣∣
∫ ∞

2

h(s)RKl(Rr,Rs)ds

∣∣∣∣
2

dµ0(r) ≤ C

∫ ∞

2

|h(s)|2ds,

(with C independent of R > 1 and l). Since |RKl(Rr,Rs)| ≤ Cl
1
s , we can always assume

that l is large.

The estimates about Bessel functions that we will use are summarised as follows (see
[CRS] and [BRV]):

(i) |J̃l(t)| ≤ C

[( |l + t|
|l − t|

)1/4

∧ l1/6

]
:= Cτl(t), |J̃ ′l(t)| ≤ C, l ≥ 1, ∀t > 0

(ii) |J̃l(t)| ≤ C
l1/2

(l − t)
, if l/2 ≤ t ≤ l − l1/3.

(C represents an absolute constant.)

Now, we point out that (b′) always holds if we replace Kl with K1
l since then the left

hand side is majorised by

C

∫ 1

0

(∫ ∞

2

|h(s)|τl(Rs)
s2

ds

)2

dµ0(r) ≤ C||µ0||
(∫ ∞

2

|h(s)|2ds

)(∫ ∞

2

|τl(Rs)|2
s2

ds

)
,

and the last integral is bounded uniformly in R. Therefore, (b) follows if and only if (b′)
follows with Kl replaced by K2

l , that is, if

∫ 1

0

∣∣∣∣
∫ ∞

2

h(s)
s

s2 − r2
J̃ ′l(Rs)ds

∣∣∣∣
2

|J̃(Rr)|2dµ0(r) ≤ C

∫ ∞

2

|h(s)|2ds,

which is easily seen to be equivalent to (e).

We finally show the equivalence between (d) and (e). That (e) implies (d) follows from
the additional fact that in (i) one has |J̃l(t)| ∼ τl(t) in the region l + l1/3 ≤ t ≤ αl, for
some α > 1.

To prove that (d) implies (e) we define for a fixed R the measure µR
0 as

∫ ∞

0

F (s) dµR
0 (s) =

∫ ∞

0

F (Rs) dµ0(s).



LOCALISATION AND WEIGHTED INEQUALITIES FOR SPHERICAL FOURIER MEANS 15

We make the observation that if (d) holds for µ0 so does for µR
0 with the same value,

independent of R. Therefore, in proving (e) we can assume without loss of generality that
R = 1. Let us split the integral as

∫ ∞

0

∣∣∣J̃l(t)
∣∣∣
2

dµ0(t) =

(∫ l/2

0

+
∫ l−l1/3

l/2

+
∫ l+l1/3

l−l1/3
+

∫ ∞

l+l1/3

)∣∣∣J̃l(t)
∣∣∣
2

dµ0(t) =
4∑

j=1

Ij .

From estimate (i) we have that I1 ≤ C||µ0|| and

I4 ≤ C

∫ ∞

l+l1/3

( |l + t|
|l − t|

)1/2

dµ0(t) ≤ C

∫ ∞

l

t
1
2 dµ0(t)
(t− l)

1
2
≤ C.

We also get I3 ≤ Cl1/3µ0

(
[l − l1/3, l + l1/3]

)
. To estimate this, as well as I2, we observe

that if I = [a, b] then (d) implies

µ0(I) =
∫ a+|I|

a

dµ0 ≤
( |I|

a

)1/2 ∫ a+|I|

a

(
s

s− a

)1/2

dµ0(t) ≤ C

( |I|
a

)1/2

.

This shows that I3 ≤ C. Now, the above observation and (ii) gives

I2 ≤ C
∑

{k≥0:2k≤l2/3}

∫

(l−t)∼l/2k

l

(l − t)2
dµ0(t)

≤ C
∑

2k≤l2/3

l

(l/2k)2
µ0

(
[l − l/2k, l]

) ≤ C
∑

2k≤l2/3

22k

l

1
l1/2

(
l

2k

)1/2

∼ C.

Q.E.D.

Recall that the triple norm conjecture may be generated by testing (c) in Theorem 3
on g’s which are essentialy characteristic functions of spherical caps of radius R−1/2 and
then letting R tend to ∞. One may be tempted to formulate similar conjectures for each
scale R separately. In [BBC] it has recently been shown that in even in the rotationally
invariant case, such conjectures fail. One should therefore perhaps exercise caution in
one’s belief in the veracity of such conjectures in general.

