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EXISTENCE AND UNIQUENESS
FOR A SEMILINEAR ELLIPTIC PROBLEM

ON LIPSCHITZ DOMAINS
IN RIEMANNIAN MANIFOLDS II

MARTIN DINDOŠ

Abstract. Extending our recent work for the semilinear elliptic equation on
Lipschitz domains, we study a general second-order Dirichlet problem Lu −
F (x, u) = 0 in Ω. We improve our previous results by studying more gen-
eral nonlinear terms F (x, u) with polynomial (and in some cases exponential)
growth in the variable u. We also study the case of nonnegative solutions.

1. Introduction

This is a continuation of our paper “Existence and uniqueness for a semilinear
elliptic problem on Lipschitz domains in Riemannian manifolds” [3]. In that paper
we initiated a program aimed at extending results for Lp Dirichlet and Neumann
boundary problems for linear second-order elliptic equations on Lipschitz domains
to the class of semilinear elliptic problems.

We recall the general setting of [3], which will also be in effect in this paper. Let
M be a smooth, compact Riemannian manifold of real dimension dim M = n ≥ 3,
with a Riemannian metric tensor, which is assumed to be Lipschitz. Let Ω ⊂M be
a connected Lipschitz domain in M . The equation we consider can be written as

(1.1) Lu− F (x, u) = 0 in Ω, u
∣∣
∂Ω

= g ∈ Lp(∂Ω),

where L is a second-order strongly elliptic, (formally) selfadjoint, negative definite
differential operator that can be locally written on a coordinate chart U ⊂M as

(1.2) L
∣∣
U

=
∑
j,k

∂

∂xj
ajk

∂

∂xk
+
∑
j

bj
∂

∂xj
+ c,

with coefficients

(1.3) ajk ∈ Lip, bj ∈ H1,r, c ∈ Lr/2,
for some r > n. (Actually in [3] it was assumed that L = ∆ is the Laplace-Beltrami
operator; we will extend the results of [3] for the more general operator L.)

If the function F is differentiable in the variable u, we can rewrite the equation
in a more convenient form:

(1.4) Lu− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g ∈ Lp(∂Ω),
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1366 MARTIN DINDOŠ

where f(x) = F (x, 0) and

(1.5) a(x, u) =
∫ 1

0

∂

∂u
F (x, tu) dt.

The main idea in [3], which allowed us to solve the equation (1.4), was to use
results for the linear equation and a fixed point theorem on a new class of spaces
Ds,p. These spaces were introduced in a simplified version in [4]; the full definition
with a list of properties was given in [3]. (Additional properties of the spaces Ds,p
are studied in section 2, below.)

However, in the paper [3] we placed one strong restriction on the function a in
equation (1.4). Namely, for p <∞ we assumed that

(1.6) a(x, u) ∈ L∞(Ω× R).

The main goal of this paper is to replace the condition (1.6) by a more general
condition that allows polynomial growth in the variable u. Let us also mention that
in [3] we also studied the Neumann boundary problem, which we will not consider
here.

For references to the linear theory, see papers by Verchota [24], Fabes, Jodeit
and Rivère [9], Dahlberg and Kenig [7] and others. These papers apply the method
of layer potentials on Lipschitz domains in the flat space Rn. Recently, a new
development for the linear problem was carried out by Mitrea and Taylor (see
[19], [20], [21], [22]), who brought the subject to the variable coefficient setting on
Lipschitz domains in compact Riemannian manifolds.

Before we give a list of results, let us briefly mention results by other authors
for the equation (1.1) and related problems. The two-dimensional planar case for
L = ∆ was recently considered by Isakov and Nachman [12]. Their approach is
purely variational with use of the maximum principle. The result on the Dirichlet
problem obtained by them requires boundary data bounded and having at least
half a derivative, i.e., H1/2,2(∂Ω). Here Hs,p stands for a standard Sobolev space
of Lp integrable functions, 1 ≤ p ≤ ∞, with s derivatives, s ∈ R. For the nonlinear
equation (1.1) in dimension greater than two, there are some results discussed in
the book by Gilbarg and Trudinger [11]. Their assumption on the boundary data
is H(2p−1)/p,p with p > n. They also require the boundary to be at least of the
class C2,α, which naturally excludes Lipschitz domains. Positive solutions were
investigated in the papers by Chen, Williams and Zhao [2] and also by Jin [13].
There is a slight overlap with their work, in particular Theorem 5.1. Finally, our
recent joint work with Marius Mitrea [5] considers the problem presented here in
Sobolev-Besov spaces.

To end this introduction let us briefly give an overview of the main results of this
paper. These results will be established in sections 4-6, after the necessary tools
are developed in sections 2 and 3.

For 2 − ε < p < ∞ we will show that equation (1.4) has a solution u ∈ D0,p,
provided a(x, u) is a Carathéodory function such that

(1.7) 0 ≤ a(x, u) ≤ k1(x) + k2(x)|u|m,

for some k1, k2 ≥ 0, k1 ∈ Ls(Ω), k2 ∈ Lt(Ω) (s, t > n/2) and

(1.8) 0 ≤ m < p
2− n/t
n− 1

.
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It is also assumed that f ∈ Lqr(Ω), for some r, q (see Definition 2.2 and Theorem
4.3). If, in addition, F (x, u) = a(x, u)u − f satisfies

(1.9) 0 ≤ ∂

∂u
F (x, u) ≤ k1(x) + k2(x)|u|m,

with k1, k2, m as before, we also have uniqueness. If p = ∞, instead of (1.7) it
suffices to assume
(1.10)

for any M > 0 : sup
u∈[−M,M ]

a(x, u) ∈ Ls(Ω) for some s > n/2, a(x, u) ≥ 0.

For uniqueness one has to require
(1.11)

for any M > 0 : sup
u∈[−M,M ]

∂

∂u
F (x, u) ∈ Ls(Ω) for some s > n/2,

∂

∂u
F (x, u) ≥ 0.

If the function a satisfies

(1.12) 0 ≤ a(x, u) ≤ k(x)eA|u|, for some A > 0 and k ∈ Ls(Ω) (s > n/2),

then there exists C > 0 such that the equation (1.4) is solvable for any u
∣∣
∂Ω

= g

with g = g1 +g2, where g1 ∈ L∞(∂Ω) and ‖g2‖BMO(∂Ω) < C. If (1.12) holds for any
A > 0, we can take any g ∈ BMO(∂Ω). Uniqueness requires a condition similar to
(1.12) for the function ∂

∂uF (x, u).
Finally, we have a stronger result for nonnegative solutions. For any 2− ε < p ≤

∞, if (1.11) holds and g ∈ Lp(∂Ω), g ≥ 0, and f ∈ Lqr(∂Ω), f ≤ 0, then there exists
a unique nonnegative solution u ∈ D0,p to (1.4).

2. The operator L−1
acting on Lr(Ω)×Ds,p

In section 3 of the paper [3] we considered actions of the inverse L−1 of the linear
operator

(2.1) L = ∆− V

on the Banach space Ds,p. Here ∆ is the Laplace-Beltrami operator on a Riemann-
ian manifold M , and V ∈ L∞(M), V ≥ 0, is a given function.

The goal of this part is to extend our understanding of the actions of L−1 in
case L is a more general second-order elliptic operator, as well as the case when
L−1 acts on functions that are products of functions from Lr(Ω) and Ds,p for some
1 ≤ p ≤ ∞ and r > n/2. Our main result (Theorem 2.3) shows that L−1 is a
smoothing operator, i.e., there is a gain of regularity. Before we state this result we
introduce two definitions.

