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Abstract. We prove optimal radially-weighted L2-norm inequalities for the

Fourier extension operator associated to the unit sphere in Rn. Such inequal-

ities valid at all scales are well-understood. The purpose of this short paper
is to establish certain more delicate single-scale versions of these.

1. Introduction

Let n ≥ 2 and σ denote the induced Lebesgue measure on the unit sphere Sn−1 ⊂
Rn. We define the extension operator associated to Sn−1 to be the mapping g 7→
ĝdσ, where

ĝdσ(x) =
∫

Sn−1
g(ξ)e−2πix·ξdξ,

g ∈ L1(Sn−1) and x ∈ Rn. In this note we will be concerned with the validity
of certain weighted inequalities for this extension operator. The most well-known
conjectured inequality of this type is due to Mizohata and Takeuchi; see [9]. In
what follows µ will be a non-negative Borel measure on the unit ball B of Rn. For
such a measure we define

‖|µ‖| := sup
µ(T )

w(T )n−1

where the sup is taken over all infinite rectangles T in Rn with (n− 1) short sides
with common length w(T ) and remaining side doubly infinite.

Conjecture 1.1. There exists a constant C, depending at most upon n, such that
if the measure µ satisfies ‖|µ‖| < ∞ and R ≥ 1, then

(1)
∫

B
|ĝdσ(Rx)|2dµ ≤ C

‖|µ‖|
Rn−1

‖g‖2L2(Sn−1)

for all g ∈ L2(Sn−1).

This conjecture has been verified in the case where the measure µ is radial ; this
is done in both [2] and [4]. For more general weights very little is known beyond
some very special examples.
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In this note we will consider the versions of these inequalities which arise upon fixing
the scale R in Conjecture 1.1. (Both versions of this conjecture arise naturally in
a number of problems on the interface between harmonic analysis and geometric
measure theory; see for example [3], [5], [4], [6] and [12].) We now describe this
set-up, beginning with some notation.

Let R ≥ 1 be a (large) parameter which may now be considered fixed. For R−1 ≤
α ≤ R−1/2, let T (α, α2R) denote a rectangle (or “tube”) of arbitrary position
and orientation in Rn, having n − 1 short sides of length α and one long side of
length α2R; so at one extreme, T (α, α2R) is a cube of side R−1, and at the other,
T (α, α2R) is a rectangle of long side of length 1 and n − 1 short sides of length
R−1/2.

We test our extension operator on the standard examples that generate the classical
Restriction Conjecture for the Fourier transform (see [10]). One simply takes the
function g to be an arbitrary (modulated) characteristic function of a δ-ball in Sn−1;
i.e. g(ξ) = eia·ξχ(ξ) where a ∈ Rn, and χ is the characteristic function of a δ-ball
in Sn−1 for some 0 < δ ≤ 1. The fact that |ĝdσ(Rx)| is large on a suitable tube
suggests the possibility that the inequality

(2)
∫

B
|ĝdσ(Rx)|2dµ ≤ C

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
‖g‖2L2(Sn−1),

might hold for all g ∈ L2(Sn−1). Here C is a constant depending on at most n.
Observe that this has the correct homogeneity in the sense that the multiscale
inequality (1) would be a consequence of this on letting R → ∞; the key point
being that for any rectangle T (α, α2R),

µ(T (α, α2R))
αn−1

≤ ‖|µ‖|

uniformly in α and R.

This observation also shows that the condition ‖|µ‖| < ∞ is necessary for an in-
equality of the form (1) to hold uniformly in R.

Unlike in the multi-scale situation, this single-scale inequality (2) turns out to be
false even for radial µ. Curiously however, in the radial case, we are able to prove
a slightly weaker statement which is, nonetheless, optimal (up to multiplicative
constants). This is the content of our main theorem.

Theorem 1.2. Let µ be a non-negative radial Borel measure supported on B. There
exists a constant 0 < C < ∞, depending on at most n, such that

(3)
∫

B
|ĝdσ(Rx)|2dµ ≤ C

log log R

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
‖g‖2L2(Sn−1)

for all g ∈ L2(Sn−1) and R ≥ 1. Conversely, there exists a constant 0 < c < ∞,
depending on at most n, such that for each R ≥ 1, there is a non-negative radial
Borel measure µ supported on B for which∫

B
|d̂σ(Rx)|2dµ ≥ c

log log R

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
.
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It should be remarked that although inequality (3) is sharp, it just fails to possess
the correct homogeneity to imply the corresponding multiscale inequality (inequal-
ity (1) for µ radial).

