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Abstract. For a general class of semilinear equations ∆u − F (x, u) = 0
in a Lipschitz domain Ω ⊂ M , where M is a smooth compact Riemannian
manifold, we establish the existence and uniqueness of solutions to Dirichlet
and Neumann boundary problems. The main contribution of this paper is
that we consider ‘rough’ boundary data that are typically just Lp(∂Ω) func-
tions. Results of this type for the linear equation are typically obtained using
singular integral techniques.

1. Introduction

The gap between linear and nonlinear partial differential equations is quite
substantial. Often, sharp results proven for linear equations have no equiva-
lent when we move to more general nonlinear setting.

The main aim of this paper is to bridge this gap for a class of semilinear
elliptic equations

∆u− F (x, u) = 0 in Ω, (1.1)

where Ω is a bounded connected Lipschitz domain in a Riemannian manifold
M of dimension n ≥ 3. The restriction n ≥ 3 is a convenience, it is connected



to the fact that the fundamental solution to the Laplace equation has a
different form when n = 2. However, there is no fundamental difficulty in
extending our treatment to two dimensions. We do not consider closely this
case only because we do not want to further complicate our arguments.

The linear version of this equation with F (x, u) = V (x)u (and also with
F (x, u) = 0) has generated substantial interest with the aim of establishing
existence and uniqueness of Dirichlet and Neumann boundary problems on Ω
with ‘rough’ boundary data. Here ‘rough’ means that typically the solution
u on the boundary should be just an element of Lp(∂Ω). A first result of this
nature for Dirichlet problem is due to Dahlberg [8], who used estimates on
harmonic measure. A breakthrough came after A. P. Calderón established a
result on singular integrals on Lipschitz curves [2]. This paper was followed by
the work of Coifman, McIntosh and Meyer who generalized Calderón’s result
in [5]. Soon, utilizing singular integral technique, Verchota in [27], Fabes,
Jodeit and Rivère in [11], Dahlberg and Kenig in [9] and others established
existence and uniqueness for Dirichlet and Neumann problem on Lipschitz
and C1 domains. Let us remark, that all mentioned work was done for a flat
Rn space with the standard Laplace operator.

On the other hand, Isakov and Nachman [14] recently considered the two
dimensional version of the equation (1.1) on a bounded planar Lipschitz
domain Ω with F (x, 0) = 0. Their approach is purely variational with use of
maximum principle. The result on the Dirichlet problem obtained by them
requires bounded boundary data and having at least half derivative, i.e.,
H1/2,2(∂Ω). Here Hs,p stands for a standard Sobolev space of Lp integrable
functions 1 ≤ p ≤ ∞, with s derivatives, s ∈ R. For the nonlinear equation
(1.1) in dimension greater than two one interesting result we know about is in
the book by Gilbarg and Trudinger [13]. Their assumption on the boundary
data is H(2p−1)/p,p with p > n. They also require the boundary to be at
least C2,α. Another result on existence of positive solutions can be found in
the paper by Chen, Williams and Zhao [6]. These authors assume that the
boundary data are in L∞ and small.

Recently, further development has been made for the linear equation.
Mitrea and Taylor [23], [24] and [25] managed to substantially generalize
previous results. Namely, they brought the whole subject into much more
general variable coefficient setting - on Riemannian manifolds. The author



using their work later considered C1 domains on Riemannian manifolds in
[7]. It turned out that again Lp boundary data are enough to establish
uniqueness and existence results.

Still, the gap between the linear and nonlinear equation (1.1) remained.
The problem was that the main tool used to establish solution of (1.1) is
usually a certain version of fixed point theorem used in some background
Banach space. Up to now all attempts tried to make use of Sobolev spaces
on Ω. This approach does not seem work for the results we would like to
obtain. In particular, if we prescribe Lp(∂Ω) Dirichlet boundary data and
try to look for a solution in Hp,1/p(Ω) we fail, since we do not have the trace
theorem for the space Hp,1/p(Ω).

In the work [7] we introduced Banach spaces that seem to be very con-
venient to work with. Interior regularity results for (1.1) guarantee that the
solution u is inside Ω quite regular (of the class C1+β

loc (Ω) for any β < α),
where α is the regularity of the metric tensor. On the other hand, having Lp

boundary data on ∂Ω means that this regularity cannot be preserved up to
the boundary. Hence this fact has to be dealt with. As we will see in the next
section the introduced spaces Ds,p are exactly the ‘right’ ones, which allow
us to reconcile interior smoothness with rougher behavior when approaching
boundary ∂Ω.

The use of these newly defined spaces will allow us to establish results
for the equation (1.1) equivalent to those for the linear case. Moreover, it
seems very likely that the work presented here could be pushed further for
more general nonlinear terms a(x, u). This will be the topic of our next
paper, where we relax the condition (1.6) and allow polynomial growth of
the function a in the variable u.

The organization of this paper is following. After we define and establish
properties of the Banach spaces Ds,p in Section 2, we study actions of the
linear operator L = ∆−V in Section 3. In Section 4 we prove certain uniform
estimates which do not appear in [23]-[25] or [7]. The fifth section is devoted
to the equation (1.1) and its variants for boundary data in Lp and the last
section for boundary data in the Hardy space ~1, the Hölder space Cβ and
the space bmo.

We treat the equation (1.1) in slightly different form. If the function



F (x, u) is differentiable in u we can write

F (x, u) = a(x, u)u + f, (1.2)

where f(x) = F (x, 0) and

a(x, u) =
∫ 1

0

∂

∂u
F (x, tu) dt. (1.3)

Hence, we can consider instead of (1.1) the equation

∆u− a(x, u)u = f in Ω. (1.4)

The main results we obtain are the following. If a(x, u) ∈ L∞(Ω×R) and
a(x, u) ≥ 0 then for 2−ε < p ≤ ∞ the Dirichlet problem (1.4) with boundary
data u

∣∣
∂Ω

= g ∈ Lp(∂Ω) has a solution for any f in a Banach space X such
as described in Theorem 5.5. If in addition for b(x, u) = a(x, u)u we have

∂

∂u
b(x, u) ∈ L∞(Ω× R) and

∂

∂u
b(x, u) ≥ 0, (1.5)

then the solution is unique. Moreover, if g ∈ Cβ(∂Ω), then u ∈ Cβ(Ω) for
some β > 0 small. Also if g ∈ bmo(∂Ω) then the exponential of the maximal
operator aM0u is integrable on ∂Ω for some a small (depending on the norms
of f and g).

Similarly, the Dirichlet regularity problem is solvable for any 1 < p < 2+ε

and g ∈ H1,p(∂Ω) under essentially the same assumptions. For p = 1 the
same is true for g ∈ H1,1(∂Ω), where H1,1 is the Hardy-Sobolev space.

The Neumann problem (1.4) with ∂νu
∣∣
∂Ω

= g ∈ Lp(∂Ω) is solvable for
1 < p < 2 + ε, provided for some function q ≥ 0 on Ω and q > 0 on a set of
positive measure in Ω we have:

a(x, u) ∈ L∞(Ω× R), inf
u∈R

a(., u) ≥ q(.). (1.6)

If in addition for b(x, u) = a(x, u)u we have

∂

∂u
b(x, u) ∈ L∞(Ω× R) and inf

u∈R
∂

∂u
b(., u) ≥ q(.), (1.7)

then the solution is unique.



In Section 6 we also establish an endpoint result for the Neumann problem
for p = 1. In such case we replace L1(∂Ω) by the Hardy space ~1(∂Ω). The
claim is that given g ∈ ~1(∂Ω) and f in Lr(Ω) or in D0,1 (see the definition
in section 2) the solution to the equation (1.4) exists, provided (1.6) is true.
Uniqueness is guaranteed if (1.7) holds.

If f = 0 and g ∈ L∞(∂Ω) we can relax the condition on the function a.
In such case we can assume that

for any M ∈ (0,∞) we have: sup
u∈[−M,M ]

x∈Ω

|a(x, u)| < ∞, a(x, u) ≥ 0. (1.8)

Then the Dirichlet problem with u
∣∣
∂Ω

= g has at least one solution. A
condition similar to (1.8), namely

for any M ∈ (0,∞): sup
u∈[−M,M ]

x∈Ω

∣∣∣∣
∂

∂u
b(x, u)

∣∣∣∣ < ∞ and
∂

∂u
b(x, u) ≥ 0,

(1.9)
guarantee uniqueness. Here b(x, u) = a(x, u)u. Again we also have a regu-
larity result, i.e., given g ∈ Cβ(∂Ω) (β > 0 small), the solution u ∈ Cβ(Ω),
provided (1.8) holds. If we have (1.8) and also

(i) either lim
u→∞

(sup
x∈Ω

a(x, u)) < ∞ or lim sup
u→∞

( inf
x∈Ω

a(x, u)) > 0,

(1.10)

(ii) either lim
u→−∞

(sup
x∈Ω

a(x, u)) < ∞ or lim sup
u→−∞

( inf
x∈Ω

a(x, u)) > 0,

then the solution u ∈ L∞(Ω) to the Dirichlet problem (1.4) exists, provided
f ∈ L∞(Ω) and g = u

∣∣
∂Ω
∈ L∞(∂Ω). Also the Cβ regularity result holds.

2. The Banach spaces Ds,p

In this section we introduce a new class of Banach spaces Ds,p, for s ≥ 0
and 1 ≤ p ≤ ∞. As we will see later, these spaces turn out to be extremely
useful for the considered semilinear elliptic problem. The spaces Ds,p with
s = 0 were introduced in [7]. Also a very useful interpolation theorem can
be found there (Proposition B.7).

Our goal here is to give more general definition for any s ≥ 0, and prove
results about interpolation, embedding and traces for these spaces.



Consider the same settings as we outlined in the introduction. Let M be
a smooth compact n-dimensional Riemannian manifold with a Riemannian
metric tensor, which is assumed to be in Hölder class Cα, for some α >

0. It means that, M can be covered by local coordinate charts with the
components gjk of the metric tensor being of the Hölder class Cα.

Let Ω be a open, connected subset of M with Lipschitz boundary. That
is for any point of the boundary ∂Ω, we can find a small neighborhood U of
this point such that in this neighborhood there are smooth local coordinates
in which

U ∩ Ω = {x = (x′, xn) ∈ U ; |x′| < c and ϕ(x′) < xn < ϕ(x′) + c}, (2.1)

for some c > 0 small. Here ϕ : Rn−1 → R is a Lipschitz function with
Lipschitz constant bounded by L. L and c does not depend on chosen point
x ∈ ∂Ω. We use notation x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R.

Given any K > L, consider nontangential approach regions (cones) γ(z)
to any point z = (z′, ϕ(z′)) ∈ ∂Ω such that the vertex of the cone γ(z) at z

is sharp enough. Namely, we require that any half-ray with vertex at z that
lies in γ(z) has “steepness” (absolute value of its slope) at least K. Hence

γ(z) = {y = (y′, yn); yn − zn > K|y′ − z′| and yn < ϕ(y′) + c}. (2.2)

Naturally, the approach region γ(z) depends on the coordinates (2.1) and
the constant K. Hence, for a different choice of coordinates or the constant
K, we get different approach regions γ′(z). Nevertheless, as we will se later,
the norms we define using γ(z) and γ′(z), respectively, are equivalent. Thus,
a particular choice of the coordinates or the constant K is not important.

Assume therefore, that we have defined the nontangential approach region
γ(x) for any x ∈ ∂Ω and some constant K > L. Clearly, there is a collar
neighborhood C of ∂Ω (i.e., C = {x ∈ M ; dist(x, ∂Ω) < ε}, for some ε > 0),
such that the union of all γ(x) covers C ∩Ω and moreover for any z ∈ C ∩Ω
the n− 1 dimensional surface measure of the set

{x ∈ ∂Ω; z ∈ γ(x)}

is proportional to (dist(z, ∂Ω))n−1.



Let f : Ω → R be a function on Ω. For any s ≥ 0 and x ∈ ∂Ω we consider
the number

Msf(x) =

{ ‖f
∣∣
γ(x)

‖Cs(γ(x)), for s not an integer,
∑
|α|≤s ‖Dαf

∣∣
γ(x)

‖L∞(γ(x)), for integer s,
(2.3)

where f
∣∣
γ(x)

means the restriction of f to the set γ(x). The norm considered
in the first line of (2.3) is the Hölder norm of the space Cs(γ(x)). Hence we
have that

Msf(x) =
∑

|α|≤s

sup
z∈γ(x)

|Dαu|, if s ∈ Z,

Msf(x) =
∑

|α|≤k

sup
z∈γ(x)

|Dαu|

+
∑

|α|=k

sup
z,z′∈γ(x)

|Dαu(z)−Dαu(z′)|
dist(z, z′)s−k

, otherwise. (2.4)

Here k is the integer part of s, α = (α1, α2, . . . , αn) is a multiindex (|α| =∑
αi). Of course, we allow the numbers Msf(x) to be infinite. We are ready

to proceed. Denote by Ω̃ the set Ω \ {x ∈ M ; dist(x, ∂Ω) ≤ ε
2}. The number

ε we take here is the same that appears above in the definition of the collar
neighborhood C. Hence Ω̃ was chosen such that Ω̃ ⊂⊂ Ω and Ω̃ ∪ C = Ω.

Definition 2.1. Let s ≥ 0 and 1 ≤ p ≤ ∞. Consider the set

Ds,p = {f : Ω → R;Msf ∈ Lp(∂Ω) & ‖f
∣∣
Ω̃
‖Cs(Ω̃) < ∞} s /∈ Z,

Ds,p = {f : Ω → R;Msf ∈ Lp(∂Ω) & sup
|α|≤s

x∈Ω̃

|Dαf(x)| < ∞} s ∈ Z, (2.5)

where by Lp(∂Ω) we denoted the space of Lp integrable functions on ∂Ω.
Then Ds,p equipped with the norm

‖f‖Ds,p = ‖Msf‖Lp(∂Ω) + ‖f ∣∣
Ω̃
‖Cs(Ω̃), s /∈ Z,

‖f‖Ds,p = ‖Msf‖Lp(∂Ω) +
∑

|α|≤s

‖Dαf‖L∞(Ω̃), s ∈ Z, (2.6)

is a Banach space.



Remark 2.2. Notice that if p = ∞ then Ds,p = Cs(Ω), for s not an integer
and D0,p = L∞(Ω).

There are several issues that have to be dealt with. First of all, one need
to check that (2.6) defines a norm that makes the space Ds,p complete. We
skip the proof since it is quite straightforward and is based on the fact that
any Cauchy sequence (fn)n∈N in Ds,p is also Cauchy in Cs

loc(Ω). This gives
us a natural candidate for the limit of this sequence.

The second issue has to do with the way the space Ds,p was defined. Our
definition depends on nontangential regions γ(.), hence it seems conceivable
that a different collection of these regions might yield different space. The
following lemma settles this matter and shows that for 1 ≤ p ≤ ∞, if we
choose a different collection of nontangential approach regions {γ′(x); x ∈
∂Ω} then the resulting spaces Ds,p and their norms are equivalent to those
we obtained using the original collection {γ(x); x ∈ ∂Ω}.
Lemma 2.3. Consider one coordinate chart of the form (2.1). Let K ≥
K ′ > L, c, c′ > 0 and consider the nontangential regions

γ(z) = {y = (y′, yn); yn − zn > K|y′ − z′| and yn < ϕ(y′) + c}
γ′(z) = {y = (y′, yn); yn − zn > K ′|y′ − z′| and yn < ϕ(y′) + c′}.

(2.7)

For 1 ≤ p ≤ ∞ and s ≥ 0, let Ds,p be the Banach space from Definition 2.1

using the collection {γ(x); x ∈ ∂Ω} and D′s,p be the corresponding Banach

space for the collection {γ′(x); x ∈ ∂Ω}.
Then Ds,p = D′s,p and the considered norms are equivalent.

Remark. This lemma in its original version (proven by a different technique)
did not cover the case p = 1. The level set approach which is an adaptation
of the idea by Kenig [18] was pointed out to me by the referee.

Proof. First let us take care of the case when K = K ′ and c > c′, i.e., the
nontangential approach cones γ(.) are ‘longer’ than γ′(.). Crucially,

⋃

x∈∂Ω

(γ(x) \ γ′(x)) ⊂⊂ Ω. (2.8)

This and the fact that regardless of what nontangential regions we use to
define Ds,p we always have Ds,p ⊂ Cs

loc(Ω) give us our claim.



Consider the projection P : Ω∩U → Rn−1 defined by (x′, xn) 7→ x′. Let P̃

be the restriction of P onto ∂Ω. Hence, P̃ is a 1-1 mapping between ∂Ω∩U

and some open set in Rn−1. It also follows that P̃−1(x′) = (x′, ϕ(x′)), where
ϕ is the Lipschitz function defining the domain Ω in (2.1).

Thanks to the argument in the first paragraph of this proof, we can assume
that K > K ′ and 0 < c < c′. Here c′ can be taken large enough, such that
for any z ∈ γ(x) we have z ∈ γ′(P̃−1(P (z))).