First, let us recall briefly the definition of the space Ds,p from [3]. Throughout
the paper Ω ⊂ M will always be an open, connected domain in M with Lipschitz
boundary. Let {γ(x);x ∈ ∂Ω} be a collection of nontangential approach regions
(as in [3]) such that {γ(x);x ∈ ∂Ω} covers Ω and for any point y ∈ Ω the (n− 1)-
dimensional surface measure of the set {x ∈ ∂Ω; y ∈ γ(x)} is proportional to
dist(y, ∂Ω)n−1. This guarantees that the function Msf defined below gives us
good information about the Csloc(Ω) norm of f .
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Definition 2.1. For any f : Ω→ R, x ∈ ∂Ω and s ≥ 0 we consider the number
(2.2)

Msf(x) =


∑
|α|≤s

sup
z∈γ(x)

|Dαu|, if s ∈ Z,

∑
|α|≤k

sup
z∈γ(x)

|Dαu|+
∑
|α|=k

sup
z,z′∈γ(x)

|Dαu(z)−Dαu(z′)|
dist(z, z′)s−k

, otherwise.

Here k is the integer part of s, and α = (α1, α2, . . . , αn) is a multi-index (|α| =∑
αi). We allow Msf(x) to be infinite for some x ∈ ∂Ω.
Let s ≥ 0 and 1 ≤ p ≤ ∞. Consider

(2.3) Ds,p = {f : Ω→ R;Msf ∈ Lp(∂Ω)},

where Lp(∂Ω) is the space of Lp-integrable functions on ∂Ω with respect to its
surface measure. Then Ds,p equipped with the norm

(2.4) ‖f‖Ds,p = ‖Msf‖Lp(∂Ω)

is a Banach space.

Remark. As shown in [3], Ds,p does not depend on the choice of the nontangential
regions {γ(x);x ∈ ∂Ω}, i.e., the norms given by (2.4) for two different choices of
the nontangential regions are equivalent.

Definition 2.2. Assume that n/2 < r ≤ ∞ and 1 ≤ p ≤ ∞. We say that an
integrable function f : Ω → R belongs to the space Lpr(Ω) if there are functions
gj ∈ D0,p and hj ∈ Lr(Ω), j = 1, 2, 3, . . . , such that f =

∑
j gjhj almost everywhere

in Ω and

(2.5)
∑
j

‖gj‖D0,p‖hj‖Lr(Ω) <∞.

Moreover, there is a norm on Lpr(Ω) defined by

(2.6) ‖f‖Lpr(Ω) := ‖f‖L1(Ω) + inf{
∑
j

‖gj‖D0,p‖hj‖Lr(Ω); f =
∑
j

gjhj a.e. on Ω}

that makes Lpr(Ω) a Banach space.

Remark. We omit the proof of the fact that Lpr(Ω) is a Banach space, since it is a
simple summation argument. It is also helpful to observe that

(2.7) p > r(n− 1)/(r − 1)n⇒ ‖gh‖L1(Ω) ≤ C‖g‖D0,p‖h‖Lr(Ω).

Thus, for p large, ‖f‖L1(Ω) may be omitted from (2.6). Also, Lp∞(Ω) = D0,p.

Now we are ready to state the main theorem of this section, about smoothing
properties of L−1.

Theorem 2.3. Let L−1 be an operator acting on functions on an n-dimensional
compact Riemannian manifold M that can be formally written as

(2.8) L−1f(x) =
∫
M

E(x, y)f(y) dVol(y), x ∈M,
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where for some C > 0 and β > 0 the Schwartz kernel E(x, y) satisfies

|E(x, y)| ≤ Cd(x, y)−(n−2),

∇xE(x, y)| ≤ |Cd(x, y)−(n−1),(2.9)

|∇xE(x, y)−∇xE(x0, y)|
d(x, x0)β

≤ Cd(x0, y)−(n−1+β), for d(x, x0) ≤ 1
4
d(x0, y),

|∇xE(x, y)−∇xE(x0, y)|
d(x, x0)β

≤ C(d(x0, y) + d(x, y))−(n−1+β),

for d(x, x0) >
1
4
d(x0, y).

Here d(x, y) denotes the geodesic distance on M between points x and y.
Given any f ∈ Lpr(Ω), let f̃ be the extension of f onto M defined by f̃(x) = 0,

for all x ∈M \ Ω. Then the following results hold:
(a) If r > n and 1 ≤ p ≤ ∞, then the map

(2.10) L−1 : Lpr(Ω)→ D1+ε,q

is well defined, continuous and compact for any 1 ≤ q ≤ ∞ such that

(2.11)
1
q
>

1
p

+
1

n− 1

(n
r
− 1
)
,

and ε = ε(p, q, r) > 0 small. Hence, there is a constant C = C(p, q, r) > 0 such
that

(2.12) ‖L−1(f̃)‖D1+ε,q ≤ C‖f‖Lpr(Ω).

(b) If r > n/2 and 1 ≤ p ≤ ∞, then the map

(2.13) L−1 : Lpr(Ω)→ Dε,q

is well defined, continuous and compact for any 1 ≤ q ≤ ∞ such that

(2.14)
1
q
>

1
p

+
2

n− 1

( n
2r
− 1
)
,

and ε = ε(p, q, r) > 0 small. Hence, there is a constant C = C(p, q, r) > 0 such
that

(2.15) ‖L−1(f̃)‖Dε,q ≤ C‖f‖Lpr(Ω).

We will prove Theorem 2.3 in a series of smaller lemmas and propositions. There
are many examples of operators satisfying (2.9). Consider the following setting from
[19].

Let L be a general second-order, strongly elliptic, formally selfadjoint operator
acting on sections of a vector bundle E over a compact Riemannian manifold M of
dimension n ≥ 3. Assume that the Hermitian structure on E has C1 coefficients,
that the metric tensor g on M is C1, i.e.,

(2.16) gij ∈ C1(M)

and that, in local coordinates U ⊂M over which E trivializes,

(2.17) L
∣∣
U

=
∑
j,k

∑
α,β

∂

∂xj
aαβjk

∂

∂xk
+
∑
j

∑
αβ

bαβj
∂

∂xj
+
∑
αβ

cαβ
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where

(2.18) aαβjk ∈ C
1, bαβj ∈ L∞, cαβ ∈ Lr, r > n/2.

Let us note that the formal selfadjointness hypothesis can be relaxed to

(2.19) degree(L− L∗) ≤ 1.

Since we want to consider boundary value problems on Ω ⊂ M , the operator L
could be conveniently modified on M \ Ω to satisfy the required hypotheses.

A basic example of an operator L satisfying these hypotheses is provided by the
Hodge Laplacian

(2.20) ∆ = −δd− dδ

acting on sections of the `-th exterior power of the tangent bundle of a Riemannian
manifold M satisfying (2.16) in the absence of global `-harmonic fields, 1 ≤ ` ≤
n− 1, assuming also that gij ∈ H2,r for some r > n.

In the scalar case (E = R), which is our primary concern, (2.20) takes the
standard form in local coordinates:

(2.21) ∆u = g−1/2∂j(gjkg1/2∂ku).

We use the summation convention, take (gjk) to be the inverse matrix to (gjk), and
set g = det(gjk). As shown in [22], we can relax (2.16) and assume g ∈ Cα for some
α > 0 in this case.

The estimates (2.9) on the kernel E(x, y) for the operator L of the form (2.17) we
are seeking are obtained in [19]. Proposition 2.5 together with other considerations
in section 2 of [19] give us that (2.9) holds, provided the metric tensor g is C1, both
L and L∗, locally given by (2.17), satisfy (2.18), and L is invertible as a map from
H1,2(M, E) onto H−1,2(M, E).

Obviously, at least in the scalar case, the assumptions (2.16) and (2.18) could
be further relaxed following [21] and [22]. We are not going to try to achieve the
lowest possible regularity of the coefficients, as was presented in [22] for the Laplace
operator, since this would add additional difficulties to our exposition. We note,
however, that instead of assuming (2.16) it suffices to have a Lipschitz metric tensor,
as was shown in [21].

Now we begin a sequence of small reductions which simplify our problem. First,
as follows from the definition of the space Lpr(Ω), it is enough to prove the estimates
(2.12) and (2.15) for functions in Lpr(Ω) of the form fg, where f ∈ Lr(Ω) and
g ∈ D0,p.