§4. SDLP’s and geometric measure theory.

Throughout this section the s-dimensional Hausdorff measure on Rn will be denoted by
Hs, and the Hausdorff dimension of a set E by dimH(E). A tube T is taken to mean the
intersection of an infinite tube with the unit ball B. The (n− 1)-dimensional measure of
a cross section of a tube T is denoted by w(T ) and is called (somewhat unconventionally)
the width of T . Our main result in this section, Theorem 4, links SDLP’s with the notion
of tube-null sets. In the remainder of the section we explore some elementary relations
between tube-nullity and other geometric measure theoretic notions.
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§4.1 Tube-nullity and SDLP’s.

As mentioned in the Introduction, it was proved in [CS3] that a subset E of B which, for
each ε > 0, can be covered by countably many parallel tubes with total width < ε, is
an SDLP. It was also noted in [CS3], without proof, that a countable union of SDLP’s is
an SDLP. (The proof is modelled on the classical one for divergence of one-dimensional
Fourier series which may be found, for example, in [K], pp. 55-57.) It is therefore natural
to expect that there is a condition similar to the one above, but which is stable under
countable unions, which is sufficient for being an SDLP.

Definition. A subset E of B is tube− null if, for every ε > 0, there exists a countable
collection of tubes {Tj}∞j=1 covering E such that

∑∞
j=1 w(Tj) < ε.

Note that this definition is stable under countable unions, that tube-nullity implies (clas-
sical) nullity and that if a subset E of B satisfies Hn−1(E) = 0, then E is tube-null.
Nevertheless the notion of tube-nullity is not very well understood geometrically. For
example, it seems not to be known whether there exist tube-null sets containing a unit
line segment in each direction. Csörnyei has recently shown ([Cs]) that there do exist
tube-null sets containing, in almost every direction, a unit line segment less a possible set
of one-dimensional measure zero. Preiss has subsequently shown ([Pr]) that all H2-null
minimal Besicovitch–Kakeya sets have the property that for each ε > 0, there exists a
collection of tubes of total width less than ε, for which, for almost every direction, the
part of the line with that direction not covered by the tubes is of one-dimensional measure
zero.

A consequence of Csörnyei’s result is that there exist sets A with H1(A) < ∞ but for
which it is not true that for almost every x ∈ A, almost every line through x meets A
in a finite set. This answers a question in Mattila’s book ([M] Remark 10.11, p.145) in
the negative. However the question remains open for purely unrectifiable sets, where its
interest is that it would clarify the analysis of the Besicovitch–Federer projection theorem.
(Specifically, a positive answer to this question for purely unrectifiable sets would show
that the third alternative in [M], Lemma 18.7, p. 253 was not needed. See also Remark
18.10, p. 258 of [M].)

Theorem 4. Let E ⊂ B be tube-null. Then E is an SDLP.

(By [CS1], any SDLP is automatically null.)

Proof of Theorem 4. The proof follows the broad lines of Theorem 5 of [CS3].

We first of all note that it is immaterial whether we use tubes or rectangles in the
definition of tube-nullity. Let (αm) be a positive sequence tending in a slowly varying
manner towards∞ and let (γm) be a positive sequence such that

∑∞
m=1 αmγ

1/2
m converges.

Let now F = {Tj} be a countable family of rectangles with
∑∞

j=1 w(Tj) ≤ εγ1, (where ε

is a small dimensional constant) and such that F covers E infinitely often. Now for all M
sufficiently large we may assume (at the expense of altering ε by a dimensional constant)
that that each Tj has size M−k ×M−k · · · ×M−k × 1 for some k ∈ N (where of course k
depends on the rectangle). Moreover we may assume that if two distinct such rectangles of
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the same size have parallel long directions then they are disjoint, and their cross-sections
have the same orientation (i.e. are translates of each other). Note that there are at most
M2k(n−1) rectangles of size M−k ×M−k · · · ×M−k × 1.