Take first s = 0. We claim that there exists C > 0 depending only on K,
K ′ and the Lipschitz character of the boundary such that for any f ∈ L∞loc(Ω)

σ({x ∈ ∂Ω;M0f > λ}) ≤ Cσ({x ∈ ∂Ω;M′0f > λ}). (2.9)

From this the inclusion D′0,p ⊂ D0,p follows.
The proof of (2.9) is based on the following covering lemma which can be

found in [4].

Lemma 2.4. Let E ⊂ Rn, and suppose that to each x ∈ E a number

r(x) > 0 is given. Assume furthermore that supx∈E r(x) < ∞. Then there

exists a sequence xi ∈ E such that the balls B(xi, r(xi)) with center at xi

and radius r(xi) are disjoint, and

(i) E ⊂ ⋃
i B(xi, 3r(xi))

(ii) For all x ∈ E there exists xi such that B(x, r(x)) ⊂ B(xi, 5r(xi)).

Now we make two simple geometrical observations: If z = (z′, zn) ∈ γ(x),
then there is a constant d > 0 (independent of x and z) such that P (x) ∈
B(z′, d(zn−ϕ(z′))). Secondly, there exists another constant e > 0 such that
if s′ ∈ B(z′, e(zn − ϕ(z′))), then z ∈ γ′(P̃−1(s′)). If c > 0 and zn > ϕ(z′),
we define

Ac(z′, zn) = {s′ ∈ Rn−1; |s′ − z′| < c(zn − ϕ(z′))}. (2.10)

Assume that x = (x′, xn) ∈ E(λ) def= {y ∈ ∂Ω;M0f(y) > λ}. It follows
that for some z = (z′, zn) ∈ γ(x) we have |f(z)| > λ. Hence, x′ ∈ Ad(z′, zn)
and, since for every s′ ∈ Ae(z′, zn), z belongs to γ′(P̃−1(s′)), it follows that
P̃−1(Ae(z′, zn)) ⊂ E′(λ) def= {y ∈ ∂Ω;M′0f(y) > λ}.

For x′ ∈ P (E(λ)) define r(x′) = (d + e)(zn − ϕ(z′)), where z = (z′, zn) ∈
γ(P̃−1(x′)) is a point for which |f(z)| > λ. By Lemma 2.4 applied to



P (E(λ)) ⊂ Rn−1 there exists a sequence of points xi = (x′i, xin) ∈ E(λ)
such that

E(λ) ⊂
⋃

i

P̃−1(B(x′i, 3r(x′i))), and the balls B(x′i, r(x
′
i)) are disjoint.

(2.11)
Let zi = (z′i, zin) be the point associated with x′i in the definition of the
number r(x′i). As Ae(z′i, zin) ⊂ B(x′i, r(x

′
i)) we get that all P̃−1(Ae(z′i, zin))

are disjoint and contained in E′(λ). Hence
∑

i

σ(P̃−1(Ae(z′i, zin))) ≤ σ(E′(λ)). (2.12)

The measures of both P̃−1(Ae(z′i, zin)) and P̃−1(B(x′i, 3r(x′i))) are propor-
tional to (zin − ϕ(z′i))

n−1, hence we get that

σ(E(λ)) ≤
∑

i

σ(P̃−1(B(x′i, 3r(x′i)))) ≈
∑

i

σ(P̃−1(Ae(z′i, zin))) ≤ σ(E′(λ)).

(2.13)
Naturally (2.13) is equivalent to (2.9).

Now consider 0 < s < 1. In this case the argument given above requires
slight modification. We will establish that there exist C > 0 and k ∈ N such
that for any f ∈ Cs

loc(Ω)

σ({x ∈ ∂Ω;M0f > λ}) ≤ Cσ({x ∈ ∂Ω;M′0f > 2−sks−1λ}). (2.14)

Once again, the inclusion D′s,p ⊂ Ds,p follows from (2.14).
The key here is the choice of k. Again a simple geometrical argument can

be made that if we pick k large enough, d > 0 also large and e > 0 small, then
for any x ∈ ∂Ω and z1 = (z1′, z1

n), z2 = (z2′, z2
n) ∈ γ(x) the following is true:

Let L = L1 ∪ L2 be a subset of γ(x) consisting of two uniquely determined
line segments L1 and L2 (understood in local coordinates on U) such that

(a) L1 has endpoints z1 and z0 and L2 has endpoints z0 and z2

(b) z0 = (z0′, z0
n) is picked such that z0

n = max{z1
n, z2

n} and one of the line
segments L1, L2 is parallel to the hyperplane {y = (y′, yn); yn = 0} and the
other one is perpendicular to it (all understood in the Euclidean metric on
U ⊂ Rn).

Now we find k + 1 points p0 = z1, p1, p2, . . . , pk−1, pk = z2 on L, such
that when we move from p0 along L to pk we pass through these points in



the order given by their index i ∈ {0, 1, 2, . . . , k}. We also require that the
Euclidean distance D = |pi+1 − pi|, i = 0, 1, . . . , k − 1 does not depend on i,
i.e., these points are equidistantly spaced. This implies that

1
k |z2 − z1| ≤ D ≤ 2

k |z2 − z1|. (2.15)

The points pi, i = 0, 1, . . . , k are uniquely determined. Finally, take y1 =
(y1′, y1

n), y2 = (y2′, y2
n) to be any pair of points pi, pi+1 for some i ∈

{0, 1, 2, . . . , k − 1}. Then we require:
(i) P (x) ∈ B(yi′, d(yi

n − ϕ(yi′))), i = 1, 2.
(ii) For any s′ ∈ B(y1′, e(y1

n − ϕ(y1′))) we have yi ∈ γ′(P̃−1(s′)), i = 1, 2.
Given this we proceed as follows. For x′ ∈ P (E(λ)), (E(λ) def= {y ∈

∂Ω;Msf(y) > λ}) we take r(x′) = (d+e)(zn−ϕ(z′)), provided z = (z′, zn) ∈
γ(P̃−1(x′)) is a point for which |f(z)| > λ. If such point z does not exist,
then there exist points z1, z2 ∈ γ(P̃−1(x′)) such that

|f(z1)− f(z2)|
dist(z1, z2)s

> λ. (2.16)

Let L be the set joining z1 and z2 as above. It follows that there is a
pair of neighboring points y1 = (y1′, y1

n), y2 = (y2′, y2
n) taken from the set

{p0, p1, p2, . . . , pk} defined above such that |f(y1)−f(y2)| ≥ 1
k |f(z1)−f(z2)|.

By (2.16) and (2.15) for such pair:

|f(y1)− f(y2)|
dist(y1, y2)s

>
1

2sk1−s
λ. (2.17)

Hence by (ii) we get that

P̃−1(Ae(y1′, y1
n)) ⊂ E′(2−sks−1λ) := {y ∈ ∂Ω;M′sf(y) > 2−sks−1λ}}.

(2.18)
Finally, we take r(x′) = (d + e)(y1

n − ϕ(y1′)). The rest goes as above. We
eventually get the desired estimate (2.14).

This proves our lemma for 0 ≤ s < 1. If s ≥ 1 we can use induction, since

‖f‖Ds,p ≈ ‖f‖Ds−1,p +
∑

|α|=1

‖Dαf‖Ds−1,p . (2.19)

¤

The next theorem outlines relations between defined spaces.



Theorem 2.5. Let 1 ≤ p ≤ ∞ and s > 0. For any 0 ≤ s′ < s and any

1
p′

>
1
p
− s− s′

n− 1
, 1 ≤ p′ ≤ ∞ (2.20)

we have

Ds,p ⊂ Ds′,p′ . (2.21)

Moreover, if sp > n− 1 then

Ds,p ⊂ Cα(Ω), (2.22)

with α < s− n−1
p .

Also, the embeddings (2.21), (2.22) are compact.

Proof. First, let us assume that 0 < s ≤ 1 and s′ = 0. Pick any f ∈ Ds,p.
We want to consider the function M0f(x) for x ∈ ∂Ω. Pick x, y ∈ ∂Ω
close to each other, such that they belong to a common coordinate chart
(2.1) and the nontangential approach regions γ(x), γ(y) overlap. We want to
estimate M0f(x) using M0f(y). Pick any z ∈ γ(x). Then there is a point
w ∈ γ(y) ∩ γ(x) such that dist(z, w) ≈ dist(x, y). Hence using the fact, that
on γ(x) the function f is Cs Hölder with Hölder constant Msf(x) we get
that

f(z) ≤ f(w) +Msf(x)dist(z, w)s ≤M0f(y) + CMsf(x)dist(x, y)s. (2.23)

In the last inequality we used the fact that f(w) ≤M0f(y). Now if we take
supremum over all z ∈ γ(x) we get that:

M0f(x) ≤M0f(y) + CMsf(x)dist(x, y)s. (2.24)

If we exchange x, y in (2.23) we get similar estimate for M0f(y). Together
we get:

|M0f(x)−M0f(y)| ≤ C(Msf(x) +Msf(y))dist(x, y)s. (2.25)

Recall, that a function g belongs to the Bessov space Bq
r (∂Ω), for 1 ≤ q < ∞

and 0 < r < 1 provided the number (norm)

‖u‖Bq
r (∂Ω) = ‖u‖Lq(∂Ω) +

(∫

∂Ω

∫

∂Ω

|u(x)− u(y)|q
dist(x, y)n−1+rq

dσ(x) dσ(y)
)1/q

(2.26)



is finite. If we integrate (2.25) in x and y, we get that for any ε > 0:

∫

∂Ω

∫

∂Ω

|M0f(x)−M0f(y)|p
dist(x, y)n−1−ε+ps

dσ(x) dσ(y) ≤

≤ C

∫

∂Ω

∫

∂Ω

(
(Msf(x))p

dist(x, y)n−1−ε
+

(Msf(y))p

dist(x, y)n−1−ε

)
dσ(x) dσ(y)

(2.27)

Now, since the function 1/dist(x, y)n−1−ε is integrable on ∂Ω, we can con-
clude that (2.27) is finite. Hence we get that M0f ∈ Bp

s−ε(∂Ω). Moreover,
the norm of this function in Bp

s−ε(∂Ω) can be estimated by C‖Msf‖Lp(∂Ω).
Recall also that Bp

s−ε(∂Ω) ⊂ Hs−2ε,p(∂Ω). So we have M0f ∈ Hs−ε,p(∂Ω)
for any ε > 0, as well. This and Sobolev embedding theorem prove (2.21)
for s′ = 0.

Consider now the case 0 < s′ < s ≤ 1. We want estimates similar to
(2.22)-(2.24). Again let x, y ∈ ∂Ω be close enough, such that their approach
regions γ(x), γ(y) overlap. It is a simple geometrical exercise to show that in
the local coordinates (2.1) the overlap region must contain a cut cone (2.2)
with vertex at a point z inside Ω. Also dist(x, y) ≈ dist(x, z) ≈ dist(y, z).
Hence if t = z−x, then for any w ∈ γ(x), w+t ∈ γ(z) (all in local coordinates
(2.1)). Pick any w, w′ ∈ γ(x). There are two cases to be considered. If
dist(w, w′) < dist(x, y) we get:

|f(w)− f(w′)|
dist(w, w′)s′ ≤Msf(x)dist(w, w′)s−s′ ≤Msf(x)dist(x, y)s−s′ . (2.28)

On the other hand, if dist(w,w′) ≥ dist(x, y) we use:

|f(w)− f(w′)|
dist(w,w′)s′ ≤ (2.29)

|f(w)− f(w + t)|
dist(w, w′)s′ +

|f(w + t)− f(w′ + t)|
dist(w, w′)s′ +

|f(w′ + t)− f(w′)|
dist(w, w′)s′ .

The second term of the right side of (2.29) can be estimated by Ms′f(y), the
first and the third term by CMsf(x)dist(x, y)s−s′ . Hence (2.29) together
with (2.28) yield for any w,w′ ∈ γ(x):

|f(w)− f(w′)|
dist(w, w′)s′ ≤Ms′f(y) + CMsf(x)dist(x, y)s−s′ . (2.30)



Taking the supremum over all such pairs w, w′ yields

Ms′f(x) ≤Ms′f(y) + CMsf(x)dist(x, y)s−s′ . (2.31)

Hence, as before exchanging x and y gives

|Ms′f(x)−Ms′f(y)| ≤ C(Msf(x) +Msf(y))dist(x, y)s−s′ . (2.32)

From here we proceed as before using (2.26) to get that Ms′f ∈ Lp′(∂Ω)
with p′ determined by (2.20).

Now we are ready to prove compactness of the embedding (2.21). We
do it first for s′ = 0. It follows from the Sobolev embedding theorem, that
Hs−ε,p(∂Ω) ⊂⊂ Lp′(∂Ω) with 1

p′ > 1
p − s

n−1 . This is what we need. Consider
any given bounded sequence of functions (fn)n∈N in Ds,p. Since Ds,p ⊂
Cs

loc(Ω), there is a subsequence of (fn)n∈N (also denoted by (fn)n∈N ) such
that fn → f in Cδ

loc(Ω) for any 0 ≤ δ < s. Moreover, this subsequence can
be picked such that Mδfn → g in Lp′(∂Ω) for some function g and 0 < δ < s

small. Furthemore, it is clear that we can pointwise require that for almost
every x ∈ ∂Ω: Mδfn(x) → g(x). From this obviously: Mδf(x) ≤ g(x) for
any such x. So f ∈ Dδ,p′ ⊂ D0,p′ .

Pick ε > 0 small and consider Ωε = {x ∈ Ω; dist(x, ∂Ω) > ε}. It follows
that there is k ∈ N such that for any n ≥ k:

‖(f − fn)
∣∣
Ωε
‖Cδ(Ωε) < ε. (2.33)

Now pick any z ∈ γ(x)\Ωε. Clearly, there is z′ ∈ Ωε∩γ(x) and dist(z, z′) < ε.
Thus:

|(f − fn)(z)| ≤ |(f − fn)(z′)|+Mδ(f − fn)(x)dist(z, z′)δ

≤ ε + εδMδ(f − fn)(x), (2.34)

for any n ≥ k. This estimate is crucial. It follows that

|M0(f − fn)(x)| ≤ ε + εδ(Mδf(x) +Mδfn(x)). (2.35)

Finally, we take the Lp′ norm on both sides and let n →∞. We get:

lim
n→∞

‖M0(f − fn)‖Lp′ (∂Ω) ≤ εσ(∂Ω) + 2εδ‖g‖Lp′ (∂Ω). (2.36)



Since ε > 0 was arbitrary, clearly lim
n→∞

‖M0(f − fn)‖Lp′ (∂Ω) = 0. This

together with (2.33) imply that fn → f in D0,p′ . So the compactness is
established.

Now, consider 0 < s′ < s < 1. We have established above that for some
δ = δ(p′) > 0 small and f ∈ Ds,p: Ms′+δf ∈ Lp′(∂Ω) for any p′ given by
(2.20). Consider again a bounded sequence (fn)n∈N of functions in Ds,p.
Again we pick a subsequence such that

fn → f in Cs′+δ
loc (Ω), and Ms′+δfn → g in Lp′(∂Ω), (2.37)

for some g ∈ Lp′(∂Ω). Again we also require pointwise convergence of
Ms′+δfn to g for almost every x ∈ ∂Ω. It follows that Ms′+δf ≤ g. Take
any ε > 0 small. We find k such that for all n ≥ k we have

‖(f − fn)
∣∣
Ωε
‖Cs′+δ(Ωε) < ε, and ‖(f − fn)

∣∣
Ωε
‖Cs′ (Ωε) < ε. (2.38)

Pick any z ∈ γ(x) \Ωε and z′ ∈ γ(x). If dist(z, z′) ≥ 2ε we clearly have that
z′ ∈ Ωε. So there is a third point z̃ ∈ γ(x) ∩ Ωε such that dist(z, z̃) < ε and
dist(z, z′) ≈ dist(z̃, z′). This gives us an estimate

|(f − fn)(z)− (f − fn)(z′)|
dist(z, z′)s′ ≤ (2.39)

≤|(f − fn)(z)− (f − fn)(z̃)|
dist(z, z′)s′ +

|(f − fn)(z̃)− (f − fn)(z′)|
dist(z, z′)s′ ≤

≤C(Ms′+δ(f − fn)(x)εδ + ε).