Secondly, as our steps closely resemble section 3 of [3], we maintain brevity by
pointing out only the most important differences. We start with an analogue of
Lemma 3.1 of [3]. From now on we work mainly in local coordinates; hence in
(2.9), we can replace the geodesic distance d(x, y) between two points by |x − y|,
the Euclidean distance between these points in the local coordinates.

Lemma 2.4. Assume that (2.9) holds. Let x ∈M be an arbitrary point and r > 0.
Consider a geodesic ball Br(x) of radius r around x, and assume that g ∈ L∞(M)
is a given function with support in Br(x) and bounded in absolute value by one on
M . Let f be a function in Lp(M) and let u solve the equation

(2.22) Lu = fg in M , i.e., u = L−1(fg).
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If p > n/2, then there are an ε > 0 and a constant C = C(p) such that for any
y, y′ ∈M ,

|u(y)| ≤ |C rn(p−1)/p

(r + |x− y|)n−2
‖f‖Lp(M),(2.23)

|u(y)− u(y′)|
|y − y′|ε ≤ C rn(p−1)/p

(r + min{|x− y|, |x− y′|})n−2+ε
‖f‖Lp(M).

Also, for such y, y′, if dy = dist(y,Br(x)) and dy′ = dist(y′, Br(x)), then

(2.24) |u(y)| ≤ C

dn−2
y

‖fg‖L1(M) and
|u(y)− u(y′)|
|y − y′|ε ≤ C

‖fg‖L1(M)

min{dy, dy′}n−2+ε
.

If p > n, then there are an ε > 0 and a constant C = C(p) such that for any
y, y′ ∈M ,

|∇u(y)| ≤ |C rn(p−1)/p

(r + |x− y|)n−1
‖f‖Lp(M),(2.25)

|∇u(y)−∇u(y′)|
|y − y′|ε ≤ C rn(p−1)/p

(r + min{|x− y|, |x− y′|})n−1+ε
‖f‖Lp(M).

Proof. We show only (2.23), since (2.25) is very similar. Using the Hölder inequality,
we can estimate

(2.26) |u(y)| ≤
∫
Br

|E(y, z)||f(z)| dVol(z) ≤ v(y)(p−1)/p‖f‖Lp(M),

where

(2.27) v(y) =
∫
Br

|E(y, z)|p/(p−1) dVol(z).

Similarly,

(2.28)
|u(y)− u(y′)|
|y − y′|ε ≤ w(y, y′)(p−1)/p‖f‖Lp(M),

where

(2.29) w(y, y′) =
∫
Br

∣∣∣∣E(y, z)− E(y′, z)
|z − z′|ε

∣∣∣∣p/(p−1)

dVol(z).

The integrals (2.27) and (2.29) are very similar to the integrals estimated in the
proof of Lemma 3.1 of [3]. For this reason we consider closely only (2.27).

First, we take y ∈ B2r(x). We estimate v(y) using (2.9). Assume for simplicity
that r > 0 is small enough so that we can consider just one geodesic coordinate
chart centered at x that contains the ball B2r(x). In this chart we can also assume
that x is at the origin. We integrate over (n − 1)-dimensional shells Sρ = ∂Bρ(y)
centered at y. A simple estimate using (2.9) gives

v(y) ≤ C
∫ 3r

0

∫
Sρ

(
1

|z − y|n−2

)p/(p−1)

dσ(z) dρ

= C

∫ 3r

0

∫
Sρ

1
|z − y|(n−2)p/(p−1)

dσ(z) dρ.(2.30)
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Since the surface area of Sρ is of the order of ρn−1 from (2.30) we get for p > n/2
that n − 1 − (n− 2)p/(p− 1) > −1, i.e., the function inside the following integral
is integrable:

(2.31) v(y) ≤ C
∫ 3r

0

ρn−1−(n−2)p/(p−1) dρ ≤ Crn−(n−2)p/(p−1).

(2.31) together with (2.26) yields

(2.32) |u(y)| ≤ Cr2−n/p‖f‖Lp(M).

By possibly enlarging the constant C in (2.23) we can see that (2.32) and the first
line of (2.23) are equivalent for y ∈ B2r(x).

Now we consider y outside the ball B2r(x). Denote by dy the distance between
y and Br(x) and by d the distance between x and y. Clearly for y /∈ B2r(x) we
have d ≈ dy. Also, for z ∈ Br(x) we have |E(y, z)| ≤ Cd

−(n−2)
y ≈ Cd−(n−2). The

volume of Br(x) is of the order rn, which gives
(2.33)

|u(y)| ≤
∫
Br(x)

|E(y, z)||f(z)| dVol(z) ≤ C

dn−2
‖f‖L1(Br) ≤ C

rn(p−1)/p

dn−2
‖f‖Lp(M).

(2.33) is equivalent to the first line of (2.23) for y /∈ B2r(x). To see (2.24) one
should make an estimate very similar to (2.33). For dy = dist(y,Br(x)) we get that
|E(y, z)| ≤ Cd−(n−2)

y for z ∈ Br(x). Hence
(2.34)

|u(y)| ≤
∫
Br(x)

|E(y, z)||f(z)g(z)| dVol(z) ≤ C

dn−2
y

‖fg‖L1(Br) =
C

dn−2
y

‖fg‖L1(M).

�

Next we establish an analogue of Proposition 3.2 from [3].

Proposition 2.5. Assume that r > 0 is small. Let g ∈ L∞(M) be a function on
M bounded in absolute value by one with support in Br(x) ∩ Ω, where x is a point
from the boundary ∂Ω, and let f be any function from Lp(M). Denote by u the
solution to the equation Lu = fg in M , i.e., u = L−1(fg).

(a) If p > n, then there exists ε = ε(p) > 0 such that

(2.35) ‖M1+εu‖Lq(∂Ω) ≤ Crn−1‖f‖Lp(M), for 1 ≤ q < 1 + ε.

(b) If p > n/2, then the maximal operator Mεu can be written as

(2.36) Mεu = v1 + v2,

where
(2.37)
‖v1‖Lq(∂Ω) ≤ Crn−1‖f‖Lp, for any 1 ≤ q < 1 + ε0(p) and any 0 ≤ ε < ε0(p),

and
(2.38)
‖v2‖Lq(∂Ω) ≤ C‖fg‖L1, for any 1 ≤ q < (n−1)/(n−2) and any 0 ≤ ε < ε1(p, q).

The constants C in (2.35), (2.37), and (2.38) might depend on p and q, but not on
r.
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Proof. We first look at (2.35). Since r > 0 is small, we can find a small neighborhood
U of x such that in this neighborhood there are smooth local coordinates in which

(2.39) U ∩ Ω = {x = (x′, xn) ∈ U : xn > ϕ(x′)},
where ϕ is a Lipschitz function with a Lipschitz constant bounded by L. Here
L does not depend on the chosen point x ∈ ∂Ω. We will consider nontangential
approach regions γ(z) to any point z = (z′, ϕ(z′)) ∈ ∂Ω such that the vertex of
γ(z) at z is sharp enough. Namely, we require that any half-ray with vertex at z
that lies wholly in γ(z) has “steepness” (absolute value of its slope) at least 2L.
Hence in the local coordinates (2.39) we have

(2.40) γ(z) = {y = (y′, yn); yn − zn > 2L|y′ − z′|},
for any z = (z′, zn) ∈ ∂Ω ∩ U .

From this it follows that there exists a universal constant k (independent of r)
such that we can split points z ∈ ∂Ω into two distinct sets. If z = (z′, ϕ(z′)) ∈ ∂Ω
and |z′− x′| ≤ kr, then γ(z) might intersect Br(x). At such a point, by (2.23) and
(2.25) we have:

M0u(z) ≤ Cr2−n/p‖f‖Lp(M), M0(∇u)(z) ≤ Cr1−n/p‖f‖Lp(M),

T εu(z) def= sup
y,y′∈γ(z)

|∇u(y)−∇u(y′)|
|y − y′|ε ≤ Cr1−n/p−ε‖f‖Lp(M).(2.41)

The exact choice of ε > 0 in (2.41) will be specified later.
On the other hand, if |z′−x′| > kr, then the distance between any point w ∈ γ(z)

and x is greater than or equal to 1
k |z′−x′|. This means that for such z we get from

(2.23) and (2.25)

M0u(z) ≤ C rn(p−1)/p

(r + k−1|z′ − x′|)n−2
‖f‖Lp(M),

M0(∇u)(z) ≤ C rn(p−1)/p

(r + k−1|z′ − x′|)n−1
‖f‖Lp(M),(2.42)

T εu(z) = sup
y,y′∈γ(z)

|∇u(y)−∇u(y′)|
|y − y′|ε ≤ C rn(p−1)/p

(r + k−1|z′ − x′|)n−1−ε ‖f‖Lp(M).