Claim. We may further assume that

(i) w(Tj+1) ≤ w(Tj) for all j, and

(ii) if Tj and Tj+1 are not parallel, then w(Tj) ≥ M (n−1)w(Tj+1).

Proof of Claim. Rename T1 := S1
1 . Consider now T2. If w(T2) < w(S1), rename T2 as

S1
2 . If w(T2) > w(S1), or if w(T2) = w(S1), and T2 and S1 are not parallel, decompose

T2 into Mn−1 w(T2)
w(S1)

parallel rectangles of smaller size with common width M−(n−1)w(S1).
Call these rectangles {Si

2}. Now consider T3. If w(T3) < (the common value of) w(Si
2),

rename T3 as S1
3 . If w(T3) > (the common value of) w(Si

2), or if w(T3) = w(Si
2) and T3

is not parallel to the (parallel) rectangles Si
2, decompose T3 into parallel rectangles of

smaller size with common width M−(n−1)w(Si
2). Call these rectangles {Si

3}.
Proceeding inductively, we arrive at Tj+1. We compare it with the parallel congruent

Si
j ’s from the previous step. If w(Tj+1) < w(Si

j), rename Tj+1 as S1
j+1. If w(Tj+1) >

w(Si
j), or if w(Tj+1) = w(Si

j) and Tj+1 is not parallel to the Si
2, decompose Tj+1 into

many parallel rectangles of smaller size with common width M−(n−1)w(Si
j). Call these

rectangles {Si
j+1}.

Finally, we reorder the {Si
j} lexicographically (i.e. {S1

1 , S2
1 , · · · , Si1

1 , S1
2 , S2

2 , · · · }) and
rename this sequence as {W1,W2, · · · }. Then w(Wj+1) ≤ w(Wj) for all j, and if Wj and
Wj+1 are not parallel, then w(Wj) > w(Wj+1), (and hence w(Wj) ≥ M (n−1)w(Wj+1)).
By construction the {Wj} continue to cover E infinitely often, and we have not altered
the sum of the measures of the rectangles in the collection. Q.E.D.

Let D >> 1 be given. We partition F into subfamilies Fl (1 ≤ l ≤ D(n−1)) with
the property that parallel congruent rectangles in any Fl of any given size R−1/2 × · · · ×
R−1/2×1 are DR−1/2 -separated. Let E(l) be the set of those x ∈ E which are in infinitely
many members of Fl; since every x ∈ E is in infinitely many members of F , each x ∈ E
belongs to some E(l). Since finite unions of SDLP’s are SDLP’s, it suffices to show that
each E(l) is an SDLP. Rename a typical E(l) as E.

Summarising, given D >> 1, we may assume that for all M sufficiently large, E is
covered infinitely often by members of a family F of rectangles which are of size M−k×· · ·×
M−k × 1 for various k ∈ N, which satisfies the conclusion of the Claim, for which parallel
congruent rectangles are separated by a factor D times their cross-sectional diameter and
for which

∑
T∈F w(T ) ≤ γ1.

Now let T be any rectangle of size R−1/2 × · · · × R−1/2 × 1 (where R = R(T )), and
denote by φT the translation and rotation of the function e2πiRx1φ(x1−3/2, R1/2x′) (from
Lemma 2 above) which is adapted to T .

Suppose we have a family G of parallel congruent rectangles of size R−1/2×· · ·×R−1/2×1
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such that distinct tubes are separated by DR−1/2. Lemma 2 implies that there is a fixed
absolute constant D0 depending only on the dimension n such that if D ≥ D0, then

(*) |
∑

T∈G
±SRφT (x)| ≥ C for all x ∈

⋃

T∈G
T,

where C is an absolute constant independent of the choice of ±.

For R fixed and F as above, let F∗ be a subfamily of F consisiting of those rectangles
of sizes either larger than ρ−1/2 × · · · × ρ−1/2 × 1 when ρ << R, or smaller than ρ−1/2 ×
· · · × ρ−1/2 × 1 when ρ >> R. Taking k > n− 1 in Lemma 2 and using the fact that the
number of rectangles of size M−l × · · · ×M−l × 1 is at most M2l(n−1) implies that

(**) |
∑

T∈F∗
±SRφT (x)| ≤ Ck

R(n−1)/2ρ(n−1)/2

(R + ρ)k
for all x ∈ B,

where Ck is an absolute constant independent of ±. In particular, when ρ has the same
order of magnitude as R, and F∗ consists of rectangles of size different from R−1/2 ×
· · · × R−1/2 × 1, we have the estimate |∑T∈F∗ ±SRφT (x)| ≤ c where c << C, by the
conclusions of the Claim.