The second term of (2.39) we estimated using (2.38). On the other hand if
dist(z, z′) < 2ε we get:

|(f − fn)(z)− (f − fn)(z′)|
dist(z, z′)s′ ≤ C Ms′+δ(f − fn)(x)εδ. (2.40)

If we combine (2.39) and (2.40) together we get for any such z, z′:

|(f − fn)(z)− (f − fn)(z′)|
dist(z, z′)s′ ≤ C(ε +Ms′+δ(f − fn)(x)εδ). (2.41)

Combining (2.38), (2.41) and (2.35) finally gives:

Ms′(f − fn)(x) ≤ C(ε + εδ(Ms′+δf(x) +Ms′+δfn(x))). (2.42)



Taking Lp′ norm on both sides and letting n →∞ yields

lim
n→∞

‖Ms′(f − fn)‖Lp′ (∂Ω) ≤ C(εσ(∂Ω) + 2εδ‖g‖Lp′ (∂Ω)). (2.43)

From this again follows that fn → f in Ds′,p′ , since ε > 0 was arbitrary.
Finally, if s ≥ 1 thanks to (2.19) we can use induction to establish (2.21)

and (2.22). ¤

Now we state a result that can be interpreted as a ‘trace’ theorem for our
spaces.

Theorem 2.6. Let 1 ≤ p ≤ ∞ and s > 0. Write s as s = k+τ , for k integer

and 0 < τ ≤ 1. Then given f ∈ Ds,p for any ε > 0 and |α| ≤ k there exists

C = C(s, p, ε) > 0 such that:

Dαf
∣∣
∂Ω
∈ Hτ−ε,p(∂Ω), and ‖Dαf‖Hτ−ε,p(∂Ω) ≤ C‖f‖Ds,p ,

Dαf
∣∣
∂Ω
∈ Bp

τ−ε(∂Ω), and ‖Dαf‖Bp
τ−ε(∂Ω) ≤ C‖f‖Ds,p . (2.44)

Here, Dαf
∣∣
∂Ω

is defined as a nontangential limit of the function Dαf , i.e.,

Dαf
∣∣
∂Ω

(x) = lim
y→x

y∈γ(x)

Dαf(y), for almost every x ∈ ∂Ω. (2.45)

Proof. Assume s is not an integer, and let f ∈ Ds,p. For any x ∈ ∂Ω, for
whichMsf(x) < ∞, we have that the function u

∣∣
γ(x)

is of the Hölder class Cs

on γ(x). This means, that f
∣∣
γ(x)

can be extended to γ(x), so that it remains
of the Hölder class Cs. It follows, that for such x the values of Dαf(x) are
well defined, for any |α| ≤ k = [s]. Also in this case τ = s− k ∈ (0, 1). Now,
our approach slightly resembles the proof of Theorem 2.5. For any |α| ≤ k,
we have that Dαf ∈ Ds−|α|,p. Clearly, Dαf ∈ Ds−|α|,p ⊂ Dτ,p. Thus, for
any x, y ∈ ∂Ω that are close to each other we get:

|Dαf(x)−Dαf(y)| ≤ |Dαf(x)−Dαf(z)|+ |Dαf(z)−Dαf(y)|, (2.46)

where z is a point in γ(x) ∩ γ(y), and dist(x, y) ≈ dist(x, z) ≈ dist(y, z).
It follows that the first term of the right side of (2.46) can be estimated
by CMτf(x)dist(x, y)τ , and the second one by CMτf(y)dist(x, y)τ . This
yields

|Dαf(x)−Dαf(y)|
dist(x, y)τ

≤ C(Mτf(x) +Mτf(y)). (2.47)



Hence as before we have that for any ε > 0: Dαf ∈ Hτ−ε,p(∂Ω) and Dαf ∈
Bp

τ−ε(∂Ω). From this the result follows. Finally, if s > 0 is as integer we use
the fact that for any s′ < s we have Ds,p ⊂ Ds′,p. ¤

Now we look at an interpolation result. Recall quickly a simple case of
complex interpolation scheme we would like to use.

Let E, F be Banach spaces. Suppose that F is included in E and the
inclusion F ↪→ E is continuous. If O is the vertical strip in the complex
plane,

O = {z ∈ C; 0 < Re z < 1}, (2.48)

we define

HE,F (O) = {u(z) bounded and continuous on O with values in E;

holomorphic on O: ‖u(1 + iy)‖F is bounded for y ∈ R}.
(2.49)

For θ ∈ [0, 1] we put

[E, F ]θ = {u(θ); u ∈ HE,F (O)}. (2.50)

We give [E, F ]θ the Banach space topology making it isomorphic to the
quotient

HE,F (Ω)
/{u : u(θ) = 0}. (2.51)

For convenience we use the convention: [E,F ]θ = [F,E]1−θ.

Theorem 2.7. For 0 < θ < 1, 1 ≤ p1 < p2 ≤ ∞.

[D0,p1 ,D0,p2 ]θ = D0,q, (2.52)

where p1, p2 and q are related by

1
q

=
1− θ

p1
+

θ

p2
. (2.53)

Proof. This has been established in [7]. For the sake of completeness we
include the proof here. Given f ∈ D0,q, we can define

u(z) = |f(x)|c(θ−z)f(x); (2.54)



u by convention zero when f(x) = 0, with c chosen such that u belongs to
HD0,p1 ,D0,p2 (O), which gives D0,q ⊂ [D0,p1 ,D0,p2 ]θ. This proves one inclu-
sion.

The other inclusion follows from the following clever argument pointed
out to me by the referee. Since M0 is sublinear and maps D0,pj bound-
edly into Lpj (∂Ω) for j = 1, 2, a real interpolation gives us that M0 maps
(D0,p1 ,D0,p2)θ,∞ into Lq(∂Ω), thus, (D0,p1 ,D0,p2)θ,∞ ↪→ D0,q. Now, ac-
cording to well-known connection between the complex and the real meth-
ods of interpolation, [D0,p1 ,D0,p2 ]θ ↪→ (D0,p1 ,D0,p2)θ,∞, hence the inclusion
[D0,p1 ,D0,p2 ]θ ⊂ D0,q follows. ¤

Remark 2.8. It has been pointed out to me by Michael Taylor, that several
Moser-type estimates hold for the spaces Ds,p.

For any 0 ≤ s ≤ 1 Moser estimates applied to Cs functions on γ(x) yield

Ms(fg)(x) ≤ CM0f(x)Msg(x) + CMsf(x)M0g(x), (2.55)

for all x ∈ ∂Ω and some C > 0 independent of x. Consequently,

‖Ms(fg)‖Lp ≤ C‖f‖L∞‖g‖Ds,p + C‖f‖Ds,p‖g‖L∞ . (2.56)

This together with estimates on the norm of fg on Ω̃ yield:

Corollary 2.9. For any 0 ≤ s ≤ 1 and 1 ≤ p ≤ ∞ there is a constant

C = C(s) such that

‖fg‖Ds,p ≤ C‖f‖L∞‖g‖Ds,p + C‖f‖Ds,p‖g‖L∞ . (2.57)

Other similar corollaries arise with use of Theorem 2.5.

3. The operator L−1 on spaces Ds,p

In this section we consider a linear operator

L = ∆− V, (3.1)

that acts on functions on a Riemannian manifold M . Here ∆ is the Laplace-
Beltrami operator on M that can be written in a local coordinates as

∆u = g−1/2∂j(gjkg1/2∂ku). (3.2)



We use the summation convention, take (gjk) to be the inverse matrix to
(gjk) and set g = det(gjk). As before we assume that the metric tensor (gjk)
is of Hölder class Cα, 0 < α ≤ 1. We also assume that V ∈ L∞(M), V ≥ 0
on M and V > 0 on a set of positive measure in each connected component
of M \Ω. Here Ω ⊂ M is assumed to be open, connected and with Lipschitz
boundary. Therefore we can consider the spaces Ds,p on Ω.

The properties of the operator L has been studied extensively in the papers
[23], [24], [25] by Mitrea and Taylor. They established, that the operator L

is an isomorphism
L : Hr+1,p(M) → Hr−1,p(M), (3.3)

for each p ∈ (1,∞) and −α < r < α. If we denote by E(x, y) the integral
kernel of L−1, such that formally:

L−1u(x) =
∫

M

E(x, y)u(y) dVol(y), x ∈ M, (3.4)

then E(x, y) is singular only on the diagonal {x = y} and decomposes as

E(x, y) = g(y)−1/2 {e0(x− y, y) + e1(x, y)} , (3.5)

where

e0(x− y, y) = Cn

(∑
gjk(y)(xj − yj)(xk − yk)

)−(n−2)/2

, (3.6)

for a suitable constant Cn, and the residual term e1(x, y) satisfies

|e1(x, y)| ≤ Cε|x− y|−(n−2−α+ε),

|∇xe1(x, y)| ≤ Cε|x− y|−(n−1−α+ε), (3.7)

for any ε > 0. (See [25] for details). Let us note here that for n = 2 the term
e0(x− y, y) takes different form, namely it contains a logarithmic singularity
of type log |x − y|−1. For this reason all what follow is carried out only
for n ≥ 3, although the argument can be adapted to accommodate the two
dimensional case.

As shown in [7], there is actually more that can be established about
e1(x, y). Namely, let |x0 − y| = 2ρ, we want to estimate e1(x, y) on {x :
|x−x0| ≤ ρ}. We shift coordinates so x0 = 0 and introduce dilation operators

uρ(x) = u(ρx), |x| ≤ 1. (3.8)



If u(x) = e1(x, y) for |x| ≤ ρ then (2.76)-(2.80) of [25] yields

‖uρ‖Hs,q(B1/2) ≤ C(s, q, δ)ρ−(n−2−α+δ), ∀s < 1 + α, q < ∞, δ > 0.

(3.9)
Hence for any δ > 0

‖∇xuρ‖Cα−δ(B1/2) ≤ Cδρ
−(n−2−α+δ). (3.10)

This means that for |x− x0| ≤ 1
4 |x0 − y| we get

|∇xe1(x, y)−∇xe1(x0, y)| ≤ Cδ|x0 − y|−(n−1)|x− x0|α−δ. (3.11)

This is equivalent to the statement that for any ε > 0 and |x−x0| ≤ 1
4 |x0−y|

|∇xe1(x, y)−∇xe1(x0, y)|
|x− x0|α−ε

≤ Cε|x0 − y|−(n−1). (3.12)

On the other hand if |x− x0| > 1
4 |x0 − y| it follows from (3.7) that

|∇xe1(x, y)−∇xe1(x0, y)|
|x− x0|α−ε

≤ Cε max{|x0 − y|−(n−1), |x− y|−(n−1)}. (3.13)

A direct computation for e0(x− y, y) gives:

|e0(x− y, y)| ≤ C|x− y|−(n−2),

|∇xe0(x− y, y)| ≤ C|x− y|−(n−1), (3.14)

|∇2
xe0(x− y, y)| ≤ C|x− y|−n.

It follows that for any 0 < β < 1 and |x− x0| ≤ 1
4 |x0 − y| we have

|∇xe0(x, y)−∇xe0(x0, y)|
|x− x0|β ≤ C|x0 − y|−(n−1+β). (3.15)

Similarly, for |x− x0| > 1
4 |x0 − y| we get that

|∇xe0(x, y)−∇xe0(x0, y)|
|x− x0|β ≤ C max{|x0 − y|−(n−1+β), |x− y|−(n−1+β)}.

(3.16)
Hence, if we put things together we get for any 0 < β < α:

|E(x, y)| ≤ C|x− y|−(n−2),

|∇xE(x, y)| ≤ C|x− y|−(n−1), (3.17)

|∇xE(x, y)−∇xE(x0, y)|
|x− x0|β ≤ C|x0 − y|−(n−1+β), for |x− x0| ≤ 1

4
|x0 − y|,

|∇xE(x, y)−∇xE(x0, y)|
|x− x0|β ≤ C max{|x0 − y|−(n−1+β), |x− y|−(n−1+β)},

for |x− x0| > 1
4
|x0 − y|.

We are ready to establish the following important lemma.



Lemma 3.1. Assume that the metric tensor on M belongs to the Hölder

class Cα, 0 < α < 1. Let x ∈ M be an arbitrary point and r > 0. Consider

a geodesic ball Br(x) of radius r around x and assume that f ∈ L∞(M) is a

given function with support in Br(x) and bounded in absolute value by one

on M . Let u solve

Lu = f in M , i.e., u = L−1f. (3.18)

Then there exist constants C, Cβ independent on f and x such that for any

y, y′ ∈ M

|u(y)| ≤ C
rn−1

(r + |x− y|)n−3
,

|∇u(y)| ≤ C
rn−1

(r + |x− y|)n−2
, (3.19)

|∇u(y)−∇u(y′)|
|y − y′|β ≤ Cβ

rn−1

(r + min{|x− y|, |x− y′|})n−2+β
,

where 0 < β < α.

Proof. We prove (3.19) in two steps. First we take y ∈ B2r(x). We estimate
|u(y)| and |∇u(y)| using (3.4) and (3.17). Assume for simplicity that r > 0
is small enough so that we can consider just one geodesic coordinate chart
centered at x that contains the ball B2r(x). In this chart we can also assume
that x is the origin. We integrate over (n−1)-dimensional shells Sρ = ∂Bρ(y)
centered at y. Simple estimate using (3.17) gives

|u(y)| ≤ C

∫ 3r

0

∫

Sρ

1
|z − y|n−2

dσ(z) dρ,

|∇u(y)| ≤ C

∫ 3r

0

∫

Sρ

1
|z − y|n−1

dσ(z) dρ. (3.20)

Since the surface area of Sρ is of the order of ρn−1 from (3.20) we get

|u(y)| ≤ C

∫ 3r

0

ρ dρ ≤ Cr2, |∇u(y)| ≤ Cr (3.21)

By possibly enlarging the constant C in (3.21) we can see that (3.21) and
(3.19) are equivalent for y ∈ B2r(x).



Similarly, pick y, y′ ∈ B2r(x) and denote by δ the distance between them,
i.e., δ = |y − y′| < 2r. We have

|∇u(y)−∇u(y′)|
|y − y′|β ≤

∫

M

|∇yE(y, z)−∇yE(y′, z)|
|y − y′|β dVol(z). (3.22)

Using (3.17) we see that different situations arise for |y−z| ≤ 4δ and |y−z| >
4δ. Consider first the integral (3.22) over the set |y − z| ≤ 4δ. Obviously

max{|y− z|−(n−1+β), |y′− z|−(n−1+β)} ≤ |y− z|−(n−1+β) + |y′− z|−(n−1+β),

(3.23)
and therefore:∫

{|y−z|≤4δ}

|∇yE(y, z)−∇yE(y′, z)|
|y − y′|β dVol(z)

≤ C

∫ 4δ

0

∫

Sρ

1
|y − z|n−1+β

dσ(z) dρ + C

∫ 5δ

0

∫

S′ρ

1
|y′ − z|n−1+β

dσ(z) dρ,

(3.24)

where Sρ = ∂Bρ(y), S′ρ = ∂Bρ(y′). Obviously, the right hand side of (3.24)
can be estimated by Cδ1−β ≤ Cr1−β . On the other hand, integrating (3.24)
over the set |y − z| > 4δ yields:∫

{|y−z|>4δ}

|∇yE(y, z)−∇yE(y′, z)|
|y − y′|β dVol(z)

≤ C

∫ 3r

4δ

∫

Sρ

1
|y − z|n−1+β

dσ(z) dρ (3.25)

Again (3.25) is bounded by Cr1−β . Hence we see that, (3.19) is indeed true
for y, y′ ∈ B2r(x).

Now we consider y outside the ball B2r(x). Denote by ε the distance
between y and Br(x). We integrate the same way is we did in the first part
over Sρ. However now it is clear that Sρ intersects the support of f only for
ρ ≥ ε. Moreover, the surface measure of such intersection can be estimated
by Crn−1. This leads to

|u(y)| ≤C

∫ ∞

ε

∫

Sρ∩Br(x)

1
|z − y|n−2

dσ(z) dρ ≤

≤C

∫ ∞

ε

rn−1 1
ρn−2

dρ ≤ C
rn−1

εn−3
, (3.26)

|∇u(y)| ≤C

∫ ∞

ε

∫

Sρ∩Br(x)

1
|z − y|n−1

dσ(z) dρ ≤

≤C

∫ ∞

ε

rn−1 1
ρn−1

dρ ≤ C
rn−1

εn−2
.



Now since ε ≈ |x− y| − r we get that for |x− y| ≥ 2r (i.e y /∈ B2r(x))

ε ≈ |x− y|+ r. (3.27)

This implies that the estimate (3.19) works for such y.
Finally, consider the case when either y or y′ are not in B2r(x). If |y−y′| ≥

r
5 , then the last estimate (3.19) follows from (3.26) and (3.27). Therefore we
have to consider only the case when δ = |y − y′| < r

5 . If such case however
for any z ∈ supp f we get that |y − z| > 4δ. Thus as in (3.26) using (3.17)
we get:

|∇u(y)−∇u(y′)|
|y − y′|β ≤C

∫ ∞

ε

∫

Sρ∩Br(x)

1
|z − y|n−1+β

dσ(z) dρ ≤

≤C

∫ ∞

ε

rn−1 1
ρn−1+β

dρ ≤ C
rn−1

εn−2+β
. (3.28)

This concludes the proof. ¤

Now we are ready to establish the following:

Proposition 3.2. Assume that r > 0 is small. Let f ∈ L∞(M) be a

function on M bounded in absolute value by one with support in Br(x)∩Ω,

where x is a point from the boundary ∂Ω. Let u be as before the solution

to Lu = f in M , i.e., u = L−1f . We have the following estimates for the

maximal operator Msu:

‖M0u‖Lp(∂Ω) ≤ Crn−1, for 1 ≤ p < (n− 1)/(n− 3),

‖M1u‖Lp(∂Ω) ≤ Crn−1, for 1 ≤ p < (n− 1)/(n− 2), (3.29)

‖M1+βu‖Lp(∂Ω) ≤ Crn−1, for 1 ≤ p < (n− 1)/(n− 2 + β),

where 0 < β < α ≤ 1. The constant in the last estimate of (3.29) C = C(β)
depends on β.