Now we can estimate the Lq norms ofM0u,M0(∇u) and T εu. Taking the sum
of these three numbers, we get, on Bkr(x) ∩ ∂Ω,

(2.43)
∫
Bkr(x)∩∂Ω

(M1+εu(y))q dσ(y) ≤ Crq(1−ε−n/p)+n−1‖f‖qLp(M).

Similarly, off Bkr(x) ∩ ∂Ω we get

(2.44)
∫
∂Ω\Bkr(x)

(M1+εu(y))q dσ(y) ≤ Crq(1−ε−n/p)+n−1‖f‖qLp(M).

For details, see [3]. Since p > n, we can pick ε > 0 small for which 1−ε−n/p > 0.
From this for q = 1 we get that q(1 − ε − n/p) + n − 1 > q(n − 1). By possibly
making ε > 0 smaller, we can therefore claim that for any 1 ≤ q < 1 + ε we have
q(1− ε−n/p) +n− 1 > q(n− 1). This means that for |r| bounded we can estimate
(2.43) and (2.44) from above by Crq(n−1)‖f‖qLp(M).

Now we put (2.43)-(2.44) together. For p > n and any 1 ≤ q < 1 + ε we get

(2.45) ‖M1+εu‖Lq(∂Ω) ≤ C(rn−1+q(1−ε−n/p))1/q‖f‖Lp(M) ≤ Crn−1‖f‖Lp(M).
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This gives (2.35). Next we look at (2.36). On the set Bkr(x) we can do the same
estimate as before, giving us

(2.46)
∫
Bkr(x)∩∂Ω

(M0u(y))q dσ(y) ≤ Crn+q(2−n/p)−1‖f‖qLp(M).

Clearly, for any p > n/2 one can see that for any q ≥ 1 small enough we have
n + q(2 − n/p) − 1 > q(n − 1). Hence, if XBkr(x) is the characteristic function of
the set Bkr(x), we get that for any p > n/2 there is an ε = ε(p) > 0 such that

(2.47) ‖XBkr(x)M0u‖Lq(∂Ω) ≤ Crn−1‖f‖Lp, for any 1 ≤ q < 1 + ε.

The problematic part is to estimate the Lq norm of (1 − XBkr(x))M0u. The
estimate (2.42) gives that for any 1 ≤ q < (n − 1)/(n − 2) (to keep the integral
finite) we have

(2.48) ‖(1−XBkr(x))M0u‖Lq(∂Ω) ≤ Crnp/(p−1)‖f‖Lp .
At this point, for n/2 < p < n clearly np/(p−1) < n−1; hence we cannot estimate
the right-hand side of (2.48) from above by Crn−1‖f‖Lp, which would be desirable.

There is a way around. If we use (2.24) instead of (2.23) to estimate the Lq norm
of (1−XBkr(x))M0u, we get

(2.49)
∫
∂Ω\Bkr(x)∩∂Ω

(M0u(y))q dσ(y) ≤ C‖fg‖qL1(M)

∫ A

kr

∫
Sρ

1
ρq(n−2)

dσ(y) dρ,

where Sρ = ∂Bρ(x). We also used that, for y /∈ Bkr(x), dy = dist(y,Br(x)) ≈
dist(y, x) = ρ. Since the (n−2)-dimensional measure of Sρ is of the order ρn−2, we
get that for any 1 ≤ q < (n− 1)/(n− 2),
(2.50)

‖(1−XBkr(x))M0u‖qLq(∂Ω) ≤ C‖fg‖
q
L1(M)

∫ A

0

ρn−2−q(n−2)dρ ≤ C(q)‖fg‖qL1(M);

hence

(2.51) ‖(1−XBkr(x))M0u‖Lq(∂Ω) ≤ C(q)‖fg‖L1(M).

This establishes (2.36)-(2.38) for ε = 0. It is not difficult (using (2.23) and (2.24))
to establish estimates similar to (2.47) and (2.51) for the Lq(∂Ω) norm of

(2.52) Rεu(x) = sup
y,y′∈γ(x)

|u(y)− u(y′)|
|y − y′|ε , where x ∈ ∂Ω.

All the above steps will go through, provided ε is kept sufficiently close to zero. �

The previous results are key to the following proposition.

Proposition 2.6. Assume that the function g : Ω → R belongs to D0,p for some
1 ≤ p ≤ ∞ and that f ∈ Lr(Ω). Consider the extension h̃ of the function h = fg
defined as in Theorem 2.3, and denote by u the solution to

(2.53) Lu = h̃ in M, i.e., u = L−1(fg).

(a) If r > n, then there exists ε = ε(r, p) > 0 such that the nontangential maximal
function of M1+εu belongs to Lp(∂Ω), and for some C = C(r, p) > 0,

(2.54) ‖u‖D1+ε,p ≤ C‖f‖Lr(Ω)‖g‖D0,p ≈ ‖fg‖Lpr(Ω).
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(b) If r > n/2 and p > r(n − 1)/(r − 1)n, then there exists ε = ε(r, p) > 0 such
that u ∈ Dε,p and

(2.55) ‖u‖Dε,p ≤ C(p, r)‖f‖Lr(Ω)‖g‖D0,p ≈ ‖fg‖Lpr(Ω).

(c) If r > n/2, 1 ≤ p < (n − 1)/(n − 2) and fg ∈ L1(Ω), then there exists
ε = ε(p, r) > 0 such that u ∈ Dε,p and

(2.56) ‖u‖Dε,p ≤ C(p, r)
(
‖f‖Lr(Ω)‖g‖D0,p + ‖fg‖L1(Ω)

)
≈ ‖fg‖Lpr(Ω).

Remark. Note that the intervals where (2.55) and (2.56) are valid overlaps; hence
the whole interval 1 ≤ p ≤ ∞ is covered.

Proof. We will be brief, since the proof follows exactly the steps in our paper [3]
that led to the proof of Theorem 3.5 of [3]. The main ingredient is a decomposition
of a function g ∈ L∞(Ω), |g(x)| ≤ 1, with support in the set Pim(A) ⊂ Ω. The
definition of this set is given in Definition 3.3 of [3]. Any such function can be
written as g =

∑∞
i1
gi, where |gi| ≤ 1, supp gi ⊂ B(xi, `i) for some xi ∈ ∂Ω,

`i = K0/2m, m = 0, 1, 2, . . . , and

(2.57) ‖g‖D0,1 ≤ σ(A) ≈
∞∑
i=1

`n−1
i .

Here σ(.) denotes the surface measure of the set A ⊂ ∂Ω. Given this, Proposition
2.5 implies that for u = L−1(f̃ g),

(2.58) ‖M1+εu‖Lq(∂Ω) ≤ C‖f‖Lr(Ω)σ(A), for 1 ≤ q < 1 + ε.

The second estimate for u (for r > n) is due to classical elliptic regularity:

(2.59) fg ∈ Lr(Ω), r > n =⇒ u ∈ C1+ε(Ω),

i.e.,

(2.60) ‖M1+εu‖L∞(∂Ω) ≤ C‖f‖Lr(Ω).

The rest goes as in [3] (interpolation of (2.58)-(2.60), additional decomposition and
use of the Hölder inequality). Details can be found in the proof of Theorem 3.5 of
[3]. This proves part (a).