Although the main result concerns radial measures, its proof contains some inequal-
ities for general measures which are perhaps of interest. These we mention as a
Corollary below.

Inequality (2) fails more dramatically (by a power of R) for arbitrary Borel measures
µ, rather than just by a factor of log log R in the radial case. This can be seen as a
consequence of work of Iosevich and Rudnev [7]. Further counterexamples in this
context may be found in [1].

In the next section we establish some preliminary lemmas, and in Section 3 we
give a proof of Theorem 1.2, and some further remarks concerning its formulation.
Finally in Section 4 we make some remarks on known variants of inequality (2) for
general (i.e. non-radial) measures µ in two dimensions.

Notation. For non-negative quantities X and Y we use X . Y (X & Y ) to denote
the existence of a positive constant C, depending on at most n, such that X ≤ CY
(X ≥ CY ). We write X ∼ Y if both X . Y and X & Y .

2. Lemmas

As we shall see, since our measures µ are radial, we may quickly reduce the proof
of Theorem 1.2 to certain uniform estimates for ordinary Bessel functions. The fol-
lowing lemma makes a connection between the relevant Bessel function asymptotics
and expressions of a geometric nature involving tubes. Here we shall use dHn−2 to
denote the n− 2 dimensional Hausdorff measure on Rn.

Lemma 2.1. Let 0 < α ≤ β, r > 0 and u, ω ∈ Sn−1 with u · ω = 0. We define a
rectangle T = Tr,ω,u(α, β) ⊂ Rn as follows:

(1) T has n− 1 short sides of length α and one long side of length β.
(2) T is centred at the point rω, and has direction u.

If

(4) β2 > 8rα + 4α2,

and x ∈ Rn is such that

(5) r + α ≤ |x| ≤
√

r2 +
β2

4
,

then the quantity

In(x, r, α, β) :=
∫

Sn−1

∫
{u∈Sn−1:u·ω=0}

χTr,ω,u(α,β)(x) dHn−2(u) dσ(ω)

satisfies

(6) In(x, r, α, β) ∼ αn−1

|x|n− 3
2 (|x| − r)

1
2
.
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Proof. We begin by observing that In(x, r, α, β) is a radial function of x, and that
the integral ∫

Sn−1
χTr,ω,u(α,β)(t|x|) dσ(t)

is independent of ω and u. Using these observations and Fubini’s Theorem, we may
write

In(x, r, α, β)

=
1

cn−1

∫
Sn−1

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

χTr,ω,u(α,α2R)(t|x|) dHn−2(u) dσ(ω) dσ(t)

=
1

cn−1

∫
Sn−1

χTr,ω′,u′ (α,α2R)(t|x|) dσ(t),

where cn−1 denotes the volume of the unit sphere in Rn, and ω′ and u′ are arbitrary
points on Sn−1 with u′ · ω′ = 0. For convenience we choose ω′ = (0, 0, . . . , 1) and
u′ = (1, 0, . . . , 0).

Now fix x ∈ Rn and set ρ = |x|. By (4) we have that√
r2 +

β2

4
> r + α.

To obtain (6) in the region (5), we must calculate the proportion of ρSn−1 that
intersects Tr,ω′,u′(α, β). This intersection is an “ellipsoid” in ρSn−1 with length
|P −Q| in one direction and α in the remaining n− 2 directions. Here

P =
(√

ρ2 − (r + α)2, 0, . . . , 0, r + α
)

and Q =
(√

ρ2 − r2, 0, . . . , 0, r
)

.

Hence

In(x, r, α, β) ∼ |P −Q|αn−2

ρn−1
,

and since

|P −Q|2 ∼ α2 +
(√

ρ2 − r2 −
√

ρ2 − (r + α)2
)2

∼ α2

(
1 +

(2r + α)2

ρ2 − r2

)
∼ α2ρ

ρ− r
,

we obtain (6). �

The following Lemma summarises the relevant Bessel function estimates. See, for
example [2] for a proof.