Proof. Since r > 0 is small, we can find a small neighborhood U of x such
that in this neighborhood there are smooth local coordinates in which

U ∩ Ω = {x = (x′, xn) ∈ U : xn > ϕ(x′)}, (3.30)

where ϕ is a Lipschitz function with Lipschitz constant bounded by L. Here
L does not depend on chosen point x ∈ ∂Ω. We will consider nontangential



approach regions γ(z) to any point z = (z′, ϕ(z′)) ∈ ∂Ω such that the vertex
of γ(z) at z is sharp enough. Namely, we require that any half-ray with vertex
at z that lies whole in γ(z) has “steepness” (absolute value of its slope) at
least 2L.

From this it follows that there exists a universal constant k (independent)
on r such that we can split points z ∈ ∂Ω into two distinct sets. If z =
(z′, ϕ(z′)) ∈ ∂Ω and |z′ − x′| ≤ kr then γ(z) might intersect Br(x). At such
point by (3.19) we have:

M0u(z) ≤ Cr2, M0(∇u)(z) ≤ Cr, sup
y,y′∈γ(z)

|∇u(y)−∇u(y′)|
|y − y′|β ≤ Cr1−β .

(3.31)
On the other hand if |z′ − x′| > kr then the distance between any point

w ∈ γ(z) and x is greater or equal to 1
k |z′ − x′|. This means that for such z

we get from (3.19):

M0u(z) ≤ C
rn−1

(r + k−1|z′ − x′|)n−3
,

M0(∇u)(z) ≤ C
rn−1

(r + k−1|z′ − x′|)n−2
,

T βu(z) def= sup
y,y′∈γ(z)

|∇u(y)−∇u(y′)|
|y − y′|β ≤ C

rn−1

(r + k−1|z′ − x′|)n−2+β

(3.32)

Now we can estimate the Lp norms of M0u, M0(∇u) and T βu. On
Bkr(x) ∩ ∂Ω we get

∫

Bkr(x)∩∂Ω

(M0u(y))p dσ(y) ≤ Crn−1r2p = Crn+2p−1

∫

Bkr(x)∩∂Ω

(M0(∇u)(y))p dσ(y) ≤ Crn−1rp = Crn+p−1 (3.33)
∫

Bkr(x)∩∂Ω

(T βu(y))p dσ(y) ≤ Crn−1rp(1−β) = Crn+p(1−β)−1.

Similarly, off Bkr(x) ∩ ∂Ω we get:

∫

∂Ω\Bkr(x)

(M0u(y))p dσ(y) ≤C

∫ A

kr

∫

y∈Sρ

(
rn−1

(r + k−1ρ)n−3

)p

dσ(y) dρ ≤

≤Crp(n−1)

∫ A

0

ρn−2

(r + k−1ρ)p(n−3)
dρ.

(3.34)



Here Sρ is a (n−2)-dimensional shell defined by Sρ = ∂Ω∩∂Bρ(x). In (3.34)
we have also used that (n−2)-dimensional surface area of such shell is of the
order ρn−2. We further estimate the integral in (3.34):

∫ A

0

ρn−2

(r + k−1ρ)p(n−3)
dρ ≤ C

∫ A

0

ρn−2−p(n−3) dρ. (3.35)

If p < (n− 1)/(n− 3) then n− 2− p(n− 3) > −1, hence (3.35) is finite (and
independent of r). Similarly, using the same technique we get

∫

∂Ω\Bkr(x)

(M0(∇u)(y))p dσ(y) ≤ Crp(n−1)

∫ A

0

ρn−2−p(n−2) dρ,

∫

∂Ω\Bkr(x)

(T βu(y))p dσ(y) ≤ Crp(n−1)

∫ A

0

ρn−2−p(n−2+β) dρ.

(3.36)

Hence the last integral in the first line of (3.36) is finite for p < (n−1)/(n−2),
and the integral in the second line for p < (n − 1)/(n − 2 + β). Finally, we
put (3.33)-(3.36) together to get

‖M0u‖Lp(∂Ω) ≤ C(rn−1+2p + rp(n−1))1/p ≤ C(r2+(n−1)/p + rn−1) ≤ Crn−1,

‖M0(∇u)‖Lp(∂Ω) ≤ C(rn−1+p + rp(n−1))1/p ≤ Crn−1, (3.37)

‖T βu‖Lp(∂Ω) ≤ C(rn−1+p(1−β) + rp(n−1))1/p ≤ Crn−1.

In the first line of (3.37) we used the fact that for p < (n − 1)/(n − 3),
r2+(n−1)/p ≤ Crn−1 for |r| bounded, similar estimate we also used in the
second line for p < (n − 1)/(n − 2) and in the third line for p < (n −
1)/(n− 2 + β). From (3.37) we immediately have (3.29). This concludes our
proof. ¤

Let z = (z′, zn) be any point from the considered coordinate chart (3.30).
We put

γ̃(z) = {w = (w′, wn) ∈ U : wn < zn and |z′ − w′| < 2L|zn − wn|}. (3.38)

Here L is as before a bound on the Lipschitz constant of ∂Ω. So our region
γ̃(z) is an open downward opening cone with vertex at z. Recall, that we
defined γ(z) by (2.2) and in the current setting we assume that K = 2L in
this definition. Hence, if we compare γ(z) and γ̃(z) we can see that these
two cones are symmetric with respect to the hyperplane xn = zn in U .



Definition 3.3. Consider a coordinate chart (3.30) and a set A ⊂ ∂Ω on
this chart which is open in ∂Ω. We say that a set A ⊂ Ω is a P -image of A

and write
A = Pim(A), (3.39)

provided the set A satisfies the following conditions:
(a) The set {z = (z′, ϕ(z′)) ∈ ∂Ω : ∃w = (z′, wn) ∈ A} (a projection of A

onto ∂Ω) is A.
(b) z = (z′, zn) ∈ A if and only if z ∈ Ω and γ̃(z) ∩ ∂Ω ⊂ A.

Remark. The property (a) follows from (b). It also follows that if z ∈ A then
γ̃(z) ∩ Ω ⊂ A.

Now we are ready to establish a connection between the set A from the
previous definition and Proposition 3.2.

Proposition 3.4. Let the set A be as in Definition 3.3 and let A = Pim(A).
Consider a solution u = L−1f to the problem Lu = f where f ∈ L∞(M) is

a function on M bounded in absolute value by one with support in A. Then

we have:

‖M0u‖Lp(∂Ω) ≤ Cpσ(A), for 1 ≤ p < (n− 1)/(n− 3),

‖M1u‖Lp(∂Ω) ≤ Cpσ(A), for 1 ≤ p < (n− 1)/(n− 2), (3.40)

‖M1+βu‖Lp(∂Ω) ≤ Cp,βσ(A), for 1 ≤ p < (n− 1)/(n− 2 + β),

where 0 < β < α ≤ 1 and σ(A) is the (n − 1)-dimensional (surface) area of

A on ∂Ω.

Proof. We will do our proof in several steps. Given any point x ∈ A, we can
assign to it a positive “height” number h(x) > 0 as follows. In the coordinate
chart we can write x as (x′, xn). Define

h(x) = sup{t ∈ R+ : y = (x′, xn + t) ∈ A}. (3.41)

Now clearly h(x) > 0 and the whole set Ω ∩ γ̃(x′, xn + h(x)) is in A. Here
γ̃(.) is the cone defined by (3.38). The set

V = ∂Ω ∩ γ̃(x′, xn + h(x)) (3.42)

is an open neighborhood of x on ∂Ω. Also clearly V ⊂ A. Using the fact that
the surface ∂Ω is Lipschitz we can also establish a relation between h(x) and



σ(V ). Namely there are two positive constants c1 and c2 depending only on
the Lipschitz constant of ∂Ω such that

c1(h(x))n−1 ≤ σ(V ) ≤ c2(h(x))n−1. (3.43)

An immediate consequence of this observation is that the number

H = sup
x∈A

h(x) (3.44)

must be finite, since the surface measure of A is finite. Denote by H the
hyperplane

{x = (x′, 0) : x′ ∈ Rn−1}.

Consider on the chart (3.30) a projection P : U → H which assigns to any
point x = (x′, xn) the point P (x) = (x′, 0) ∈ H.

Now consider on H a grid created by (n−2)-dimensional hyperplanes such
that H is divided into (n − 1)-dimensional cubes with sides 2H/L. Let us
denote this collection of cubes by C1. Let D1 ⊂ C1 be a collection of all cubes
from C1 that contain a point x̃ ∈ H for which there is an x ∈ A such that
P (x) = x̃ and h(x) > H/2.

Each cube from C1 \ D1 we split further so that we get 2n−1 cubes with
side H/L. We denote the collection of all such cubes by C2. Now we define
D2 ⊂ C2 to be a collection of all cubes from C2 that contain a point x̃ ∈ H
for which there is an x ∈ A such that P (x) = x̃ and h(x) > H/4. From here
we continue inductively. At each stage we split all cubes from Cn \ Dn into
2n−1 new cubes with sides half of the previous one. Then we put into Dn

are cubes from Cn that contain a point x̃ ∈ H for which there is an x ∈ A

such that P (x) = x̃ and h(x) > H/2n.
Now denote by D the union of all Dn, i.e., a cube belongs to D if and

only if it was selected at certain stage of the process defined above. The set
D is countable and therefore we can order all cubes there into a sequence
D1, D2, D3, . . . . Denote by Ci the P -preimage of a cube Di on ∂Ω, i.e.,

Ci = ∂Ω ∩ P−1(Di). (3.45)

The collection of all Ci we will denote by C.



There are several important observations we would like make. The first
one is that the collection C covers A. From this obviously

σ(A) ≤ σ(∪Ci) =
∞∑

i=1

σ(Ci). (3.46)

Also, since ∂Ω is Lipschitz there are positive constants c3 and c4 such that
for all i ∈ N

c3λ
n−1(Di) ≤ σ(Ci) ≤ c4λ

n−1(Di). (3.47)

Here λn−1 is the (n− 1)-dimensional Lebesgue measure on H.
Our other remark is that the inequality sign in (3.46) can also be reversed.

Fix i ∈ N . Denote by r the length of the side of Di. From our construction
it follows that there is x ∈ Ci ∩A such that

h(x) > r L
2 . (3.48)

This means that the whole part of a cone γ̃(x′, ϕ(x′) + r L
2 ) (here x =

(x′, ϕ(x′))) that lies in Ω belongs to A, and also the set

V = ∂Ω ∩ γ̃(x′, xn + r L
2 ) (3.49)

is a subset of A. From a simple geometric argument it follows that the surface
measure of the intersection of V with Ci could be estimated from bellow by
Crn−1 where the constant C > 0 depends only on Lipschitz constant L of
∂Ω. This yields

σ(A) ≥ Cσ(∪Ci) = C

∞∑

i=1

σ(Ci). (3.50)

The estimate (3.50) is crucial. Now for each i we define a set Ei. Let
ri be the length of the side of Di. Let x̃i be the center of the (n − 1)
dimensional cube Di in H. We lift this point onto ∂Ω such that we get
xi = (x′i, ϕ(x′i)) ∈ ∂Ω and P (xi) = x̃i. Finally, we set

Ei = {y = (y′, yn) : |y′ − x′i| ≤ Lri and |yn − ϕ(x′i)| ≤ Lri}, (3.51)

so that Ei is an n-dimensional ‘cube’ (naturally just in our coordinates) with
center at xi and side of length 2Lri. This ‘cube’ was carefully picked such
that

Ai = {w ∈ A : P (w) ∈ Di} ⊂ Ei. (3.52)



In particular the union of all Ei covers A. Finally, we pick a ball Bi with
center at x such that Ei ⊂ Bi. Clearly this all can be done such that

Vol(Bi) ≈ rn
i . (3.53)

Now we can define a functions fi as follows:

fi = fXAi
i = 1, 2, 3, . . . . (3.54)

Here the set Ai comes from (3.52) and XAi
is the characteristic function of

the set Ai. Obviously

f =
∞∑

i=1

fi. (3.53)

Now we put ui = L−1fi. Since Ai ⊂ Bi and fi satisfies assumptions of
Proposition 3.2 we get an Lp estimates on M0ui, M1ui and M1+βui for
corresponding p:

‖M0ui‖Lp(∂Ω) ≤ CRn−1
i , ‖M1ui‖Lp(∂Ω) ≤ CRn−1

i ,

‖M1+βui‖Lp(∂Ω) ≤ CRn−1
i , (3.56)

where Ri is the radius of Bi. Since ri ≈ Ri and rn−1
i ≈ σ(Ci) we get that

‖M0ui‖Lp(∂Ω) ≤ Cσ(Ci). (3.57)

Finally, since u = L−1f can be written as u =
∑

ui combining (3.57) with
(3.50) we get

‖M0u‖Lp(∂Ω) ≤
∞∑

i=1

‖M0ui‖Lp(∂Ω) ≤ C

∞∑

i=1

σ(Ci) ≤ Cσ(A). (3.58)

We also get similar estimates for M1u and M1+βu. This concludes our
proof. ¤

Now we are ready to prove the following.

Theorem 3.5. Let the metric tensor on M be of class Cα, 0 < α ≤ 1.

Assume, that function f : Ω → R belongs to D0,p for some 1 ≤ p ≤ ∞.

Consider an extension of the function f onto whole the M , by putting f(x) =
0, for all x ∈ M \ Ω. Let u be the solution to

Lu = f in M, i.e., u = L−1f. (3.59)



For any 0 < β < α the nontangential maximal function of M1+βu belongs

to Lp(∂Ω) and there exists a constant Cp = C(p, β,M, Ω) > 0 such that

‖M1+βu‖Lp(∂Ω) ≤ Cp‖M0f‖Lp(∂Ω). (3.60)

It follows that the map:

L−1 : D0,p → D1+β,p (3.61)

is continuous and compact for any 1 ≤ p ≤ ∞ and 0 < β < α. We also have

that the maps

L−1 : D0,p → D0,q,

{
q < n−1

(n−1)/p−2 , for p ≤ (n− 1)/2,

q = ∞, otherwise,
(3.62)

L−1 : D0,p → D1,q,

{
q < n−1

(n−1)/p−1 , for p ≤ n− 1,

q = ∞, otherwise,

are continuous and compact for any 1 ≤ p ≤ ∞.

Proof. Notice that if the metric tensor g on M is Lipschitz, then (3.62)
follows directly from (3.61) and Theorem 2.5. On the other hand, if we have
the metric tensor only Hölder continuous of some class Cα, α < 1, then we
will not get (3.62) directly from (3.61). First we concentrate on (3.61). If
p = ∞ the claim is obvious and follows from (3.3). For 1 ≤ p < ∞, consider
the sets

Ai = {x ∈ ∂Ω : M0f(x) > i1/p}, i = 1, 2, . . . . (3.63)

Here, if we want to be completely precise we should consider a partition
of unity on ∂Ω and sets Ai is each coordinate chart corresponding to this
partition separately. This is because on two different charts the nontangential
approach region γ(x) to a point x ∈ ∂Ω might slightly differ. This also means
that the sets Ai would slightly differ on such two charts. Nevertheless the
definition (3.63) up to this small simplification is correct.

Since we took open nontangential approach regions γ(.), it follows that
each set Ai is open. The fact that M0f ∈ Lp(∂Ω) is equivalent to

∞∑

i=1

σ(Ai) < ∞, &
∞∑

i=1

σ(Ai) ≤ ‖M0f‖p
Lp(∂Ω) ≤

∞∑

i=0

σ(Ai). (3.64)



Now we want to decompose the function f on M as infinite an sum
∑

gi

with functions gi defined as follows.

g0(x) =





f(x), if −1 ≤ f(x) ≤ 1,

1, if 1 < f(x),

−1, if 1 < −f(x),

(3.65)

gi(x) =





0, if |f(x)| ≤ i1/p,

f(x)− i1/p, if i1/p < f(x) ≤ (i + 1)1/p,

f(x) + i1/p, if i1/p < −f(x) ≤ (i + 1)1/p,

(i + 1)1/p − i1/p, if (i + 1)1/p < f(x),

−(i + 1)1/p + i1/p, if (i + 1)1/p < −f(x).

i = 1, 2, . . .