Now let (jm) be a subsequence of N such that
∑∞

j=jm
w(Tj) ≤ γm. Let Am = {jm, jm+

1, . . . , jm+1 − 1}, Tm = {Tj : j ∈ Am}, and Em =
⋃

j∈Am
Tj . By replacing the sequence

(jm) by one tending more rapidly to infinity, (recall that the w(Tj) are decreasing), we
can arrange it so that no two congruent (hence parallel) rectangles lie in different Tm’s.

Fix m. Observe that there is a choice of ± such that

‖
∑

T∈Tm

±φT ‖22 ≤
∑

T∈Tm

‖φT ‖22 ≤ C
∑

T∈Tm

w(T ) ≤ Cγm.

Set fm =
∑

T∈Tm
±φT for that choice of ±. Then for each x ∈ Em, there is a Tx such

that x ∈ Tx ∈ Tm, Tx has size R−1/2× · · · ×R−1/2× 1 for some R depending on x and m
and, by (*), (**) and the conclusion of the Claim we have |SRfm(x)| ≥ C. (Consider the
contributions arising from rectangles congruent to Tx under (*) and the remainder under
(**).) Moreover, if p 6= m, then the members of Tp differ in cross-sectional diameter from
those of Tm by a multiplicative factor of at least M |p−m|. Hence by (**), for x ∈ B and
for each k > n− 1, if p > m

|SR(fp)(x)| ≤ CkR−(k−n+1)M−(p−m)(n−1)/2

while if p < m,
|SR(fp)(x)| ≤ CkR−(k−n+1)M−(m−p)(k−(n−1)/2).

Thus for x ∈ Em, and its associated R, SRfp(x) is negligible for p 6= m.

Set f =
∑∞

p=1 αpfp; then f ∈ L2 and supp f ∩ B = ∅. Moreover by the remark
at the end of the previous paragraph, if x ∈ Em, there is an R such that |SRf(x)| ∼
αm|SRfm(x)| ≥ Cαm, provided the sequence (αp) does not behave too wildly.
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Now if x ∈ E, there is a sequence mk such that x ∈ ⋂∞
k=1 Emk

; thus there is a sequence
Rmk

(depending on x), such that |SRmk
f(x)| ≥ Cαmk

for all k, and so
lim supR→∞ |SRf(x)| = ∞. Hence SRf(x) diverges on E, and E is therefore an SDLP.

Q.E.D.

One might ask whether the converse is true, i.e. whether being an SDLP implies
tube-nullity. At present, all known SDLP’s are also tube-null.

§4.2 Tube-nullity and measure conditions.

There is a strong connection between whether a set E is an SDLP, is tube-null and
whether or not it supports a measure µ with |||µ||| finite. It was asserted without proof
in Theorem 9 of [CS3] that a radial set which supports no measure µ with |||µ||| finite is
an SDLP; Proposition 6(a) below, in conjunction with Theorem 4 provides evidence for
this assertion, but we have not proved it in general.

Nevertheless, for now we wish to focus on two conditions motivated by this discussion
and which are related to tube-nullity. We recall that a tube is the intersection of an infinite
tube with the unit ball B. The following discussion is elementary.

Definition. A subset E of B is outer measure tube− null (OM tube-null) if for every
outer measure µ∗ satisfying µ∗(T ) ≤ Cw(T ) for all tubes T , E is µ∗ - null. A subset E
of B is Borel measure tube− null (BM tube-null) if for every positive Borel measure
µ satisfying µ(T ) ≤ Cw(T ) for all tubes T , E is µ - null.

Thus a set E is BM tube-null if and only if it supports no positive Borel measure µ with
|||µ||| < ∞.