Lemma 2.2. For ν ≥ 0, there exists a universal constant C > 0 such that

(1) for 0 < r ≤ 1,

|Jν(r)| ≤ C
(r

2

)ν 1
Γ(ν + 1)



LOCALISED WEIGHTED INEQUALITIES FOR THE EXTENSION OPERATOR 5

(2) for r ≥ 1,

|Jν(r)| ≤ Cr−1/2 min

{
ν1/6,

∣∣∣∣r + ν

r − ν

∣∣∣∣1/4
}

.

Incidentally, Lemma 2.2 fails to reflect a certain exponential decay of Jν(r) present
in the region 1 ≤ r ≤ ν (see for example [11] for explicit details of this). Given
this, it is perhaps of little surprise that we shall only need to use our geometric
representation (given by Lemma 2.1) of these asymptotic estimates for Jν(r) in the
region r ≥ ν.

3. The proof of Theorem 1.2

We begin by constructing an example showing that our inequality is optimal.

Let µ be a radially non-increasing Borel measure supported in B. Observe that the
supremum in the right side of (2) is attained by a rectangle, centred at the origin,
and whose long side is parallel to the x1-axis. For this rectangle T = T (α, α2R) we
have that

(7)
1

αn−1
µ(T (α, α2R)) .

1
α

∫ α

0

tdµ(t) +
∫ α2R

α

dµ(t).

Next we define a sequence of positive real numbers {αj}k
j=0 by setting α0 = 0,

α1 = 2
R and

αj+1 = Rα2
j for 2 ≤ j < k,

where k is such that αk ∼ R−1/2. We now define the measure µ by

dµ(t) =
k∑

j=0

1
αj+1

χ(αj ,αj+1](t) dt.

Observe that since αj = 22j−1

R , we have that

(8) k ∼ log log R.

Let g ≡ 1. Using the well-known asymptotic formula (see [10])

d̂σ(x) = c|x|−
n−1

2 cos(|x| − π/4) + O
(
|x|−

n+1
2
)
; |x| → ∞,

and the nature of the measure µ, we obtain the lower bound

(9)
∫
|d̂σ(Rx)|2dµ(x) &

1
Rn−1

∫
1
R≤|x|≤1

1
|x|n−1

dµ(x) &
log log R

Rn−1
.

This gives the desired inequality since by (7),

sup
R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
. 1.

In order to prove the positive part of Theorem 1.2 we decompose g into its spherical
harmonics, writing

g =
∑

`

a∑̀
m=1

c`,mY `
m,
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where Y `
m denotes the m’th standard basis element of the spherical harmonics of

order `. By a standard orthogonality argument it is enough to show that

(10) J :=
∫
|x|<1

|Jν(Rx)|2

|Rx|n−2
dµ(x) .

log log R

Rn−1
|||µ|||R,

where

|||µ|||R := sup
R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
and ν = ν(`) = ` + n−2

2 . To this end we break up J according to the behaviour
of the Bessel function Jν (see Lemma 2.2), writing J = J1 + J2 + J3 + J4 + J5,
where

J1 =
∫
|Rx|≤1

|Jν(Rx)|2

|Rx|n−2
dµ(x),

J2 =
∫

1≤|Rx|≤ ν
2 , |x|≤1

|Jν(Rx)|2

|Rx|n−2
dµ(x),

J3 =
∫

ν
2≤|Rx|≤ν−2ν

1
3 , |x|≤1

|Jν(Rx)|2

|Rx|n−2
dµ(x),

J4 =
∫

ν−2ν
1
3≤|Rx|≤ν+2ν

1
3 , |x|≤1

|Jν(Rx)|2

|Rx|n−2
dµ(x)

and

J5 =
∫
|Rx|≥ν+2ν

1
3 , |x|≤1

|Jν(Rx)|2

|Rx|n−2
dµ(x).

We now obtain the required bounds for each of the Ji with 1 ≤ i ≤ 5.

From our geometric point of view, the most interesting and significant term here
is J5 (see the remark after the statement of Lemma 2.2). Although the argu-
ments for the remaining terms are relatively straightforward, we include them for
completeness.

By Lemma 2.2 and the fact that ν ≥ n−2
2 ,

J1 ≤ µ(B(0, R−1)) .
1

Rn−1
|||µ|||R.

Here we are using the fact that if α = R−1, then T (α, α2R) is simply a ball of
radius R−1.

By a straightforward dyadic decomposition, and Lemma 2.2 again, we have that

J2 .
1
ν

∑
1≤2k≤ ν

2

1
2k(n−2)

µ(B(0, R−12k)).