If we put:

f0 = g0, fi =
gi

(i + 1)1/p − i1/p
, i = 1, 2, . . . , (3.66)

then for each fi we have |fi| ≤ 1, and

f = f0 +
∞∑

i=1

[
(i + 1)1/p − i1/p

]
fi. (3.67)

Now we want to find connection between the support set of fi and the set
Ai for i = 1, 2, . . . . The claim is that

supp fi ⊂ Pim(Ai). (3.68)

Seeing this is quite easy. Consider one coordinate chart (3.30). If x =
(x′, xn) ∈ supp fi then clearly |f(x)| > i1/p. Take any point z from the
intersection of ∂Ω with downward opening cone γ̃(x). The claim is that such
point is in Ai. Really, since x ∈ γ(z) we have that M0f(z) ≥ |f(x)| > i1/p.
From this the fact that x ∈ Pim(Ai) follows immediately (see Definition 3.3).

Now we can proceed. Define ui = L−1fi for i = 0, 1, 2, . . . . We can use
Proposition 3.4 to estimate M1+βui for i = 1, 2, . . . . This yields

‖M1+βui‖L1+ε(∂Ω) ≤ Cσ(Ai), (3.69)



for some ε > 0, small. On the other hand (3.3) yields

‖M1+βui‖L∞(∂Ω) ≤ C. (3.70)

By interpolation, for any 1 + ε < p < ∞, (3.69) and (3.70) yields

‖M1+βui‖Lp(∂Ω) ≤ Cσ(Ai)1/p+δ, (3.71)

for some δ = δ(p, ε) > 0. By (3.69) we see that (3.71) actually holds for any
1 < p < ∞.

To estimateM1+βu0, we use (3.3) to get that ‖M1+βu0‖Lp(∂Ω) ≤ C. This
finally gives for p > 1:

‖M1+βu‖Lp ≤
∑[

(i + 1)1/p − i1/p
]
‖M1+βui‖Lp

≤ C + C
∑

i(1−p)/pσ(Ai)1/p+δ. (3.72)

Here we used the fact that (i + 1)1/p − i1/p ≈ i(1−p)/p and (3.71).
If p = 1, we have instead:

‖M1+βu‖L1 ≤
∑

‖M1+βui‖L1 ≤ C + C
∑

σ(Ai)

≤ C + C

∫

∂Ω

M0f dσ = C(1 + ‖M1+βf‖L1(∂Ω)).
(3.73)

If p > 1, we use Hölder’s inequality to estimate the sum on the right hand
side of (3.72). This yields

∑
i(1−p)/pσ(Ai)1/p+δ ≤

(∑ 1
i1+ε

)1/q̃ (∑
σ(Ai)

)1/p̃

, (3.74)

where p̃ = 1
1/p+δ < p, q̃ = p̃/(p̃ − 1) > p/(p − 1) = q and ε > 0. It follows

that the right hand side of (3.74) is bounded by C(1 + ‖M0f‖Lp(∂Ω)). This
‘almost’ establishes (3.60), baring the term ‘1+’ appearing here and also in
(3.73). But we can get rid of it by a simple scaling argument. Since L−1 is
linear for any K > 0 we have:

‖M1+βu‖Lp = ‖M1+β(L−1f)‖Lp = 1
K ‖M1+β(L−1(Kf))‖Lp

(3.75)

≤ C
K (1 + ‖M0(Kf)‖Lp(∂Ω)) = C

K + C‖M0f‖Lp(∂Ω).



Limiting K →∞ clearly yields (3.60).
Finally, (3.61) follows from (3.60), one just have to realize that for any

Ω̃ ⊂⊂ Ω we have that f ∈ L∞(Ω̃). Hence, for g = fXΩ̃ we get L−1g ∈
C1+β(M). So we can bound the D1+β,p norm of u = L−1f using the
C1+β(M) norm of L−1g and (3.60). Compactness of the map L−1 : D0,p →
D1+β,p follows from the fact that for any β < β′ < α the embedding
D1+β′,p ⊂ D1+β,p is compact (Theorem 2.5). This concludes the first part of
our proof.

Now, we concentrate on (3.62). The main idea is very similar to what we
did before. Therefore we will be brief. Consider first that ‖f‖L∞(M) ≤ 1 and
supp f ⊂ A. Here A = Pim(A) for some A ⊂ ∂Ω open. Then we have

|∇u(x)| ≤
∫

Ω

|∇xE(x, y)f(y)| dVol(y) ≤
∫

A
|∇xE(x, y)| dVol(y). (3.76)

By (3.17) we have that |∇xE(x, y)|q ∈ L1(M) for any 1 ≤ q < n/(n − 1).
Hence by Hölder inequality we can further estimate (3.76). This gives:

|∇u(x)| ≤
(∫

M

|∇Ex(x, y)|q dVol(y)
)1/q (∫

A
1 dVol(y)

)1/p

≤ C(q)Vol(A)1/p. (3.77)

Here 1/p + 1/q = 1, hence (3.77) is true for any n < p < ∞. Finally, if
A = Pim(A), then Vol(A) ≤ Cσ(A)n/(n−1). This inequality follows from the
procedure that has been described in details in the proof of Proposition 3.4.
Here the set A was decomposed into a disjoint countable union of sets Ci

(essentially n − 1 dimensional ‘cubes’), such that for each Ci there is a n-
dimensional ball Bi with the property diam(Ci) ≈ diam(Bi) and A ⊂ ⋃

Bi.
From this

Vol(A) ≤ C
∑

diam(Bi)n ≈ C
∑

diam(Ci)n ≤ C
∑

σ(Ci)n/(n−1)

≤ Cσ
(⋃

Ci

)n/(n−1)

= Cσ(A)n/(n−1). (3.78)

Combining (3.77) and (3.78) finally yields

‖∇u‖L∞(M) ≤ C(p) σ(A)n/(np−p), for any n < p < ∞. (3.79)



We want to further improve (3.79) by estimating Cδ(M) (for δ > 0 small)
norm of∇u. Fix p > n. Then we can find δ = δ(p) > 0 such that the function
y 7→ |y|−(n−1−δ) belongs to Lq(M) with q as before. This and (3.17) gives:

|∇u(x)−∇u(x0)|
|x− x0|δ ≤ C

∫

A
(|x− y|−(n−1−δ) + |x0 − y|−(n−1−δ)) dVol(y)

≤ C Vol(A)1/p. (3.80)

The last estimate in (3.80) follows from the Hölder inequality, exactly as in
(3.77). Hence we conclude that for any given n < p < ∞ there is δ = δ(p)
such that

‖∇u‖Cδ(M) ≤ C(p)σ(A)n/(np−p). (3.81)

Equivalently, it follows that for any ε > 0 there is δ = δ(ε) such that:

‖M1+δu‖L∞(∂Ω) ≤ C(ε)σ(A)1/(n−1)−ε. (3.82)

On the other hand, (3.40) gives for the same function u an estimate

‖M1+δu‖
L

n−1
n−2−ε

(∂Ω)
≤ Cσ(A). (3.83)

Hence, interpolation between (3.82) and (3.83) gives for any (n−1)/(n−2) ≤
s ≤ ∞:

‖M1+δu‖Ls(∂Ω) ≤ Cσ(A)
1
s + 1

n−1−ε, (3.84)

for any ε > 0 and some δ = δ(s, ε) > 0.
Consider any 1 < p < ∞ and let f ∈ D0,p. We again define the sets Ai

as in (3.63), and we consider the decomposition (3.65)-(3.67) of f . We can
apply the estimate (3.84) to each function ui = L−1fi, i = 1, 2, . . . . Then
(3.67) gives:

‖M1+δu‖Ls(∂Ω) ≤ C
∑

i(1−p)/p‖M1+δui‖Ls(∂Ω)

≤ C
∑

i(1−p)/pσ(Ai)
1
s + 1

n−1−ε. (3.85)

Using Hölder’s inequality to estimate the last term of (3.85) yields:

‖M1+δu‖Ls(∂Ω) ≤ (3.86)

C
(∑

i
(1−p)s(n−1)

p((s−1)(n−1)−s)+ε′
) s−1

s − 1
n−1+ε′′ (∑

σ(Ai)
) 1

s + 1
n−1−ε

,



for some ε′ = ε′(ε) > 0 small (i.e., ε′ → 0+ as ε → 0+). Since we want the
number on the right hand side of (3.86) to be finite we need:

(1− p)s(n− 1)
p((s− 1)(n− 1)− s)

+ ε′ < −1. (3.87)

We instead solve

(1− p)s(n− 1)
p((s− 1)(n− 1)− s)

< −1, which is equivalent to s <
n− 1

(n− 1)/p− 1
.

(3.88)
It follows from (3.88) that for any 1 < p < ∞ and any n−1

n−2 < s < n−1
(n−1)/p−1 ,

(we take s = ∞ if p > n − 1) we can find ε′ > 0 such that (3.87) is true.
Hence, by (3.86) for such s

‖M1+δu‖Ls(∂Ω) < ∞. (3.89)

It follows that L−1 maps D0,p into D1+δ,s for any s < n−1
(n−1)/p−1 , provided

p ≤ n − 1, s = ∞ otherwise. Here δ = δ(s, p) > 0. From this the second
line of (3.62) follows, and we also have compactness of the map L−1. The
first line of (3.62) could be obtained from the second line and Theorem 2.5.
There are two special cases we did not consider here. If p = ∞, (3.62) is
a trivial consequence of (3.3). if p = 1 we use (3.40) instead of (3.86). We
again get that L−1 maps D0,1 into D1+δ,s for any s < (n − 1)/(n − 2) and
some δ = δ(s, p) > 0. ¤

Combining Theorem 3.5 with the results of [23]-[25] and [7] yields follow-
ing:

Theorem 3.6. Let M be a compact n-dimensional Riemannian manifold

whose metric tensor has regularity Cα, α > 0. Assume that V ∈ L∞(Ω)
and V ≥ 0. Let Ω ⊂ M be a connected open subset of M with Lipschitz

boundary. Let g ∈ Lp(∂Ω) for some 1 < p ≤ ∞. Consider the solution u to

the Dirichlet problem:

Lu = (∆− V )u = f in Ω, u
∣∣
∂Ω

= g, M0u ∈ Lp(∂Ω), (3.90)

where f ∈ D0,q for some 1 ≤ q ≤ ∞. (Denote the solution u by u = L−1
Dgf).

There is ε > 0 such that for any 2 − ε < p ≤ ∞ the solution u to the

Dirichlet problem (3.90) exists, is unique and the operator L−1
Dg:

L−1
Dg : D0,q → D0,p, (3.91)



is continuous and compact for any q > (n−1)p
n−1+2p , provided p ≥ n−1

n−2 , q ≥ 1
otherwise. Moreover, we have the following estimate on the norm of L−1

Dgf :

‖L−1
Dgf‖D0,p ≤ C(p, Ω)(‖g‖Lp(∂Ω) + ‖f‖D0,q ). (3.92)

If Ω is a domain with C1 boundary, (3.90) is solvable for any 1 < p ≤ ∞.

Also the estimate (3.92) remains true in this case.

Proof. Define a function F on M by extending f onto the whole M , i.e.,

F (x) =

{
f(x), for x ∈ Ω

0, otherwise.
(3.93)

Clearly M0F = M0f . Let U = L−1(F ). By Theorem 3.5, on Ω clearly

L U = f and ‖U‖Dδ,p ≤ C(p)‖f‖D0,q , (3.94)

for some δ > 0 small. Thus, we have that U
∣∣
∂Ω

∈ Lp(∂Ω), by the ‘trace’
Theorem 2.6.

Consider now the following boundary problem

Lw = 0 on Ω, w
∣∣
∂Ω

= g − U
∣∣
∂Ω
∈ Lp(∂Ω), M0w ∈ Lp(∂Ω). (3.95)

(3.95) is solvable for all 1 < p ≤ ∞, if Ω has a C1 boundary by Theorem 3.1
of [7]. If ∂Ω in Lipschitz (3.95) is solvable for 2 − ε < p ≤ ∞ (see [23], [24]
and [25]). Moreover, the solution to (3.95) satisfies the following estimate on
M0w:

‖M0w‖Lp(∂Ω) ≤ C‖g + U
∣∣
∂Ω
‖Lp(∂Ω) ≤C(‖g‖Lp(∂Ω) + ‖M0U‖Lp(∂Ω))

≤C(‖g‖Lp(∂Ω) + ‖f‖D0,q ).
(3.96)

Now clearly u = U + w solves (3.90) and (3.91) follows from (3.94) and
(3.96).

The compactness of L−1
Dg can be proved as follows: Let (fn)n∈N be a

bounded sequence in D0,q. Extend as in (3.93) each fn onto M . Let Un =
L−1Fn. By Theorem 3.5 L−1 is a compact operator from D0,q to Dδ,p, hence
there is a subsequence, that we will again denote by (Un)n∈N , convergent
in Dδ,p. Let U be the limit of this subsequence. Clearly, we also have that



Un

∣∣
∂Ω

converges to U
∣∣
∂Ω

in Lp(∂Ω). Now we consider the following Dirichlet
problems.

Lwn = 0 on Ω, w
∣∣
∂Ω

= g − Un

∣∣
∂Ω
∈ Lp(∂Ω), M0wn ∈ Lp(∂Ω),

Lw = 0 on Ω, w
∣∣
∂Ω

= g − U
∣∣
∂Ω
∈ Lp(∂Ω), M0w ∈ Lp(∂Ω).

(3.97)

The results from [23]-[25], [7] guarantee that the sequence (wn)n∈N converges
to w in D0,p. Thus un = Un + wn is also convergent in this space (to
U + w). ¤

We have a similar proposition for the Neumann problem.

Theorem 3.7. Let M be a compact n-dimensional Riemannian manifold

whose metric tensor has regularity Cα, α > 0. Assume that V ∈ L∞(Ω),
V ≥ 0 and V > 0 on a set of positive measure in Ω. Let Ω ⊂ M be a

connected open subset of M with Lipschitz boundary. Let g ∈ Lp(∂Ω) for

some 1 < p < ∞. Consider the solution u to the Neumann problem:

Lu = (∆− V )u = f in Ω, ∂νu
∣∣
∂Ω

= g, M1u ∈ Lp(∂Ω), (3.98)

where f ∈ D0,q. (Denote the solution u by u = L−1
Ngf).

There is ε > 0 such that for any 1 < p < 2 + ε the solution u to the

Neumann problem (3.98) exists, is unique and the operator L−1
Ng:

L−1
Ng : D0,q → D1,p, (3.99)

is continuous and compact for any q > (n−1)p
n−1+p , provided p ≥ n−1

n−2 , q ≥ 1
otherwise. Moreover, we have the following estimate on the norm of L−1

Ngf :

‖L−1
Ngf‖D1,p ≤ C(p, Ω)(‖g‖Lp(∂Ω) + ‖f‖D0,q ). (3.100)

If Ω is a domain with C1 boundary, (3.98) is solvable for any 1 < p < ∞.

Also the estimate (3.100) remains true in this case.

Proof. Because, the proof of this theorem is essentially same as that of The-
orem 3.6, we omit it. ¤



Theorem 3.8. Let M be a compact n-dimensional Riemannian manifold

whose metric tensor has regularity C1+α, α > 0. Assume that V ∈ L∞(Ω)
and V ≥ 0. Let Ω ⊂ M be a connected open subset of M with Lipschitz

boundary. Let g ∈ H1,p(∂Ω) for some 1 < p < ∞. Consider the solution u

to the Dirichlet regularity problem:

Lu = (∆− V )u = f in Ω, u
∣∣
∂Ω

= g, M1u ∈ Lp(∂Ω), (3.101)

where f ∈ D0,q. (Denote the solution u by u = L−1
Dgf).

There is ε > 0 such that for any 1 < p < 2 + ε the solution u to the

Dirichlet problem (3.101) exists, is unique and the operator L−1
Dg:

L−1
Dg : D0,q → D1,p, (3.102)

is continuous and compact for any q > (n−1)p
n−1+p , provided p ≥ n−1

n−2 , q ≥ 1
otherwise. Moreover, we have the following estimate on the norm of L−1

Dgf :

‖L−1
Dgf‖D1,p ≤ C(p, Ω)(‖g‖H1,p(∂Ω) + ‖f‖D0,q ). (3.103)

If Ω is a domain with C1 boundary, (3.101) is solvable for any 1 < p < ∞.

Also the estimate (3.103) remains true in this case.

4. Uniform estimates of solutions

In this section we investigate some additional properties of the solutions to
the Dirichlet and Neumann boundary problems for the operator L = ∆− V

on Ω. We start with the following lemma on the kernel E(x, y) of the operator
L−1 from (3.4). We keep same assumptions as in the previous section on M

and Ω.