Recall that in the case of s-dimensional Hausdorff measure Hs, the notions Hs-null,
null for every outer measure µ∗ satisfying µ∗(B) ≤ Cdiam(B)s and null for every Borel
measure µ satisfying µ(B) ≤ Cdiam(B)s (B being an arbitrary ball) all coincide. (This
is a consequence of Frostman’s Lemma.) A weak analogue for tube-nullity is as follows:

Proposition 5. Consider the following conditions on a Borel subset E of B:
(a) E is tube-null
(b) E is OM tube-null
(c) E is BM tube-null
(d) E is null (i.e. Hn-null)

Then (a) ⇐⇒ (b) =⇒ (c) =⇒ (d).
Moreover if the triple norm conjecture is true, then E an SDLP =⇒ E is BM tube-

null.

Proof.
(a) =⇒ (b).
Let µ∗ be an outer measure satisfying µ∗(T ) ≤ Cw(T ) for all tubes T . Let ε > 0. Cover
E by tubes Tj with

∑
w(Tj) < ε; then

µ∗(E) ≤ µ∗(∪Tj) ≤
∑

µ∗(Tj) < ε
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so that µ∗(E) = 0.

(b) =⇒ (a).
Define an outer measure ν∗ by ν∗(A) = infA⊂∪Tj

∑
w(Tj). If E is not tube-null, then

ν∗(E) > 0, and, as is easily checked, ν∗(T ) = w(T ) for all tubes T .

(a), (b) =⇒ (c).
If E is not BM tube-null, then there exists a Borel measure µ with µ(T ) ≤ Cw(T ) for
all tubes T but µ(E) > 0. Hence E is not tube-null (and indeed ν∗ as above provides an
outer measure for which E is not null).

(c) =⇒ (d).
Take µ to be Lebesgue measure restricted to E: certainly |||µ||| < ∞, and µ(E) = 0, so
that E is null.

Finally, if the triple norm conjecture is true and if E supports a Borel measure µ with
|||µ||| < ∞, then by Theorem 2 above, SRf(x) converges to zero µ-almost everywhere on
E when f ∈ L2 is supported outside B, and so E is not an SDLP. Q.E.D.

We shall see below in the discussion of the rotationally invariant case that (d) does not
imply (c), but we do not know whether (c) implies (a),(b). The problem in trying to show
that (c) implies (a) is that the measurable sets for the outer measure ν∗ may be very few
and far between. In particular, Borel sets E need not be ν∗–measurable as is seen by the
simple example E = [0, 1/2]× [−1/2, 1/2] and A = [−1/2, 1/2]× [0, δ]. While ν∗(A) = δ,
both ν∗(E∩A) and ν∗(Ec∩A) are both equal to δ too. Thus E is not ν∗-measurable. It is
not clear whether there are any ν∗–measurable sets for which the set and its complement
have positive measure. Wisewell [Wi] has shown (when n = 2) that if a ν∗-measurable
set is Lebesgue measurable, then either it or its complement is Lebesgue-null.

§4.3 The rotationally invariant case.

Consider a set of the form E = E′ × [−1, 1] ∩ B with E′ ⊂ Rn−1. Then the conditions
tube-nullity, OM tube-nullity, BM tube-nullity and being an SDLP are all equivalent and
are equivalent to Hn nullity of E or to Hn−1 nullity of E′.

More interesting is the rotationally invariant case as discussed in Section 3 above. In
accordance with the notation there, for a set F ⊂ [1/2, 1] let E = E(F ) = {x : |x| ∈ F}.
Once again, the discussion is elementary.

Proposition 6.
(a) If F is H1/2-null, then E is tube-null.

(b) E is BM tube-null if and only if F is null for every positive Borel measure µ0 satisfying

(7) sup
r>0

∫ ∞

r

s
1
2 dµ0(s)

(s− r)
1
2

< ∞.

(c) If E is tube-null then dimH(F ) ≤ 1/2.
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(d) E is null if and only if H1(F ) = 0.

Proof.

(a) Let ε > 0. Cover F by intervals I such that
∑

I |I|1/2 < ε. Then, for each I, E(I) can
be covered by O(|I|−n+3/2) tubes each of width |I|n−1 because of the curvature of the
sphere. So E can be covered by tubes of total width

∑
I |I|−n+3/2|I|n−1 =

∑
I |I|1/2 < ε.