Parts (b) and (c) are similar. We put ui = L−1(fgi). Since supp gi ⊂ B(xi, `i),
part (b) of Proposition 2.5 applies, giving us that the maximal operatorMεui can
be written as v1

i + v2
i , where

(2.61)
‖v1
i ‖Lq(∂Ω) ≤ C`n−1

i ‖f‖Lr , for any 1 ≤ q < 1 + ε0(p) and any 0 ≤ ε < ε0(p),

and
(2.62)
‖v2
i ‖Lq(∂Ω) ≤ C‖fgi‖L1 , for any 1 ≤ q < (n−1)/(n−2) and any 0 ≤ ε < ε1(p, q).

We would like to see whether it is possible to control the L∞(∂Ω) norm of
v1 =

∑
i v

1
i .

Pick any y ∈ ∂Ω and i ∈ N, and consider when v1
i (y) > 0. Clearly this happens

only if y ∈ B(xi, k`i), where k is the same constant as in Proposition 2.5. Moreover,
we know that `i = K0/2m for some m = 0, 1, 2, . . . .

Hence, if we fix m, we claim that the cardinality of the set

(2.63) Im(y) = {i ∈ N; y ∈ Bk`i(xi, k`i) and `i = C0/2m}
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is finite and bounded from above by some constant K that does not depend on
the point y, the number m or the set A. Seeing this is not difficult. Clearly all
points Xm = {xi; i ∈ Im(y)} belong to a ball of radius kC0/2m centered at the
point y. Also it follows from properties (b) and (c) of the decomposition C1, C2, . . .
that the distance between any two distinct points from Xm is at least C/2m, with
C depending only on the Lipschitz character of the boundary ∂Ω. From this the
existence of the constant K follows by a simple geometric argument.

Now, for each i ∈ Im(y), according to part b) of Proposition 2.5 we can bound
v1
i (y) by

(2.64) v1
i (y) ≤ C`2−ε−n/ri ‖f‖Lr(M) = C

(
K0

2m

)2−ε−n/r
‖f‖Lr(M).

Here ε > 0 is small enough so that

(2.65) θ = 2− ε− n/r > 0.

It follows that

v1(y) =
∞∑
i=1

v1
i (y) ≤ K

∞∑
m=0

C

(
K0

2m

)θ
‖f‖Lr(M)

≤ C‖f‖Lr(M)

∞∑
m=0

2−mθ ≤ C(r)‖f‖Lr(M).(2.66)

On the other hand, by (2.61) we get

(2.67) ‖v1‖Lq(∂Ω) ≤
∞∑
i=1

‖v1
i ‖Lq(∂Ω) ≤ C

∞∑
i=1

`n−1
i ‖f‖Lr ≤ Cσ(A)‖f‖Lr ,

for any 1 ≤ q < 1 + ε0(r).
Interpolating between (2.66) and (2.67), we get that for any 1 < q <∞ there is

a δ = δ(q) > 0 such that

(2.68) ‖v1‖Lq(∂Ω) ≤ C(r)‖f‖Lrσ(A)1/q+δ .

On the other hand, (2.62) gives us immediately, for v2 =
∑

i v
2
i ,

(2.69) ‖v2‖Lq(∂Ω) ≤
∞∑
i=1

‖v2
i ‖Lq(∂Ω) ≤

∞∑
i=1

C‖fgi‖L1 = C‖fg‖L1(M)

for any 1 ≤ q < (n− 1)/(n− 2).
If we look at (2.69) we see that ‖fg‖L1 ≤ ‖f‖Lr‖g‖Lr′ , where r′ = r/(r − 1).

Since r > n/2, clearly 1 ≤ r′ < n/(n− 2). We also know that

‖g‖L1(M) ≤
∑

Vol(B(xi, `i)) ≤ Cσ(A)n/(n−1),

‖g‖L∞(M) ≤ 1.(2.70)

The last estimate in the first line follows from (3.77) in [3]. Hence

(2.71) ‖g‖Lr′(M) ≤ Cσ(A)n/r
′(n−1).

Notice also that

(2.72)
n

r′(n− 1)
>
n− 2
n− 1

.
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If we put (2.69)-(2.72) together, we get, for any r′(n− 1)/n < q < (n− 1)/(n− 2),

(2.73) ‖v2‖Lq(∂Ω) ≤ C‖f‖Lrσ(A)n/r
′(n−1) ≤ C‖f‖Lrσ(A)1/q+δ ,

where

(2.74) δ =
n

r′(n− 1)
− 1
q
> 0.

Finally, we put (2.68) and (2.73) together to get

‖Mεu‖Lq(∂Ω) =

∥∥∥∥∥Mε

( ∞∑
i=1

ui

)∥∥∥∥∥
Lq(∂Ω)

≤
∥∥∥∥∥
∞∑
i=1

Mεui

∥∥∥∥∥
Lq(∂Ω)

≤ ‖v1‖Lq(∂Ω) + ‖v2‖Lq(∂Ω) ≤ C‖f‖Lrσ(A)1/q+δ(2.75)

for any r′(n − 1)/n < q < (n − 1)/(n − 2) and some ε = ε(r, q) > 0. Here
C = C(r, q) > 0. On the other hand, since fg ∈ Lr(M), for r > n/2 it follows that
u = L−1(fg) ∈ Cε(M), and hence we have

(2.76) ‖Mεu‖L∞(∂Ω) ≤ C‖f‖Lr(M).

Interpolation between (2.75) and (2.76) yields that for any r > n/2 and any
r′(n− 1)/n < q <∞ there exist ε = ε(p, q) > 0 and δ = δ(p, q) > 0 such that

(2.77) ‖Mεu‖Lq(∂Ω) ≤ C(p, q)‖f‖Lr(M)σ(A)1/q+δ .

From this part (b) follows. Part (c) if 1 ≤ q < (n − 1)/(n − 2) is based on
modification of the estimate (2.75). We get
(2.78)
‖Mεu‖Lq(∂Ω) ≤ ‖v1‖Lq(∂Ω) + ‖v2‖Lq(∂Ω) ≤ C(‖f‖Lrσ(A)1/q+δ + ‖fg‖L1(Ω)),

for some ε = ε(r, q) > 0. Here δ = δ(r, q) > 0 if q > 1, δ = 0 if q = 1. Once again
(2.78) is crucial. The rest goes as in Theorem 3.5 of [3]. �

Proof of Theorem 2.3. We have almost all the required ingredients in place. Notice
that if r is close to n (n/2, respectively), Proposition 2.6 gives us results that are
almost optimal, in the sense that the improvement in Theorem 2.3 is minimal. On
the other hand, if r =∞, Theorem 2.3 is much stronger than Proposition 2.6. Once
again, it is enough to prove (a) and (b) on the level of estimates of a type (2.77) or
(2.78) for the function h = fg, where f ∈ Lr(Ω) and g ∈ L∞(Ω), |g(x)| ≤ 1, and
supp g ⊂ Pim(A) for some A ⊂ ∂Ω. We start with (a).

Consider the map

(2.79) Tg : f 7→ M1+δu,

defined by u = L−1(f̃ g). Tg is continuous and sublinear, with estimates

Tg : Ln+ε(Ω)→ Lp(∂Ω), ‖M1+δu‖Lp(∂Ω) ≤ C‖g‖D0,p‖f‖Ln+ε(Ω),

Tg : L∞(Ω)→ Ls(∂Ω), ‖M1+δu‖Ls(∂Ω) ≤ C‖g‖D0,p‖f‖L∞(Ω),(2.80)

for any s < (n− 1)/((n− 1)/p− 1) and p ≤ n− 1. Here δ = δ(ε) > 0, and ε > 0 is
arbitrarily small.