Lemma 4.1. Let K > 0 be a given constant. Consider a sequence of func-

tions V n in L∞(M) such that for any integer n ≥ 1

0 ≤ V n ≤ K, V n(x) = V 1(x) for x ∈ M \ Ω, (4.1)

and V 1 > 0 on a set of positive measure on each connected component of

M \ Ω. Denote by Ln the corresponding operator ∆− V n, and by En(x, y)
the kernel of the inverse (Ln)−1. Then there is a constant C = C(K, ε)
depending only on K any ε > 0 such that for any n,m ∈ N we have:

|En(x, y)− Em(x, y)| ≤ C|x− y|−(n−2−α+ε)

|∇xEn(x, y)−∇xEm(x, y)| ≤ C|x− y|−(n−1−α+ε), (4.2)



where α as before is the smoothness of the metric tensor on M .

Moreover, there exists a subsequence (V nk)k∈N of the sequence (V n)n∈N ,

such that V nk converges weakly in Lq(M), for any 1 ≤ q < ∞. Let V be

the weak limit of this sequence. It follows that V ∈ L∞(M), 0 ≤ V ≤ K.

Denote by L the operator ∆ − V , and by E(x, y) the kernel of L−1. The

subsequence (V nk)k∈N can be selected such that for any s < 1 + α

Enk(x, y) → E(x, y), in Cs
loc(M ×M \ diag). (4.3)

Proof. We closely follow [25]. First we want to establish (4.2). The key is the
kernel decomposition (3.5). Clearly, the term e0(x − y, y) does not depend
on V n and therefore

En(x, y)− Em(x, y) = g(y)−1/2 (en
1 (x, y)− em

1 (x, y)) . (4.4)

Hence, it is sufficient to concentrate on the estimates for en
1 . Here comes

into play the boundedness of the sequence (V n)n∈N . It follows that in the
decomposition (2.10) of [25], where we write the operator Ln as Ln = L#,n +
Lb,n, the part L#,n ∈ OPS2

1,δ does not dependent on n, and the norm of
Lb,n is uniformly bounded. This is crucial. It allows us to establish the
statement of Proposition 2.3 of [MT2] uniformly in n. Here if we rephrase
this proposition into our settings we get:

Let O be an open subset of M , which has a Cα metric tensor, 0 < α < 1.
Assume

1 < p ≤ q < ∞, −1 ≤ σ < −1 + α. (4.5)

Then given any open Õ ⊂⊂ O

u ∈ Hτ,p(Õ), τ > 1− α, Lnu ∈ Hσ,q(Õ) =⇒ u ∈ H2+σ,q(Õ). (4.6)

Moreover, there is a constant C = C(τ, p, σ, q, Õ) (but independent on n)
such that

‖u‖H2+σ,q(Õ) ≤ C(‖Lnu‖Hσ,q(Õ) + ‖u‖Hτ,p(Õ)). (4.7)

It follows (see Corollary 2.4 of [25]) that given any compact set K ⊂
M ×M \ diag:

En ∈ Cs(K), for all s < 1 + α, and ‖En‖Cs(K) ≤ C(K, s). (4.8)



We also get as uniform estimate on the part Rn
3 (x, y) of the decomposition

(2.35) of [MT3] in the form of

|Rn
3 (x, y)| ≤ C|x− y|−(n−2). (4.9)

This finally yields an equivalent of Theorem 2.6 of [25] which gives us:

|en
1 (x, y)| ≤ Cε|x− y|−(n−2−α+ε),

|∇xen
1 (x, y)| ≤ Cε|x− y|−(n−1−α+ε), (4.10)

with Cε independent of n. From this (4.2) follows.
The second part of the lemma follows from (4.8), since for any s < s′ <

1 + α we have a compact embedding Cs′(K) ⊂ Cs(K). ¤

Using this lemma, we can improve Theorem 5.8 of [23] and Theorem 3.1
of [7]. The essence of our improvement is in establishing how the constant
in the estimate (4.12) depends on V . We retain all hypothesis on M , Ω. Let
us assume explicitly, that the metric tensor is of class Cα, 0 < α < 1.

Theorem 4.2. Let Ω be a Lipschitz domain, V ∈ L∞(Ω) and V ≥ 0. Then

there is ε > 0 such that given 2− ε < p ≤ ∞ and f ∈ Lp(∂Ω) there exists a

unique function u ∈ C1+α
loc (Ω) satisfying

Lu = (∆− V )u = 0 in Ω, M0u ∈ Lp(∂Ω), u
∣∣
∂Ω

= f ∈ Lp(∂Ω),
(4.11)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, there is a

uniform estimate

‖M0u‖Lp(∂Ω) ≤ Cp(‖V ‖L∞)‖f‖Lp(∂Ω). (4.12)

The constant Cp depends only on the L∞(Ω) norm of V , not on V itself. If

Ω is a C1 domain, the claim holds for any 1 < p ≤ ∞.

Proof. If p = ∞ the estimate (4.12) follows from the weak maximum principle
(Proposition 5.7 of [23]). In fact, in such case the constant C∞ = 1 is
independent of V .

If p < ∞ the solution to (4.11) is representable in the form

u = D(( 1
2I + K)−1f),



where D is a double layer potential:

Df(x) =
∫

∂Ω

∂E

∂νy
(x, y)f(y) dσ(y), x /∈ ∂Ω, (4.13)

and K is an operator on Lp(∂Ω):

Kf(x) = P.V.
∫

∂Ω

∂E

∂νy
(x, y)f(y) dσ(y). (4.14)

It follows from (4.2) that given any L∞ uniformly bounded sequence (V n)n∈N

the corresponding double layer potentials Dn and operators Kn have norms
uniformly bounded. The only remaining problem is the uniform invertibility
of 1

2I+Kn. Assume therefore contrary, i.e., suppose that there is a uniformly
bounded sequence (V n)n∈N for which

lim
n→∞

inf
‖f‖Lp=1

‖( 1
2I + Kn)f‖Lp

‖f‖Lp

= 0. (4.15)

It follows from Lemma 4.1, that there is a subsequence of (V n)n∈N (for
simplicity again denoted by (V n)n∈N ), such that we have (4.2) and (4.3) for
some function V ∈ L∞(Ω), V ≥ 0. If K is the operator corresponding to
this function V , we get from (4.2) and (4.3) that

‖Kn −K‖L(Lp) → 0, as n →∞. (4.16)

See (2.12)-(2.13) of [7] for estimates of similar nature. If we combine (4.15)
with (4.16) we get that

inf
‖f‖Lp=1

‖( 1
2I + K)f‖Lp

‖f‖Lp

= 0, (4.17)

which would mean that 1
2I +K is not invertible. Apparently, this contradicts

Theorem 5.8 of [23] and Theorem 3.1 of [7]. ¤

A similar theorem is true also for the Neumann problem. The main in-
gredients of the proof in this case are the single layer potential (c.f. [23] or
[7]) and the operator K∗ on Lp(∂Ω) which is a formal dual of K defined by
(4.14). Crucially, the same arguments (4.15)-(4.17) we used for K work also
for K∗.



Theorem 4.3. Let Ω be a Lipschitz domain, q ∈ L∞(Ω) a given function

q ≥ 0 and q > 0 on a set of positive measure in Ω. Assume that V ∈ L∞(Ω)
and V ≥ q. Then there is ε > 0 such that given 1 < p < 2+ε and g ∈ Lp(∂Ω)
there exists a unique function u ∈ C1+α

loc (Ω) satisfying

Lu = (∆− V )u = 0 in Ω, M1u ∈ Lp(∂Ω), ∂νu
∣∣
∂Ω

= g ∈ Lp(∂Ω),
(4.18)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, there is a

uniform estimate

‖M1u‖Lp(∂Ω) ≤ Cp(q, ‖V ‖L∞)‖g‖Lp(∂Ω). (4.19)

The constant Cp depends only on q and the L∞(Ω) norm of V , not on V

itself. If Ω is a C1 domain, the claim holds for any 1 < p < ∞.

Finally, for the Dirichlet regularity problem we get in the same spirit:

Theorem 4.4. Let the metric tensor on M be of class C1+α. Let Ω be

a Lipschitz domain, V ∈ L∞(Ω) and V ≥ 0. Then there is ε > 0 such

that given 1 < p < 2 + ε and f ∈ H1,p(∂Ω) there exists a unique function

u ∈ C1+α
loc (Ω) satisfying

Lu = (∆− V )u = 0 in Ω, M1u ∈ Lp(∂Ω), u
∣∣
∂Ω

= f ∈ H1,p(∂Ω),
(4.20)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, there is a

uniform estimate

‖M1u‖Lp(∂Ω) ≤ Cp(‖V ‖L∞)‖g‖Lp(∂Ω). (4.21)

The constant Cp depends only the L∞(Ω) norm of V , not on V itself. If Ω
is a C1 domain, the claim holds for any 1 < p < ∞.

Since the proofs are essentially identical to the proof of Theorem 4.2, we
skip them.

5. The semilinear elliptic boundary problems

In the previous sections we have developed enough tools to take on the
semilinear problem outlined in the introduction. We keep same assumptions
as in the previous sections. Namely, M be a smooth, compact Riemannian



manifold dim M ≥ 3 with metric tensor of the Hölder class Cα, 0 < α ≤ 1.
The set Ω ⊂ M is open, connected with Lipschitz boundary.

Given a function g ∈ Lp(∂Ω) we are interested in finding solution u to the
equation:

∆u− a(x, u)u = 0, in Ω, u
∣∣
∂Ω

= g, u ∈ D0,p, (5.1)

or more generally to the equation

∆u− a(x, u)u = f, in Ω, u
∣∣
∂Ω

= g, u ∈ D0,p, (5.2)

Here, the function a(x, u) is Caratheodory, i.e., measurable in x and con-
tinuous in u. Moreover, we assume that

a(x, u) ∈ L∞(Ω× R), a(x, u) ≥ 0. (5.3)

We explain later the conditions we put on the function f . It would be
desirable to relax somewhat the condition (5.3). For example the paper [14]
by Isakov and Nachman treats two dimensional problems of the form (5.1)
with more general function a. There is a trade-off, however. The existence
theorem the authors discuss requires the boundary data g not only to be
bounded, but also have some regularity, namely, H1/2(∂Ω). Our treatment
will give us results for the semilinear equation comparable with those for
the linear equation Lu = (∆ − V )u = 0 on Lipschitz domains as they were
presented for the flat Rn case in [3], [8], [9] or [12] and for Riemannian
manifolds in [23]-[25], [22] or [7]. We also explore the Neumann and Dirichlet
regularity problems.

At the end we show, that given g bounded we can somewhat relax the con-
dition (5.3) for the Dirichlet problem. We begin with the following auxiliary
lemma.

Lemma 5.1. Let a(x, u) be a Caratheodory function on Ω × R, i.e, a is

measurable in x and continuous in u. Let 1 ≤ p ≤ ∞, and v : Ω → R be a

given function in D0,p ∩ Cloc(Ω). Then the function

x 7→ a(x, v(x)) (5.4)

is measurable.

Proof. Given any open domain O ⊂⊂ Ω the function

h(x) =

{
a(x, v(x)), for x ∈ O,

0, otherwise,
(5.5)



is measurable, since on O the function v is continuous. Now taking an
increasing sequence of domains Ω1 ⊂ Ω2 ⊂ · · · ⊂⊂ Ω union of which is Ω
does the job, because the sequence of measurable functions hn defined by
(5.5) converges to x 7→ a(x, v(x)), x ∈ Ω. ¤

We can formulate our first result.

Theorem 5.2. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α ≤ 1. Let a be a

Caratheodory function satisfying (5.3). There exists ε > 0 such that for any

2 − ε < p ≤ ∞ we have the following: Given any g ∈ Lp(∂Ω) there exists a

function u ∈ C1+α
loc (Ω) satisfying

∆u− a(x, u)u = 0 in Ω, u
∣∣
∂Ω

= g, u ∈ D0,p, (5.6)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖D0,p ≤ C(a, p)‖g‖Lp(∂Ω). (5.7)

If the boundary of Ω is C1, the claim is true for any 1 < p ≤ ∞.

Proof. First, we establish existence of a solution to (5.6). We consider the
case p < ∞. Fix g ∈ Lp(∂Ω). We define an operator

T : D0,p ∩ Cloc(Ω) → D0,p ∩ Cloc(Ω), (5.8)

as follows. Given u ∈ D0,p ∩ Cloc, let v = Tu be a solution to the linear
problem

∆v − a(x, u)v = 0 in Ω, v
∣∣
∂Ω

= g, v ∈ D0,p. (5.9)

This problem is solvable for any given u ∈ D0,p ∩Cloc(Ω), since the function
V (x) = a(x, u(x)) is bounded by (5.3), measurable by Lemma 5.1. Hence
Theorem 4.2 applies. This theorem also gives that the norm of v = Tu in
D0,p is uniformly bounded (regardless of the initial u). This follows from
(4.12) and interior regularity results which also guarantee that v ∈ C1+β

loc (Ω),
for any β < α. Hence v ∈ D0,p ∩ Cloc(Ω) and

‖v‖D0,p ≤ C(p, ‖a‖L∞)‖g‖Lp(∂Ω). (5.10)



Notice also that D0,p∩Cloc(Ω) is a closed subspace of the Banach space D0,p.
If we prove that the map T is continuous and compact, then in the light of
(5.10), we may conclude from the Schauder fix point theorem that T has a
fixed point Tv = v, for which we also have (5.10). This would establish the
existence of the solution to (5.6).

Concentrate first on the continuity of T . Assume that we have a con-
vergent sequence (un)n∈N of elements of D0,p ∩ Cloc(Ω) converging to u. It
follows that

un → u, in Cloc(Ω). (5.11)

(See (2.10) for proof of this). Denote by vn, v the solutions of the equation
(5.9) corresponding to un, u, respectively. It would suffice to show that a
certain subsequence (vnk

)k∈N of (vn)n∈N converges to v.
We put Vn(x) = a(x, un(x)) on Ω, and extend the functions Vn to the

whole M , so that we can use Lemma 4.1. It follows that there is a subse-
quence of (Vn)n∈N that is weakly convergent in Lq(M), for any q < ∞, to
some function V ∈ L∞(M). Since we have

Vn(x) → a(x, u(x)), for any x ∈ Ω, (5.12)

clearly V (x) = a(x, u(x)) on Ω. (For simplicity of notation we denote this
subsequence of (Vn)n∈N again by (Vn)n∈N ). Also we have (4.2) and (4.3).
These two estimates are crucial. From them exactly as in Theorem 4.2 we
deduce that

lim
n→∞

sup
‖f‖Lp=1

‖M0(Df −Dnf)‖Lp

‖f‖Lp

= 0,

lim
n→∞

‖K −Kn‖L(Lp) = 0, (5.13)

where Dn, D, Kn, K are the corresponding double layer potentials (see
(4.13)) or operators defined by (4.14). From the second line of (5.13) and
the fact that 1

2I + Kn, 1
2I + K are invertible we also get

lim
n→∞

‖( 1
2I + Kn)−1 − ( 1

2I + K)−1‖L(Lp) = 0. (5.14)

From (5.13) and (5.14) together with the fact that the solutions vn are rep-
resentable in the form vn = Dn(( 1

2I + K)−1fn) we finally get that

lim
n→∞

‖M0(vn − v)‖Lp = 0. (5.15)



This and interior estimates give us that the map T is indeed continuous.
Now we turn to compactness. It follows from Theorem 3.6 that for L = ∆

we have that the operator ∆−1
Dg is well defined and compact on D0,p. Assume

that (un)n∈N is a bounded sequence in the norm of D0,p ∩ Cloc(Ω). From
(5.10) we get that vn = Tun are also uniformly bounded in the norm. If we
put

hn = a(x, un(x))vn(x), (5.16)

we see that each hn ∈ D0,p and there is some C > 0, such that ‖hn‖D0,p ≤ C

for all n. Finally, notice that

vn = Tun = ∆−1
Dghn. (5.17)

The compactness of ∆−1
Dg gives us that a subsequence of vn is convergent in

D0,p. So T is compact and the theorem is established.
If p = ∞ we proceed differently. Take any (n − 1)/2 < q < ∞ and solve

the problem (5.6) with u ∈ D0,q. It follows that such u can be written as
u = ∆−1

Dgh, where h = a(x, u(x))u(x) ∈ D0,q. Now, theorem 3.6 gives us that
such u actually belongs to D0,∞, i.e., u is bounded. Also the estimate (5.7)
follows. ¤

Notice however, that in Theorem 5.2 we do not claim uniqueness of the
solution u to the Dirichlet problem (5.6). This is because we do not have
uniqueness for the considered problem. The next example explains the situ-
ation.

Example 5.3. Pick any connected Lipschitz domain Ω ⊂ M . Consider the
following functions u1, u2 solving

∆u1 = 0, in Ω, u1

∣∣
∂Ω

= 1,

(∆− c)u2 = 0, in Ω, u2

∣∣
∂Ω

= 1. (5.18)

Here the constant c > 0 is picked small enough such that we have u2 > 0 on
Ω. Such c can always be found, since for c = 0 we have that the corresponding
function is equal to 1 everywhere. From (5.18) we get: u1 = 1, u2 > 0 and
therefore ∆u2 > 0. This means the function u2 is subharmonic. Also u1 = u2

on ∂Ω, hence u2 ≤ u1 = 1 on Ω. A variant of the maximum principle gives
us that u2 attains its maximum on ∂Ω and therefore

0 < u2(x) < u1(x) = 1, for any x ∈ Ω. (5.19)



We define for x ∈ Ω:

a(x, u) =





c 1−u
1−u2(x) , if u2(x) < u ≤ 1,

0, if u > 1,

c, if u < u2(x).