Covering the ball B(0, R−12k) with a union of (essentially disjoint) tubes of the

form T = T (α, α2R), where α = 2
k
2

R , of which there are a total of O(2
k
2 (n−2)),

quickly leads to the required bound.

We now turn to J4, and cover the annulus

Ω =

{
x ∈ Rn :

ν

R
− 2ν

1
3

R
≤ |x| ≤ ν

R
+

2ν
1
3

R

}
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with O(ν
2
3 n−1) tubes T = T (α, α2R), where α ∼ ν1/3/R, having bounded overlap.

Thus by Lemma 2.2,

J4 .
1

νn− 4
3

∫
Ω

dµ(x) .
1

νn− 4
3

∑
T

∫
T (α,α2R)

dµ(x) .
1

Rn−1
|||µ|||R.

In order to bound J3 we let

Ωj :=
{

x ∈ Rn :
ν

R
− 2j+1 ν1/3

R
≤ |x| ≤ ν

R
− 2j ν1/3

R

}
,

and, using Lemma 2.2, write

J3 .
∑

1≤2j.ν2/3

1

Rn−2νn− 4
3 2

j
2

∫
Ωj

dµ(x),

and continue as in the case of J4, where for each j the corresponding value of α is
2jν

1
3 R−1.

We now turn to J5, where by Lemma 2.2 we have

J5 .
1

Rn−1

∫
ν
R + 2ν

1
3

R ≤|x|≤1

1
|x|n− 3

2 ||x| − ν
R |

1
2
dµ(x).

In order to bound this term we define a sequence {αj} by α1 = 2ν
1
3

R and

αj+1 =
α4

jR
2

2r
=

2
1
3+ 2

3 4j

ν
1
3

R
, j ≥ 1.

Let k be such that ν
R + αk ∼ R−1/2. As before we note that

k ∼ log log R.

We now write

J5 .
1

Rn−1

k∑
j=1

∫
ν
R +αj≤|x|≤ ν

R +αj+1

1
|x|n− 3

2 ||x| − ν
R |

1
2
dµ(x),

and apply Lemma 2.2 for each j, with r = ν
R , α = αj and β

2 = α2
jR, to obtain

J5 .
1

Rn−1

k∑
j=1

1
αn−1

j

∫
ν
R +αj≤|x|≤ ν

R +αj+1

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

χT ν
R

,ω,u(αj ,α2
jR)(x) dHn−2(u) dσ(ω) dµ(x)

.
1

Rn−1

k∑
j=1

∫
Sn−1

∫
{u∈Sn−1:u·ω=0}

µ(T ν
R ,ω,u(αj , α

2
jR))

αn−1
j

dHn−2(u) dσ(ω)

.
log log R

Rn−1
|||µ|||R,

as required.

Corollary 3.1. For all Borel measures µ supported in B,∫
|x|<1

|Jν(Rx)|2

|Rx|n−2
dµ(x) .

log log R

Rn−1
‖|µ‖|R.
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Proof. In the proof of (10) we at no point used radiality of µ. �

In particular, taking ν = 0, we have that for arbitrary Borel measures µ,∫
|x|<1

dµ(x)
|x|n−1

. log log R |||µ|||R.

Remarks

1. In retrospect, the conjecture that (2) might hold was a little hasty. It was
generated only by the single family of examples described, and we did not even
take account of the effect of the tails of the expressions |ĝdσ(Rx)|. Considering the
case δ ∼ 1, we should therefore have included “tail” terms such as

(11) sup
y

∫
1/R≤|x−y|≤1

dµ(x)
|x− y|n−1

into consideration of necessary conditions. The fact is that, by the remark following
the above Corollary, and translation invariance of ‖|·|‖R, this term (11) is automat-
ically controlled by |||µ|||R up to a factor of log log R. When µ is radial, the tails
occurring in the (unmodulated i.e. y = 0) cases δ << 1 are controlled by the same
mechanism, using explicit rotation invariance. However when y 6= 0, and δ << 1,
it is perhaps simplest to use the theorem itself to see that the contributions from
the tails (analogous to (11)) are dominated by log log R ‖|µ‖|R.