Marcinkiewicz’s interpolation theorem gives that Tg is bounded as a map from
Lr(Ω) to Lq̃−δ

′
(∂Ω), where the number 1/q̃ is given by the right-hand side of (2.11)

and δ′ = δ′(s0) > 0 is some number going to zero as s → (n− 1)/((n− 1)/p− 1).
From this (2.12) follows.
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If p > n−1, the situation is somewhat more complicated. Here, if we interpolate
between (2.58) and (2.60) and then use (3.84) of [3] and Marcinkiewicz’s interpo-
lation theorem, we eventually get that for any q ≥ (n− 1)/(n− 2), r > n, and any
ε′ > 0 there exist δ = δ(q, r, ε′) > 0 and a constant C = C(q, r, ε′) such that

(2.81) ‖M1+δu‖Lq(∂Ω) ≤ C‖f‖Lr(M)σ(A)1/q−(n/r−1)/(n−1)−ε′ .

From this (2.12) follows.
The proof of (b) goes similarly. For (n− 1)/(n− 2) ≤ q < (n− 1)/(n− 3) we use

Marcinkiewicz’s interpolation as in (2.80). For q ≥ (n − 1)/(n− 3) we interpolate
between

(2.82) ‖Mδu‖Lq(∂Ω) ≤ C‖f‖L∞σ(A)1/q+2/(n−1)−ε

and

(2.83) ‖Mδu‖Lq(∂Ω) ≤ C‖f‖Ln/2+εσ(A)1/q ,

for any ε > 0 and some δ = δ(q, ε) > 0. This gives that for any q ≥ (n− 1)/(n− 3),
r > n/2, and any ε′ > 0 there exist δ = δ(q, r, ε′) > 0 and a constant C = C(q, r, ε′)
such that

(2.84) ‖Mδu‖Lq(∂Ω) ≤ C‖f‖Lrσ(A)1/q−(n/r−2)/(n−1)−ε′ .

The other case to consider is r(n− 1)/(r− 1)n ≤ q < (n− 1)/(n− 2), which has
to be considered only for n/2 < r ≤ n, since for r > n the result follows from part
(a) by the embedding theorem. Fix ε > 0. What we have established so far gives

‖Mδu‖L(n−1)/(n−3)−ε(∂Ω) ≤ C‖f‖Lnσ(A)(n−2)/(n−1),

‖Mδu‖L(n−1)/(n−2)(∂Ω) ≤ C‖f‖Ln/2+εσ(A)(n−2)/(n−1).(2.85)

Hence interpolation gives, for n/2 < r ≤ n and any ε′ > 0,

(2.86) ‖Mδu‖L(n−1)/(n−4+n/r)−ε′(∂Ω) ≤ C‖f‖Lrσ(A)(n−2)/(n−1).

for some δ = δ(ε′) > 0.
On the other hand, from (2.12) for p = 1 we have

(2.87) ‖Mδu‖L(n−1)/(n−2)−ε′(∂Ω) ≤ C‖f‖Ln+εσ(A),

where ε, ε′ > 0 are arbitrarily small. Marcinkiewicz’s interpolation between the
second line of (2.85) and (2.87) consequently gives

(2.88) ‖Mδu‖L(n−1)/(n−2)−ε′(∂Ω) ≤ C‖f‖Lrσ(A)1−(n/r−1)/(n−1),

where ε′ > 0 is arbitrarily small.
Finally, for f fixed we can interpolate between (2.86) and (2.88). This gives that

for any (n− 1)/(n− 2) ≤ q < (n− 1)/(n− 4 + n/r) we have

(2.89) ‖Mδu‖Lq(∂Ω) ≤ C‖f‖Lrσ(A)1/q−(n/r−2)/(n−1)−ε′

for any ε′ > 0 and some δ = δ(ε′) > 0. This is the same statement as (2.84).
The last case we have to deal with is q < (n − 1)/(n − 2). Recall (2.43). It

follows that Mδu can be bounded from above by v1 + v2, where v1, v2 have the
same meaning as in (2.66) and (2.69). Crucially, it follows from (2.69) that

(2.90) ‖v2‖Lq(∂Ω) ≤ C‖fg‖L1,

for any q < (n− 1)/(n− 2).
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It remains to bound v1. Consider instead of Tg the mapping

(2.91) T̃g : f 7→ v1.

Mappings Tg and T̃g have similar properties, i.e., both are sublinear, and we can
establish estimates similar to (2.89) for T̃g. We leave the details to the reader, and
just state the result. We get that

(2.92) ‖T̃gf‖Lq(∂Ω) = ‖v1‖Lq(∂Ω) ≤ C‖f‖Lrσ(A)1/q−(n/r−2)/(n−1)−ε′ ,

for q ≥ (n− 1)/(n− 3− n/r) and ε′ > 0 arbitrarily small. From this Theorem 2.3
follows. �

At this stage it would be possible to state results similar to Theorems 3.6, 3.7
and 3.8 in [3]. We instead choose to develop more on the Dirichlet problem for the
equation Lu = f , and only after that state the analogues of the theorems mentioned
above.

3. Dirichlet problem for the scalar equation

In this section we want to combine results on general second-order scalar strongly
elliptic linear equations contained in section 3 of [19] with results from [21] that al-
low us to consider less smooth coefficients and with the new development contained
in the previous section of this paper. In addition, we prove a uniform estimate for
the solutions of such equations. This estimate (3.7) will be crucial in the subsequent
sections. The main result is contained in Theorem 3.1.

As in the previous section, let L be a general second-order, strongly elliptic, for-
mally selfadjoint scalar operator acting on real functions on a compact Riemannian
manifold M of dimension n ≥ 3. That is, in local smooth coordinates U ⊂ M ,
(2.17) simplifies to

(3.1) L
∣∣
U

=
∑
j,k

∂

∂xj
ajk

∂

∂xk
+
∑
j

bj
∂

∂xj
+ c.

In [19], section 3, it is assumed that

(3.2) ajk ∈ C1+γ , bj ∈ H1,r, c ∈ Lr,
for some γ > 0 and r > n = dim M . It was also assumed that the metric tensor on
M has regularity H2,r for some r > n.

As has been shown in [21], the assumption on the coefficients ajk and the metric
tensor g is unnecessarily strict in the scalar case for the Laplace-Beltrami operator.
The theory there extends in a straightforward way for the operator (3.1). Hence
we are going to assume that

(3.3) ajk ∈ Lip, bj ∈ H1,r, c ∈ Lr/2,
for some r > n = dim M . We will also assume that the metric tensor g on M is
Lipschitz.

Theorem 3.1. Let M be a smooth n-dimensional Riemannian manifold (n ≥ 3)
whose metric tensor g is Lipschitz. Let L be a strongly elliptic, (formally) selfad-
joint, negative definite second-order differential operator acting on functions on M
that can be locally written as (3.1) with coefficients satisfying

(3.4) ajk ∈ Lip, bj ∈ H1,s, c ∈ Ls/2,
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for some s > n. Let Ω ⊂M be a connected Lipschitz domain on M .
There exists ε = ε(Ω, L, s) > 0 such that the following is true: If 2− ε < p ≤ ∞

and 1 ≤ q ≤ ∞ satisfy

(3.5)
1
p
>

1
q

+
2

n− 1

( n
2r
− 1
)
,

for some r > n/2, then, given any g ∈ Lp(∂Ω), f ∈ Lqr(Ω), and V ≥ 0, V ∈
Ls/2(Ω), the Dirichlet boundary problem

(3.6) (L − V )u = f, in Ω, u
∣∣
∂Ω

= g, u ∈ D0,p,

has a unique solution. The trace of u on ∂Ω is taken in the nontangential a.e.
sense. Moreover, there is a constant C = C(L, p,Ω) > 0, independent of V , such
that

(3.7) ‖u‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)).

If Ω is C1, the claim is true for any 1 < p ≤ ∞ as long as 1/s+ (n− 1)/np ≤ 1.

Proof. We first deal with the issue of the existence of a solution. Assume for a
moment that f = 0. If we also assume that c in (3.4) and V in (3.6) are more
regular and both belong to Ls(Ω) for some s > n, then for 2 − ε < p < 2 + ε
the existence and uniqueness of a solution to (3.6) follows from Theorem 3.1 of
[19], including the estimate (3.7), except the fact that the constant C > 0 in this
estimate might depend on V .