Thus E is tube-null.

(b) The forward implication is obvious as (7) is the triple norm of the radial extension of
µ0. If E is not BM tube-null, then there is a Borel measure with |||µ||| < ∞ and µ(E) > 0.
By averaging µ over rotations, there will be a radial such µ. Thus F is not null for some
Borel measure µ0 satisfying (7).

(c) If E is tube-null, it is also BM tube-null by Proposition 5, and thus by (b), F is null
for every µ0 satisfying (7). Hence F has dimension at most 1/2.

(d) This is obvious by Fubini’s theorem.
Q.E.D.

If we take a set F ⊂ [1/2, 1] which is H1-null but of Hausdorff dimension strictly

larger than 1/2, then it will support a measure µ0 with sup
r>0

∫∞
r

s
1
2 dµ0(s)

(s− r)
1
2

< ∞. Thus the

implication (d) =⇒ (c) in Propositon 5 fails.

§4.4 Hausdorff dimension and tube-nullity.

As mentioned in the Introduction, it was proved in [CS3] that sets of Hausdorff dimension
less than n − 1 are SDLP’s. Here we improve this to include sets of σ-finite (n − 1) -
dimensional Hausdorff measure, and show that such sets are in fact tube-null.

Proposition 8. Let E ⊂ B a be set of σ-finite (n− 1) - dimensional Hausdorff measure.
Then E is tube-null.

Proof. Without loss of generality we may assume that Hn−1(E) < ∞.
Note first that by the structure theorem (see [M], p.205), if Hn−1(E) < ∞ then there

is a decomposition of E = E1 ∪E2, where E1 is an (n− 1)-rectifiable set and E2 is purely
(n− 1)-unrectifiable.

Also, by [M] Theorem 16.2 on p.222, or by Theorem 18.1 on p.250, there is an (n− 1)–
hyperplane V such that Hn−1(PV (E2)) = 0, where PV is the orthogonal projection onto
V. Thus E2 is tube null.

Moreover, by Theorem 15.21, p.214 in [M], there is a countable collection of (n − 1)–
dimensional C1 submanifolds, M1, M2, . . . , such that

Hn−1(E1 \
∞⋃

i=1

Mi) = 0,

Since Hn−1–null sets are tube-null, it is therefore enough to prove the proposition for
a set E which is an (n− 1)-dimensional manifold in Rn.
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We can assume that E is the graph of a C1 function φ; thus E = {(x̄, φ(x̄)) = Φ(x̄) :
x̄ ∈ U ⊂ Rn−1} where U is bounded and where we may assume that φ and its derivatives
are bounded on U . Let ε > 0. By the definition of the derivative of φ and the Littlewood
principles, there is an exceptional subset U ′ of U with Hn−1(U ′) < ε such that for x̄ ∈
U \U ′, E ∩Br(Φ(x̄)) is contained in an rε – neighbourhood of the tangent plane at Φ(x̄)
whenever r is sufficiently small. This is uniform in x̄ ∈ U \ U ′.

Now Hn−1(Φ(U ′)) < Cε and thus Φ(U ′) can be covered by tubes of total width less
than Cε.

For x /∈ U ′, E ∩ Br(Φ(x̄)) can be covered by tubes of total width Cεrn−1 and so
Φ(U \ U ′) can be covered by tubes of total width Cεrn−1 × r−(n−1) = Cε.

So E is tube-null and we are done.
Q.E.D.

Since there exist tube-null sets of Hausdorff dimension n (take E′ × [−1, 1] with E′

of dimension n− 1 but Hn−1(E′) = 0), there is no interesting smallness consequence (in
terms of Hausdorff dimension) of being tube-null. The radial case tells us that for each
s ∈ (n − 1/2, n), every radial set E of positive finite s-dimensional Hausdorff measure is
not tube-null and indeed supports a positive Borel measure µ (which we can take to be
Hs|E) with |||µ||| < ∞.

Thus

n− 1 ≤ sup{s : dimH(E) ≤ s =⇒ E tube-null} ≤ n− 1/2.

It would be of interest to determine the middle number in this chain of inequalities. It is
hoped to address this question in a future work.
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