(5.20)

Clearly the function a is Caratheodory and satisfies (5.3). However, both
functions u1, u2 solve the problem:

∆u− a(x, u)u = 0 in Ω, u
∣∣
∂Ω

= 1. (5.21)

It follows, that uniqueness requires a stronger condition on the function
a. The next theorem provides us with the answer.

Theorem 5.4. Let all assumptions from Theorem 5.2 hold. In addition,

assume that for the function b(x, u) = a(x, u)u defined on Ω× R we have:

∂

∂u
b(x, u) ∈ L∞(Ω× R) and

∂

∂u
b(x, u) ≥ 0. (5.22)

Then the solution u to the Dirichlet problem (5.6) is unique.

Proof. Let u1, u2 ∈ D0,p ∩ Cloc(Ω) be two different solutions of (5.6) with
u1

∣∣
∂Ω

= u2

∣∣
∂Ω

. Then, writing

a(x, u1(x))u1(x)− a(x, u2(x))u2(x) = V12(x)(u1(x)− u2(x)) (5.23)

with

V12(x) =
∫ 1

0

∂

∂u
b(x, u2(x) + t(u1(x)− u2(x)) dt, (5.24)

we have V12(x) ≥ 0, V12 ∈ L∞(Ω). The function w = u1 − u2 satisfies

(∆− V12)w = 0 in Ω, w
∣∣
∂Ω

= 0, w ∈ D0,p. (5.25)

The uniqueness results from [23]-[25], [7] for the linear equation (5.25) guar-
antee that w = 0 on Ω. ¤

Now we consider equation (5.2) with a term of the right hand side.



Theorem 5.5. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α ≤ 1. Assume that a is

a Caratheodory function satisfying (5.3). There exists ε > 0 such that for

any 2− ε < p ≤ ∞ we have the following: Assume X is one of the following

spaces:

(a) Lr(Ω) for some r > n/2,

(b) H−β,r(Ω) for some 1 + α > β, r > 1 and r(2− β) > n,

(c) D0,r, where





r = 1, for p < (n− 1)/(n− 3),

r >
(n− 1)p

n− 1 + 2p
, otherwise.

Then given any g ∈ Lp(∂Ω) and f ∈ X there exists a function u ∈ Cδ
loc(Ω),

for some δ > 0, satisfying

∆u− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g, u ∈ D0,p, (5.26)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖D0,p ≤ C(a, p)(‖g‖Lp(∂Ω) + ‖f‖X). (5.27)

If the boundary of Ω is C1, the claim is true for any 1 < p ≤ ∞. If in

addition the function b(x, u) = a(x, u)u satisfies (5.22) then the solution u is

unique.

Proof. Let p < ∞. Fix f ∈ X and consider the Dirichlet problem

∆v − a(x, u)v = f in Ω, v
∣∣
∂Ω

= 0, v ∈ D0,p, (5.28)

for u ∈ D0,p ∩ Cloc(Ω). We put T1u = v. The claim is that T1 is a compact
continuous operator and all v are uniformly bounded in D0,p. This, together
with the way we defined T in the proof of Theorem 5.3 gives us that there is
u ∈ D0,p ∩Cloc(Ω) which is a fixed point of T +T1, i.e., (T +T1)u = u. Such
u solves (5.26). The uniqueness follows exactly as in the proof of Theorem
5.4.

First consider the cases (a) and (b). In fact (a) is a special case of (b), but
because of its importance we stated it separately. Use of embedding theorem
gives us that L−1f ∈ Cδ(M) for some δ > 0. Moreover, we have a uniform
bound on the Cδ(Ω) ⊂ D0,p norm of U = L−1f independent on u:

‖U‖Cδ(Ω) ≤ C(‖a‖L∞)‖f‖Lp(Ω). (5.29)



Now we consider:

Lw = 0, in Ω, w
∣∣
∂Ω

= −U
∣∣
∂Ω

, w ∈ D0,p. (5.30)

For the range of p we consider we get that:

‖M0w‖Lp(∂Ω) ≤ C(‖a‖L∞)‖U‖Cδ(M). (5.31)

Since T1u = U + w, (5.29) and (5.31) yield:

‖T1u‖D0,p ≤ C(‖a‖L∞)‖f‖X . (5.32)

The proof of continuity and compactness of T1 uses the fact that Cδ(Ω) is
compactly embedded into D0,p. Details are left to the reader.

Finally, suppose that X = D0,r with r as in the statement of this theorem.
Fix again f ∈ D0,r and let L = ∆− a(x, u(x)) for some u ∈ D0,p ∩ Cloc(Ω).
The second line of (3.62) gives us that

L−1 : D0,p → D0,q (5.33)

compactly, for any q < n−1
(n−1)/p−2 , provided p ≤ (n− 1)/2, q = ∞ otherwise.

Actually, if we look carefully at the proof of Theorem 3.5 we see that for
such p and q we actually have that

L−1 : D0,p → Dδ,q, (5.34)

for some δ = δ(p, q) > 0. This means that given f ∈ D0,r we get that
U = L−1f belongs to Dε,p for some ε > 0, r and p are as in the statement
of our theorem. From here we proceed as in the previous case, i.e., we solve
(5.30). Once again we establish (5.32). Then the continuity and compactness
of T1 follows from the fact that the embedding Dε,p into D0,p is compact.

In p = ∞ essentially same argument as used in Theorem 5.2 works. Once
again we solve (5.26) with u ∈ D0,q for some finite q > (n − 1)/2. Such
u can be written as u = ∆−1

Dgh + ∆−1
D0f , where h is as before the function

a(x, u(x))u(x) ∈ D0,q and ∆−1
D0 is a solution operator to the Dirichlet bound-

ary problem ∆v = f in Ω, v
∣∣
∂Ω

= 0. For spaces X from the statement of
our theorem, v is bounded. On the other hand, ∆−1

Dgh ∈ D0,∞ = L∞(Ω) by
Theorem 3.6. So the solution u we found is bounded. ¤

A similar result will be true also for the Neumann boundary problem.



Theorem 5.6. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α ≤ 1. Assume that a is

a Caratheodory function satisfying (5.3) and infu∈R a(., u) ≥ q(.) on Ω, for

some nonnegative function q on Ω that is positive on a subset of Ω of positive

measure.

There exists ε > 0 such that for any 1 < p < 2 + ε we have the following:

Assume X is one of the following spaces:

(a) Lr(Ω) for some r > n,

(b) H−β,r(Ω) for some 1 > β, r > 1 and r(1− β) > n,

(c) D0,r, where





r = 1, for p < (n− 1)/(n− 2),

r >
(n− 1)p
n− 1 + p

, otherwise.

Then given any g ∈ Lp(∂Ω) and f ∈ X there exists a function u ∈
C1+δ

loc (Ω), for some δ > 0, satisfying

∆u− a(x, u)u = f in Ω, ∂νu
∣∣
∂Ω

= g, u ∈ D1,p, (5.35)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖D1,p ≤ C(a, q, p)(‖g‖Lp(∂Ω) + ‖f‖X). (5.36)

If the boundary of Ω is C1, the claim is true for any 1 < p < ∞. If in

addition the function b(x, u) = a(x, u)u satisfies

∂

∂u
b(x, u) ∈ L∞(Ω× R) and

∂

∂u
b(x, u) ≥ q(x) for all u ∈ R, (5.37)

then the solution u is unique.

Proof. The main idea of this proof is essentially same as above. Fix g ∈
Lp(∂Ω) and f ∈ X. We define an operator

T : D1,p → D1,p, (5.38)

as follows. Given u ∈ D1,p, let v = Tu be a solution to the linear problem

∆v − a(x, u)v = f in Ω, ∂νv
∣∣
∂Ω

= g, v ∈ D1,p. (5.39)

This problem is solvable for any given u ∈ D1,p. Indeed, first we should
realize that the function V (x) = a(x, u(x)) is bounded by (5.3) and greater
than or equal to q. We write the operator T as T1 +T2 where v1 = T1u solves

∆v1 − a(x, u)v1 = 0 in Ω, ∂νv1

∣∣
∂Ω

= g, v1 ∈ D1,p, (5.40)



and v2 = T2u solves

∆v2 − a(x, u)v2 = f in Ω, ∂νv2

∣∣
∂Ω

= 0, v2 ∈ D1,p. (5.41)

For T1 we apply Theorem 4.3 to get

‖T1u‖D1,p ≤ C(‖a‖L∞ , q, p)‖g‖Lp(∂Ω). (5.42)

Similarly for T2 analysis close to the one done in the previous proof shows:

‖T2u‖D1,p ≤ C(‖a‖L∞ , q, p)‖f‖X . (5.43)

This two estimates together with continuity and compactness of T1+T2 again
guarantee the existence of the solution to (5.35) and the estimate (5.36).
(We again use Schauder fix point theorem). The proof of compactness and
continuity goes basically, as in Theorem 5.3 for T1 and Theorem 5.5 for T2.
We use that the solution to (5.40) can be written as a single layer potential

v1 = S((− 1
2I + K∗)−1g), (5.44)

where
Sf(x) =

∫

∂Ω

E(x, y)f(y) dσ(y), for x ∈ Ω, (5.45)

is a single layer potential (a mapping Lp(∂Ω) into D1,p) and

K∗f(x) = P.V.
∫

∂Ω

∂E

∂νx
(x, y)f(y) dσ(y)x ∈ ∂Ω, (5.46)

is an operator on Lp(∂Ω) (a formal adjoint of (4.14)). The invertibility of
− 1

2I + K∗ for the considered range of p follows from [23]-[25] (Lipschitz do-
mains) and [7] (C1 domains). Similarly as before, for any bounded sequence
(un)n∈N in D1,p there is a subsequence for which Vn = a(x, un(x)) is weakly
convergent to some V (Lemma 4.1). For this subsequence we get estimates
corresponding to (5.13), namely

lim
n→∞

sup
‖f‖Lp=1

‖M1(Sf − Snf)‖Lp

‖f‖Lp

= 0,

lim
n→∞

‖K∗ −K∗
n‖L(Lp) = 0. (5.47)



Here Sn, S, K∗
n, K∗ are the corresponding single layer potentials and oper-

ators (5.46) to Vn, V , respectively. We do not push this analysis further, we
just remark that the compactness of T1 is a consequence of compactness of
∆−1

Ng from Theorem 3.7. Similarly the compactness of the second piece T2 fol-
lows from Theorems 2.4 and 3.5 in case X = D0,r and from the compactness
of embedding of C1+ε into C1 in the cases (a) and (b).

Finally, the proof of uniqueness is essentially same as in Theorem 5.4. The
only change is that we have now for V12 defined by (5.24) a lower bound:
V ≥ q. Hence uniqueness results for the linear Neumann problem are appli-
cable. ¤

In the same style we can establish the following regularity result for the
Dirichlet problem.

Theorem 5.7. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in C1+α, 0 < α < 1. Assume that a

is a Caratheodory function satisfying (5.3). There exists ε > 0 such that for

any 1 < p < 2 + ε we have the following: Assume X is one of the following

spaces:

(a) Lr(Ω) for some r > n,

(b) H−β,r(Ω) for some 1 > β, r > 1 and r(1− β) > n,

(c) D0,r, where





r = 1, for p < (n− 1)/(n− 2),

r >
(n− 1)p
n− 1 + p

, otherwise.

Then given any g ∈ H1,p(∂Ω) and f ∈ X there exists a function u ∈
C1+δ

loc (Ω), for some δ > 0, satisfying

∆u− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g, u ∈ D1,p, (5.48)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖D1,p ≤ C(a, p)(‖g‖H1,p(∂Ω) + ‖f‖X). (5.49)

If the boundary of Ω is C1, the claim is true for any 1 < p < ∞. If in

addition the function b(x, u) = a(x, u)u satisfies (5.22) then the solution u is

unique.

Proof. Again the idea is to use Schauder fix point theorem. The key fact is
that for all 1 < p < 2 + ε in the Lipschitz case and all 1 < p < ∞ in the C1



case, the solution v to the problem

(∆− V )v = 0 in Ω, v
∣∣
∂Ω

= g, v ∈ D1,p, (5.50)

can be written as v = S(S−1g), where S is the single layer potential (5.45)
and S : Lp(∂Ω) → H1,p(∂Ω), is an invertible map (the single layer operator)
defined by

Sf(x) =
∫

∂Ω

E(x, y)f(y) dσ(y), for x ∈ ∂Ω. (5.51)

The rest goes essentially unchanged. ¤

Finally, we look more closely at the case when boundary data g of the
equation (5.2) are bounded. In such case we can modify our assumption on
the function a. We will assume that

for any M ∈ (0,∞) we have: sup
u∈[−M,M ]

x∈Ω

|a(x, u)| < ∞, a(x, u) ≥ 0.

(5.52)
Then the following is true.

Theorem 5.8. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α < 1. Assume that a is

a Caratheodory function satisfying (5.52).

Then given any g ∈ L∞(∂Ω) there exists a function u ∈ C1+β
loc (Ω), for any

β < α, satisfying

∆u− a(x, u)u = 0 in Ω, u
∣∣
∂Ω

= g, u ∈ L∞(Ω), (5.53)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖L∞(Ω) ≤ ‖g‖L∞(∂Ω). (5.54)

If a is a Caratheodory function that satisfies (i), (ii) and (iii):

(i) for any M ∈ (0,∞) we have: sup
u∈[−M,M ]

x∈Ω

|a(x, u)| < ∞, a(x, u) ≥ 0,

(ii) either lim
u→∞

(sup
x∈Ω

a(x, u)) < ∞ or lim sup
u→∞

( inf
x∈Ω

a(x, u)) > 0,

(5.55)

(iii) either lim
u→−∞

(sup
x∈Ω

a(x, u)) < ∞ or lim sup
u→−∞

( inf
x∈Ω

a(x, u)) > 0.



Then, given any f ∈ L∞(Ω), g ∈ L∞(∂Ω) there exists a function u ∈
C1+β

loc (Ω), for any β < α, satisfying

∆u− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g, u ∈ L∞(Ω), (5.56)

the limit on ∂Ω taken in the nontangential a.e. sense.

If in addition the function b(x, u) = a(x, u)u satisfies

sup
u∈[−M,M ]

x∈Ω

∣∣∣∣
∂

∂u
b(x, u)

∣∣∣∣ < ∞, for any M > 0, and
∂

∂u
b(x, u) ≥ 0, (5.57)

then the solution u is unique.

Remark. Notice, that if the function a does not depend on x, i.e., a(x, u) =
a(u), then the conditions (ii), (iii) are satisfied automatically.

Proof. We start with equation (5.53). The key is to modify the function a.
Let M = supx∈∂Ω |g(x)|. Consider a function ψM defined as follows

ψM (x) =

{
x, for |x| ≤ 2M,

2Msign(x), otherwise.
(5.58)

We solve a Dirichlet problem

∆u− a(x, ψM (u))u = 0 in Ω, u
∣∣
∂Ω

= g, u ∈ D0,2. (5.59)

The function a(x, ψM (u)) satisfies all assumptions of Theorem 5.2 and there-
fore there is at least one solution u to (5.59). We will show that u actually
solves (5.53) as well.

Construct a sequence (gn)n∈N of continuous functions on ∂Ω such that
gn → g in L2(∂Ω) as n →∞, and ‖gn‖L∞(∂Ω) ≤ ‖g‖L∞(∂Ω). Then if un is a
classical solution to the linear problem:

∆un − a(x, ψM (u))un = 0 in Ω, un

∣∣
∂Ω

= gn, un ∈ C(Ω) ∩ C1
loc(Ω),
(5.60)

we have that un → u uniformly on compact subsets of Ω and the maximum
principle,

‖un‖L∞(Ω) ≤ ‖gn‖L∞(∂Ω) ≤ ‖g‖L∞(∂Ω). (5.61)



Hence, passing to the limit we have

‖u‖L∞(Ω) ≤ ‖g‖L∞(∂Ω) = M. (5.62)

However, clearly for such u: a(x, ψM (u)) = a(x, u). So we have (5.53) and
(5.54).

Now we look at (5.56). We will denote the first condition in (ii) by (iia),
the second one by (iib). Similarly for (iii), we denote the first condition
by (iiia), the second by (iiia). There are essentially four cases to consider.
Obviously if (iia), (iiia) hold, then a is bounded and therefore Theorem 5.5
applies.

For 0 < M, N ≤ ∞ consider the function

ψM,N (u) =





u, for −N < u < M,

M, for u ≥ M,

−N, for u ≤ −N.