Indeed, the fact that L is strongly elliptic and negative definite implies that
L− V satisfies a nonsingularity hypothesis relative to any domain D ⊂M as long
as V ≥ 0. Recall that an operator L satisfies the nonsingularity hypothesis relative
to a Lipschitz domain D (possibly all of M), provided

(3.8) u ∈ H1,2
0 (D), Lu = 0 in D =⇒ u = 0 in D.

This means that all assumptions of Theorem 3.1 of [19] are satisfied. It turns out
that we can lower the assumptions on c and V , and the argument in [19] still holds.
As long as s > n/2 the operator (V + c) : H1+α,p(M) → H−1+α,p(M) is well
defined and compact; hence L−V is a compact perturbation of the operator L− c.
From this our claim follows. There is also an alternative argument based on the
estimate (3.7). We present it later in this proof.

On the other hand, the existence for p =∞ follows from the maximum principle.
One can actually deal with a more general class of domains than just Lipschitz. Now
we can interpolate. The map

(3.9) T : g 7→ M0u,

where u is determined by the equation (3.6), is well defined, continuous and sublin-
ear on L2−ε(∂Ω) (by Theorem 3.1 of [19]) and also on L∞(∂Ω). Hence Marcinkie-
wicz’s interpolation theorem gives us that T is well defined and bounded on Lp(∂Ω)
for any 2− ε < p ≤ ∞. In the case the domain is C1 the existence and uniqueness
can be established using layer potentials for any 1 < p <∞. See e.g. [4] for details.

Now we deal with the case when f 6= 0. By Theorem 2.3 we see that h =
(L−V )−1f̃ ∈ Dδ,p for some δ > 0, and also ‖h‖Dδ,p ≤ C‖f‖Lpr(Ω). Now, if w solves
(L− V )w = 0 in Ω and w

∣∣
∂Ω

= g − h
∣∣
∂Ω

, then clearly u = w + h solves (3.6). The
fact that h

∣∣
∂Ω
∈ Lp(∂Ω) follows from Theorem 2.5 of [3].
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Next, we want to establish the uniform estimate (3.7). Let us introduce the
following notation. We denote by LV the operator

(3.10) LV = L− V,
and by uV the solution to the corresponding Dirichlet problem

(3.11) LV uV = (L − V )uV = f, in Ω, uV
∣∣
∂Ω

= g, uV ∈ D0,p.

If V = 0 is the function identically zero on Ω, the solution to the problem (3.11)
is now denoted by u0. The claim is that for f , g as in Theorem 3.1 and V ≥ 0,
V ∈ Ls(Ω), for some s > n, there is a constant C > 0, independent of V , such that

(3.12) ‖uV ‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)).

The proof requires several steps. First, for any function h : Ω → R let us
introduce

(3.13) h+ = max{h, 0} and h− = max{−h, 0}.
Clearly h+, h− ≥ 0, h = h+−h− and supp h+∩ supp h− = ∅. Following (3.11), let
us denote by u(+)

V the solution to

(3.14) LV u
(+)
V = (L− V )u(+)

V = −f−, in Ω, u
(+)
V

∣∣
∂Ω

= g+, u
(+)
V ∈ D0,p,

and by u(−)
V the solution to

(3.15) LV u
(−)
V = (L− V )u(−)

V = −f+, in Ω, u
(−)
V

∣∣
∂Ω

= g−, u
(−)
V ∈ D0,p.

Clearly uV = u
(+)
V − u(−)

V . Also, since
(3.16)
‖f‖Lpr(Ω) = ‖f+‖Lpr(Ω) + ‖f−‖Lpr(Ω), ‖g‖Lp(∂Ω) = ‖g+‖Lp(∂Ω) + ‖g−‖Lp(∂Ω),

it follows that the existence of a uniform constant C > 0 for which (3.12) holds
would follow, provided we show that

(3.17) 0 ≤ u(+)
V ≤ u(+)

0 and 0 ≤ u(−)
V ≤ u(−)

0 .

(3.17) is essentially a consequence of the maximum principle. It (3.17) suffices to
show only the first part of (3.17), since the other one is very similar.

First, we want to argue that u(+)
V ≥ 0. Assume the contrary, i.e., for some

x ∈ Ω, u(+)
V (x) < 0. We approximate the function g+ by a sequence (gi)i∈N of

C(∂Ω) functions and f− by a sequence (fi)i∈N of L∞(Ω) functions such that

gi → g+ in Lp(∂Ω), 0 < gi,

fi → f− in Lqr(Ω), 0 ≤ fi.(3.18)

(If r = ∞ we instead find (fi)i∈N such that fi → f in Lqs(Ω) for any s < ∞.)
Continuity in the variables f and g implies that there is an index i ∈ N such that
u(x) = u

i,(+)
V (x) < 0, where u = u

i,(+)
V solves

(3.19) LV u = (L− V )u = −f−i , in Ω, u
∣∣
∂Ω

= gi, u ∈ D0,p.

The important point is that the solution u to (3.19) belongs to C(Ω) ∩ C1
loc(Ω),

since the boundary data are continuous and fi ∈ L∞(Ω). Let O be the open
connected component of the set {y ∈ Ω;u(y) < 0} that contains the point x.
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Clearly O ⊂⊂ Ω, since on the boundary u > 0. It follows that u ∈ C1(O). Define
the function v : M → R by

(3.20) v(y) =

{
u(y), for y ∈ O,
0, otherwise.

It follows that v ∈ Lip(M) ⊂ H1,2(M). Now LV v = −f−i ≤ 0 on O, and LV v = 0
otherwise. Hence

(3.21) (LV v, v) = −
∫
O
f−i (y)v(y) dVol(y) ≥ 0.

This is a contradiction, since LV is negative definite and v 6= 0.
Similarly, u(+)

V ≤ u(+)
0 holds for the same reasons. The difference w = u

(+)
0 −u(+)

V

solves the PDE

(3.22) Lw = −V u(+)
V ≤ 0, in Ω, w

∣∣
∂Ω

= 0, w ∈ D0,p.

So, the same argument as above implies that w ≥ 0 in Ω. This proves (3.17).
As we indicated above, the estimate (3.7) can be used to prove the existence of

a solution for V ∈ Ls(Ω), s > n/2, knowing only that the solution exists and is
unique for V ∈ L∞(Ω). We present this simple argument here.

Assume therefore that V ∈ Ls(Ω) for some s > n/2. Then we can find a sequence
of L∞ functions (Vi)i∈N such that

(3.23) Vi → V in Ls(Ω) as i→∞, 0 ≤ Vi, i = 1, 2, . . . .

With f, g as in Theorem 3.1, for each i ∈ N there is a unique function ui solving

(3.24) (L− Vi)ui = f, in Ω, ui
∣∣
∂Ω

= g, ui ∈ D0,p.

We claim that the sequence (ui)i∈N is Cauchy in D0,p and denote its limit by u. To
see this, consider the PDE satisfied by the difference wij = ui − uj. We get

(3.25) (L− Vi)wij = Kij , where Kij = (Vj − Vi)uj , wij
∣∣
∂Ω

= 0, wij ∈ D0,p.

Clearly, (3.12) and (3.24) give us that all ui are uniformly bounded in the D0,p

norm. This together with (3.23) implies that

(3.26) ‖Kij‖Lps(Ω) → 0, as i, j →∞,
provided p > s(n − 1)/(s − 1)n. This can always be guaranteed by modifying ε
in the statement of Theorem 3.1, for s close to n/2. Now (3.12) used on equation
(3.25) gives

(3.27) ‖wij‖D0,p ≤ C‖Kij‖Lps(Ω) → 0, as i, j →∞,
where the constant C does not depend on i, j. This establishes our claim. It also
follows that the limit u ∈ D0,p satisfies the boundary condition u

∣∣
∂Ω

= g. Now,
taking the limit in (3.24), we get that, in the sense of distribution,

(3.28) LV u = (L − V )u = f.

Finally, Proposition 2.1 of [19] gives that actually u ∈ Cδloc(Ω) for some small δ > 0.
Notice also that (3.12) remains valid even for this more general V , with the same
constant C > 0 (independent of V ).