In the case of general measures, it is easy to see that all the “tail” terms such as
(11) are dominated by log R ‖|µ‖|R. (For (11) one uses a dyadic decomposition of
{1/R ≤ |x − y| ≤ 1} and then tubes pointing along rays through y.) However, as
we have noted above, (2) fails polynomially in R for general measures µ.

2. If the Mizohata–Takeuchi Conjecture 1.1 is correct, it can be rescaled to obtain
the scale-invariant inequality∫

Rn

|ĝdσ(x)|2dµ ≤ C‖|µ‖| ‖g‖2L2(Sn−1)

for all g ∈ L2(Sn−1). (There is now no condition on the support of µ.) However, it
is not necessary that ‖|µ‖| be finite in order to have

(12)
∫

Rn

|ĝdσ(x)|2dµ ≤ K(µ)‖g‖2L2(Sn−1).

Indeed, taking dµ(x) = w(x)dx, inequality (12) holds with K(µ) = ‖w‖(n+1)/2;
this is the content of the Stein–Tomas restriction theorem. And, of course, the
quantities ‖w‖(n+1)/2 and ‖|µ‖| are not comparable. On the other hand, testing on
the usual examples gives the necessary condition

(13) sup
{

µ(T )
Nn−1

: T an N ×N · · · ×N ×N2 tube, N ≥ 1
}

< ∞

for (12) to hold. The quantity ‖|µ‖| is the smallest dilation-invariant functional
of µ which is larger than that generated by (13). And by Hölder’s inequality,
(13) ≤ ‖w‖(n+1)/2 when dµ(x) = w(x)dx. On the other hand, (13) is not sufficient
for (12) to hold, as the result of the present paper (or [7]) shows.
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4. Remarks on localised inequalities for general measures in two
dimensions

Although inequality (2) fails by as much as a power of R for general measures µ
(see [7]), there are certain closely related variants of it which are true, possibly up
to logarithmic factors. We briefly describe here two such variants (the forthcoming
inequalities (14) and (15)), neither one of which implies the other. Both originate
in work on the Falconer distance set conjecture (see [8]). We omit the proofs due
to their close proximity to arguments already well established in the literature.

A variant based on an argument of Erdog̃an. A careful inspection of the
arguments in [6] (see also [5]) leads to the following two-weighted inequality for
the extension operator in two dimensions. The subsequent variant of inequality (2)
follows as a corollary.

In what follows T (α, β) will denote a rectangle in the plane of short side α and
long side β, and Tω(x;α, β) will be used to denote the rectangle T (α, β) centred at
x ∈ R2 and pointing in the direction ω ∈ S1. B will denote the unit ball in R2, and
σ the induced Lebesgue measure on the unit circle S1 ⊂ R2.

Theorem 4.1. Let µ be a Borel measure supported in B. Then there exists an
absolute constant 0 < C < ∞ such that for all R ≥ 1 the a-priori inequality∫

B
|ĝdσ(Rξ)|2dµ ≤ C

log R

R

∫
S1
|g(ω)|2MRµ(ω)dσ(ω)

holds. Here the maximal function MR is given by

MRµ(ω) = sup
R−1≤α≤R−1/2

sup
T ||ω

T=T ((αR)−1,1)

(
1
|T |

∫
T

(
µ(Tω(x;α, α2R))

|Tω|

)2

dx

)1/2

.

Corollary 4.2. There exists a constant 0 < C < ∞ such that
(14)∫

B
|ĝdσ(Rξ)|2dµ ≤ C

log R

R
sup

R−1≤α≤R−1/2
sup

T=T (α,α2R)

T ′=T ′((αR)−1,1)
T⊂T ′,T ||T ′

{
µ(T )µ(T ′)
|T ||T ′|

}1/2

‖g‖22,

for all Borel measures µ supported in the unit ball, R ≥ 1 and g ∈ L2(Sn−1).

A variant based on an argument of Bourgain. A careful inspection of the
arguments in [3] leads to the following variant of inequality (2). This observation
is due to Ana Vargas.

Theorem 4.3. There exists a constant 0 < C < ∞ such that

(15)
∫

B
|ĝdσ(Rξ)|2dµ ≤ C

(log R)1/3

R5/6
sup

T=T (R−1/2,1)

{
µ(T )
|T |

}1/3

‖µ‖2/3
2 ‖g‖22,

for all Borel measures µ supported in the unit ball, R ≥ 1 and g ∈ L2(Sn−1).
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