(5.63)

If (iib) and (iiia) hold, we take 0 < M < ∞ and N = ∞. In case (iia) and
(iiib) are true, we consider M = ∞ and 0 < N < ∞. Finally, if (iib) and
(iiib) hold, we consider 0 < M,N < ∞.

Denote by uM,N ∈ L∞(Ω) the solution to the equation

∆uM,N − a(x, ψM,N (uM,N ))uM,N = f in Ω, uM,N

∣∣
∂Ω

= g. (5.64)

Obviously, for considered M, N always a(x, ψM,N (u)) ∈ L∞(Ω × R) and
thus the existence of the solution uM,N is guaranteed by Theorem 5.5. The
claim is that for some pair M, N the function uM,N actually solves (5.56).

To see this, consider first that (iia) holds. In such case M = ∞ and
therefore for any u(x) ≥ 0:

a(x, u(x)) = a(x, ψ∞,N (u(x))). (5.65)

If (iib) holds then there is ε > 0 and an increasing sequence M1,M2, . . .

converging to ∞ for which

a(x,Mi) ≥ ε, for all x ∈ Ω, i = 1, 2, . . . . (5.66)

Find the smallest m ∈ N for which εMm > ‖f‖L∞(Ω) and Mm > ‖g‖L∞(∂Ω).
We claim that for any N > 0 we have

uMm,N ≤ Mm. (5.67)



At this stage we drop index Mm, N to keep notation simple. Assume that
(5.67) does not hold, i.e., for some x ∈ Ω, u(x) > Mm. Then there is p ∈ Ω
for which

u(p) = sup
x∈Ω

u(x). (5.68)

At this point the function u has a global maximum, hence necessary ∆u(p) ≤
0. But obviously

∆u(p) = f(p) + a(x, u(p))u(p) = f(p) + a(x,Mm)u(p) > f(p) + εMm > 0.

(5.69)
So, indeed (5.67) is true. Clearly, for u(x) ≥ 0 that satisfies (5.67) we have:

a(x, u(x)) = a(x, ψMm,N (u(x))). (5.70)

So if (iia) or (iib) hold we can always find M such that for any considered
N the solution u = uM,N to the equation (5.64) has the property:

a(x, u(x)) = a(x, ψM,N (u(x))), provided u(x) ≥ 0. (5.71)

Using essentially the same argument one can also show that there is N

such that for any considered M the solution u = uM,N to the equation (5.64)
has the property:

a(x, u(x)) = a(x, ψM,N (u(x))), provided u(x) ≤ 0. (5.72)

Putting (5.71) and (5.72) together we see that there is a pair M, N for
which we have for u = uM,N : a(x, u) = a(x, ψM,N (u)), hence u solves (5.56).

Uniqueness again uses same argument as in Theorem 5.4. We again get
(5.25) for a difference w of two solutions to (5.53). Boundedness of both
solutions ensures that the function V12 defined by (5.24) is nonnegative and
bounded. So, w = 0. ¤

Remark. A good example of an equation satisfying the assumptions of The-
orem 5.8 is

∆u− |u|pu = 0 in Ω, u
∣∣
∂Ω

= g ∈ L∞(∂Ω), (5.73)

for any p ≥ 0. Theorem 5.8 gives us both existence and uniqueness for this
equation.



Example 5.9. There is a nice example illustrating the second part of Theo-
rem 5.8. This example is two dimensional. We did not consider the case dim
M = 2 in close detail, there is however no reason for all our work not to work
in two dimensions. The difference is that instead of having the decomposi-
tion (3.5) with the leading term of the form (3.6) we would get logarithmic
singularity of the leading term for dim M = 2.

Let Ω ⊂ M be a connected Lipschitz domain on a two dimensional com-
pact Riemannian manifold M . We want to impose a given Gaussian curva-
ture K(x) < 0 on the set Ω by conformally altering a given metric g, whose
Gauss curvature is k(x). As noted in [26], if g, g′ are conformally related,

g′ = e2ug, (5.74)

then K and k are related by

K(x) = e−2u(−∆u + k(x)), (5.75)

where ∆ is the Laplace operator for the original metric g. So, we want to
solve the PDE

∆u = k(x)−K(x)e2u. (5.76)

We might also want to impose Dirichlet boundary conditions on u, i.e, in
(5.74) we exactly specify g′ on ∂Ω. Under certain mild conditions the equa-
tion (5.76) satisfies all assumptions of Theorem 5.8.

What we need is k(x),K(x) ∈ L∞, and K(x) ≤ −k < 0 for some k > 0.
We can rewrite (5.76) as

∆u−
(
−K(x)

e2u − 1
u

)
u = k(x)−K(x), (5.77)

i.e, we have

a(x, u) = −K(x)
e2u − 1

u
, and f(x) = k(x)−K(x). (5.78)

Obviously, f ∈ L∞(Ω), a(x, u) ≥ 0,

sup
u∈[−M,M ]

x∈Ω

|a(x, u)| ≤ ‖K‖L∞e2M ,

lim sup
u→∞

( inf
x∈Ω

a(x, u)) ≥ lim
u→∞

k
e2u − 1

u
= ∞. (5.79)



Similarly, (iiia) also holds. The uniqueness condition is also satisfied, since
b(x, u) = −K(x)(e2u − 1) and therefore

∂

∂u
b(x, u) = −2K(x)e2u ≥ 0. (5.80)

It follows that given any h = u
∣∣
∂Ω

∈ L∞(∂Ω) we can construct on Ω
a conformal metric g′ with prescribed curvature K(x) < 0 and boundary
‘values’

g′
∣∣
∂Ω

= e2hg
∣∣
∂Ω

, (5.81)

where g is the original metric tensor on M . Let us note that a different
boundary value problem (with u →∞ as x → ∂Ω) is discussed in the paper
by Mazzeo and Taylor [20] for K(x) = −1.

6. ~1(∂Ω), bmo(∂Ω) and Cβ(∂Ω) boundary problems

In the last section of this paper we would like to consider the ‘end point
case’ for Neumann and Dirichlet regularity problems, i.e., for p = 1. From
the results for the linear problem (i.e. a(x, u) = V (x)) we know that given
g ∈ L1(∂Ω) it is not always possible to solve the equations (5.35) and (5.48).

In this case, the natural replacement of L1(∂Ω) is the Hardy space ~1(∂Ω).
The solvability of the linear Neumann and Dirichlet regularity problems with
boundary data in ~1(∂Ω) was established in various settings in [9], [19],
[24], [25] and [7]. We will establish that the same remains true even for
the semilinear equation. We return to our original hypothesis (5.3) on the
function a.

Theorem 6.1. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α ≤ 1. Assume that a is

a Caratheodory function satisfying

a(x, u) ∈ L∞(Ω× R), inf
u∈R

a(., u) ≥ q(.) on Ω,

for some nonnegative function q on Ω that is positive on a subset of Ω of

positive measure. Let X be one of the following spaces:

(a) Lr(Ω) for some r > n,

(b) H−β,r(Ω) for some 1 > β, r > 1 and r(1− β) > n,

(c) D0,1.



Then given any g ∈ ~1(∂Ω) and f ∈ X there exists a function u ∈
C1+δ

loc (Ω), for some δ > 0, satisfying

∆u− a(x, u)u = f in Ω, ∂νu
∣∣
∂Ω

= g, u ∈ D1,1, (6.1)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖D1,1 ≤ C(a, q, p)(‖g‖~1(∂Ω) + ‖f‖X). (6.2)

If in addition the function b(x, u) = a(x, u)u satisfies

∂

∂u
b(x, u) ∈ L∞(Ω× R) and

∂

∂u
b(x, u) ≥ q(x) for all u ∈ R, (6.3)

then the solution u is unique.

Proof. The main idea of the proof is essentially unchanged. We again define
a map T : D1,1 → D1,1 by putting Tu = v for u ∈ D1,1 and v solving the
Neumann problem

∆v − a(x, u)v = f in Ω, ∂νv
∣∣
∂Ω

= g, v ∈ D1,1. (6.4)

Once again, we can decompose T as a sum of two operators T1 and T2 defined
as in (5.40)-(5.41) for p = 1 and g ∈ ~1(∂Ω). Then the result on continuity
and compactness of T2 follows directly from Theorem 5.6 since we have that
T2 actually maps D1,1 into D1+δ,q for some δ > 0 and q > 1.

On the other hand the fact that T1 is well defined is a consequence of the
Proposition 5.3 of [24]. If we look closely at the proof of this proposition (by
decomposing g into ‘atoms’) we get that

‖M1T1u‖L1(∂Ω) ≤ C‖g‖~1(∂Ω), (6.5)

with constant C independent of u. In fact C depends on the L∞ norm
of a and the function q only. The rest follows, the proof of the fact that
T1 is continuous and bounded remains same as in Theorem 5.6. To get an
equivalent of the second line of (5.47), i.e. that

lim
n→∞

‖K∗ −K∗
n‖L(~1(∂Ω)) = 0, (6.6)

we use the first part of Lemma 2.4 of [7]. ¤

In what follows by H1,1(∂Ω) we mean a Hardy-Sobolev space on ∂Ω de-
fined by

H1,1(∂Ω) = {f : ∂Ω → R;∇T f ∈ ~1(∂Ω)}, (6.7)

equipped with the norm ‖f‖H1,1(∂Ω) = ‖f‖~1(∂Ω) + ‖∇T f‖~1(∂Ω).



Theorem 6.2. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α ≤ 1. Assume that a is

a Caratheodory function satisfying

a(x, u) ∈ L∞(Ω× R), a(., u) ≥ 0.

Let X be one of the following spaces:

(a) Lr(Ω) for some r > n,

(b) H−β,r(Ω) for some 1 > β, r > 1 and r(1− β) > n,

(c) D0,1.

Then given any g ∈ H1,1(∂Ω) and f ∈ X there exists a function u ∈
C1+δ

loc (Ω), for some δ > 0, satisfying

∆u− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g, u ∈ D1,1, (6.8)

the limit on ∂Ω taken in the nontangential a.e. sense. Moreover, we have a

bound

‖u‖D1,1 ≤ C(a, p)(‖g‖H1,1(∂Ω) + ‖f‖X). (6.9)

If in addition the function b(x, u) = a(x, u)u satisfies

∂

∂u
b(x, u) ∈ L∞(Ω× R) and

∂

∂u
b(x, u) ≥ 0, (6.10)

then the solution u is unique.

Proof. The map S defined by (5.51) maps ~1(∂Ω) isomorphically to H1,1(∂Ω)
as has been shown in [24]. The rest goes as in the previous theorem. ¤

Similarly, for the Dirichlet problem we can consider a bmo(∂Ω) version of
Theorem 5.5. The following theorem together with the idea of the proof has
been pointed out to me by Michael Taylor.

Theorem 6.3. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in Cα, 0 < α ≤ 1. Assume that a is

a Caratheodory function satisfying

a(x, u) ∈ L∞(Ω× R), a(., u) ≥ 0.

Let X be one of the following spaces:

(a) Lr(Ω) for some r > n/2,



(b) H−β,r(Ω) for some 1 + α > β, r > 1 and r(2− β) > n,

(c) D0,r for some r > (n− 1)/2.

Then given any g ∈ bmo(∂Ω) and f ∈ X the D0,2 solution u to the

equation

∆u− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g, u ∈ D0,2, (6.11)

has the following additional property:

‖M0u‖Lp(∂Ω) ≤ C(Ω)p(‖g‖bmo(∂Ω) + ‖f‖X) for any 2 ≤ p < ∞. (6.12)

It follows that there is a constant K > 0 such that for any

a < K(‖g‖bmo(∂Ω) + ‖f‖X)−1

the function exp(aM0u) is L1(∂Ω) integrable.

Proof. We are not concerned with the existence of a solution, since it follows
from Theorem 5.5 that there is u ∈ C1+β

loc (Ω) that solves (5.26) for any
2 ≤ p < ∞. A crucial point is, that we can take the constant C(a, p) in
(5.27) independent of p, provided we consider p only in the range [2,∞).
This follows from the fact that for each p the estimate (5.27) was obtained
from (4.12). However, the constant Cp in (4.12) can be taken uniform for
p ∈ [2,∞] since we can interpolate between the estimates for p = 2 and
p = ∞. Hence, indeed there exists C = C(a) such that for any 2 ≤ p < ∞
we have

‖u‖D0,p ≤ C(‖g‖Lp(∂Ω) + ‖f‖X). (6.13)

Now, we use the fact that given g ∈ bmo(∂Ω) we have the following bound
on the Lp (p ≥ 2) norm of g:

‖g‖Lp(∂Ω) ≤ Cp‖g‖bmo(∂Ω). (6.14)

That is, the Lp norm of g increases at most linearly, as p → ∞. From this
and (6.13) it follows that

‖M0u‖Lp ≤ C(‖f‖X + p‖g‖bmo(∂Ω)) ≤ Cp(‖f‖X + ‖g‖bmo(∂Ω)), (6.15)

for any 2 ≤ p < ∞. It turns out that the condition (6.15) is equivalent to the
fact that for any α > 0 the measure of the level set {x ∈ ∂Ω;M0u(x) > α}



decays exponentially as α → ∞, i.e, there are positive constants K, b such
that

σ({x ∈ ∂Ω;M0u(x) > α}) ≤ Ke−bα. (6.16)

The result [15] due to John and Nirenberg shows that this property holds for
any bmo function. This inequality implies integrability of the exponential of
aM0u for small a > 0.

¤

Finally, we consider a Dirichlet problem with boundary data in the Hölder
class Cβ(∂Ω) for some β small. We have the following:

Theorem 6.4. Let Ω ⊂ M be a connected Lipschitz domain in a Riemann-

ian manifold M whose metric tensor is in C1+α, 0 < α ≤ 1. Assume that a

is a Caratheodory function satisfying

a(x, u) ∈ L∞(Ω× R), a(., u) ≥ 0.

There exists a number α0 > 0 such that given any 0 < β < α0 the following

holds. Assume X is one of the following spaces:

(a) Lr(Ω) for some r such that β < 2− n
r ,

(b) H−γ,r(Ω) for some 1 + α > γ, r > 1 and β < 2− γ − n
r ,

(c) D0,r for some β < 2− n−1
r .

Then given any g ∈ Cβ(∂Ω) and f ∈ X there exists a function u ∈ Cβ(Ω)
satisfying

∆u− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g. (6.17)

Moreover, we have a bound

‖u‖Cβ(Ω) ≤ C(a, β)(‖g‖Cβ(∂Ω) + ‖f‖X). (6.18)

If in addition the function b(x, u) = a(x, u)u satisfies (6.10) then the solution

u is unique. If the boundary of Ω is C1, then we can take α0 = 1.

If f = 0 we might relax our assumptions of the function a. All above on

the existence and regularity of the solution remains true, provided a satisfies

for any M ∈ (0,∞) we have: sup
u∈[−M,M ]

x∈Ω

|a(x, u)| < ∞, a(x, u) ≥ 0.

(6.19)



The uniqueness requires

sup
u∈[−M,M ]

x∈Ω

∣∣∣∣
∂

∂u
b(x, u)

∣∣∣∣ < ∞, for any M > 0, and
∂

∂u
b(x, u) ≥ 0, (6.20)

where b(x, u) = a(x, u)u. Finally, if a satisfies (6.19) and

(i) either lim
u→∞

(sup
x∈Ω

a(x, u)) < ∞ or lim sup
u→∞

( inf
x∈Ω

a(x, u)) > 0,

(6.21)

(ii) either lim
u→−∞

(sup
x∈Ω

a(x, u)) < ∞ or lim sup
u→−∞

( inf
x∈Ω

a(x, u)) > 0,

then, we can even take f 6= 0, namely we need f ∈ L∞(Ω). For the unique-

ness we again need (6.20).

Proof. Since given g ∈ Cβ(∂Ω) we also have that g ∈ L∞(∂Ω), hence the
existence of a function u ∈ L∞(Ω) that solves ∆u − a(x, u)u = f in Ω,
u
∣∣
∂Ω

= g follows from Theorems 5.5 and 5.8.
We need to show that given the assumptions on the functions f and g

we actually have u ∈ Cβ(Ω). Seeing this is not difficult. We can write the
solution u as a sum of two functions u = v1 + v2, where

v1 = L−1F, for L = ∆− a(x, u), and F =

{
f, in Ω,

0, otherwise.
(6.22)

Given f from X, in all three cases it follows that v1 ∈ Cβ(Ω). Now we take
v2 to be a solution to the equation

∆v2 − a(x, u)v2 = 0, in Ω, v2

∣∣
∂Ω

= g − v1

∣∣
∂Ω

. (6.23)

The fact that the linear equation (6.23) is solvable with v2 ∈ Cβ(Ω) follows
from Theorem 3.4 of [7] for any 0 < β < 1 (on C1 domains) and from
Corollary 7.8 of [24] for some 0 < β < α0 < 1 (on Lipschitz domains). This
gives u = v1 + v2 ∈ Cβ(Ω) and also the estimate (6.18). ¤
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