It remains to establish uniqueness of the constructed solution u to (3.28) based
on uniqueness for V ∈ L∞(Ω).
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Assume that the equation (3.6) has two solutions, u1 and u2. Using the sequence
(Vi)i∈N from (3.23), it follows that for each i ∈ N, the difference w = u1− u2 solves
the PDE

(3.29) (L − Vi)w = hi, in Ω, w
∣∣
∂Ω

= 0, w ∈ D0,p,

where hi = (V − Vi)w ∈ Lps(Ω). For given hi the solution to the equation (3.29) is
unique, and moreover (3.7) gives us that

(3.30) ‖w‖D0,p ≤ C‖hi‖Lps(Ω).

The final point is that the norm of hi goes to 0 as i→∞, since V − Vi → 0 in the
Ls(Ω) norm. So (3.30) implies that w = 0, i.e., u1 = u2. �

Corollary 3.2. Fix f and g as in Theorem 3.1. The map

(3.31) V 7→ uV ,

where u = uV is the solution to (3.6), is a continuous map from Ls/2(Ω)∩{V ≥ 0}
to D0,p. Here s and p are as in Theorem 3.1.

Proof. Consider V1, V2 ∈ Ls/2(Ω), both ≥ 0. Denote by u1, u2 the corresponding
solutions to (3.6). Then the difference w = u1 − u2 solves

(3.32) (L− V1)w = (V1 − V2)u2, w
∣∣
∂Ω

= 0, w ∈ D0,p.

It follows from (3.7) that

(3.33) ‖u2‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)),

and hence

(3.34) ‖(V1 − V2)u2‖Lp
s/2(Ω) ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω))‖V1 − V2‖Ls/2(Ω).

Again by (3.7) (applied to (3.32)) we now get

(3.35) ‖u1 − u2‖D0,p = ‖w‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω))‖V1 − V2‖Ls/2(Ω).

Hence, if ‖V1 − V2‖Ls/2(Ω) is small, then also ‖u1 − u2‖D0,p is small. �

4. Dirichlet semilinear elliptic boundary problems, the Lp results

In the previous two sections we have developed enough tools to take on the
semilinear problem outlined in the introduction. We keep the same assumptions as
in the previous sections. Namely, M is a smooth, compact Riemannian manifold,
dim M = n ≥ 3, with Lipschitz metric tensor. The set Ω ⊂ M is open and con-
nected, with Lipschitz boundary. Let L be as before, a strongly elliptic, (formally)
selfadjoint, negative definite second-order differential operator acting on functions
on M that can be locally written as (3.1) with coefficients satisfying (3.4), for some
s > n.

As in [3], we are interested in finding a solution u to the equation

(4.1) Lu− a(x, u)u = f, in Ω, u
∣∣
∂Ω

= g, u ∈ D0,p,

where g ∈ Lp(∂Ω), f and a are given. We assume that the function a(x, u) ≥ 0 is
Carathéodory, i.e., measurable in x and continuous in u.

Clearly, there has to be a certain growth condition placed on the function a in
the variable u. This is true at least in the case when we consider a general boundary
problem. As we will see in the next section, in certain special cases such as positive
solutions, etc., the growth in the variable u does not have to be restricted.
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In the paper [3] we imposed the following conditions on a:

a(x, u) ∈ L∞(Ω× R), provided p <∞,
sup
x∈Ω

u∈[−M,M ]

a(x, u) <∞, for all M > 0, provided p =∞.(4.2)

We are not going to improve the condition much for p = ∞, but we will allow
polynomial growth in u for p <∞, which is a major improvement over (4.2).

Let us therefore assume that a(x, u) is a function such that

(4.3) 0 ≤ a(x, u) ≤ k1(x) + k2(x)|u|m,

where the functions k1, k2 ≥ 0 and the number m will be specified later. The
number m should depend on p; we will see that m→∞ as p→∞. We begin with
the following auxiliary lemma.

Lemma 4.1. For any 1 ≤ p <∞, if v : Ω→ R belongs to v ∈ D0,p ∩Cloc(Ω), then
v ∈ Lpn/(n−1)(Ω), and, for some C = C(p) > 0,

(4.4) ‖v‖Lpn/(n−1)(Ω) ≤ C‖v‖D0,p .

Corollary 4.2. Let 1 ≤ p ≤ ∞, and assume a(x, u) satisfies (4.3) for k1 ∈ Ls(Ω)
and k2 ∈ Lq(Ω), where

(4.5) 0 ≤ 1
q
< 1− m

p

(
1− 1

n

)
and

m

p

(
1− 1

n

)
+

1
q
≤ 1
s
≤ 1.

Then the map T : D0,p ∩ Cloc(Ω)→ Ls(Ω) defined by

(4.6) v 7→ a(., v(.))

is well defined and continuous.

Proof of Lemma 4.1. Let us recall the decomposition (3.63)-(3.68) of [3]. It follows
that the function v can be (3.63)-(3.68) written as v = ṽ +

∑∞
i=0 vi, where

supp ṽ ⊂⊂ Ω, ‖ṽ‖L∞(Ω) ≤ ‖v‖D0,p ,

supp vi ⊂ Pim(Ai), Ai = {x ∈ ∂Ω :M0v > i1/p}, i = 0, 1, 2, . . . ,(4.7)

and |vi| ≤ (i+ 1)1/p − i1/p, i = 0, 1, 2, . . . .

Also,

(4.8)
∞∑
i=0

σ(Ai) ≈ ‖M0v‖pLp(∂Ω) ≤ ‖v‖
p
D0,p .

It follows that we can ignore the piece ṽ, since it belongs to L∞.
We claim that for any x ∈ Ω and s ≥ 1,

(4.9)

( ∞∑
i=0

vi(x)

)s
≤
∞∑
i=0

[(i+ 1)s/p − is/p]XPim(Ai),
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where XPim(Ai) is the characteristic function of the set Pim(Ai). Indeed, there is an
integer j(x) ∈ N such that vi(x) > 0 for i ≤ j(x), and vi(x) = 0 otherwise. Hence( ∞∑

i=0

vi(x)

)s
=

j(x)∑
i=0

vi(x)

s

≤ (j(x) + 1)s/p

=
j(x)∑
i=0

[(i+ 1)s/p − is/p] ≤
∞∑
i=0

[(i+ 1)s/p − is/p]XPim(Ai),(4.10)

since supp vi ⊂ Pim(Ai). It follows that

(4.11) ‖v‖sLs(Ω) ≤ C
(
‖v‖sD0,p +

∞∑
i=0

is/p−1 Vol(Pim(Ai))

)
.

Here we used the fact that (i + 1)s/p − is/p ≈ is/p−1. Now by (2.70)

(4.12) Vol(Pim(Ai)) ≤ σ(Ai)n/(n−1).

Now we want to pick s such that there is a constant C (independent of i) for which

(4.13) is/p−1σ(Ai)1/(n−1) ≤ C, i = 0, 1, 2, . . . .

Existence of such a constant follows from the inequality

(4.14) iσ(Ai) =
∫
Ai

i dσ ≤
∫
∂Ω

(M0v)p dσ ≤ ‖v‖pD0,p .

Hence

(4.15) i1/(n−1)σ(Ai)1/(n−1) ≤ ‖v‖p/(n−1)
D0,p .

It follows that if we take s = pn/(n− 1), then (4.13) holds. This yields
∞∑
i=0

is/p−1 Vol(Pim(Ai)) ≤ C
∞∑
i=0

σ(Ai)
(
is/p−1σ(Ai)1/(n−1)

)
≤ C‖v‖p/(n−1)

D0,p

∞∑
i=0

σ(Ai) ≤ C‖v‖pn/(n−1)
D0,p .(4.16)

�

Now, we are ready for the main result.

Theorem 4.3. Let M be a smooth n-dimensional Riemannian manifold (n ≥ 3)
whose metric tensor g is Lipschitz. Let L be a strongly elliptic, (formally) selfad-
joint, negative definite second-order differential operator acting on functions on M
that can be locally written as (3.1) with coefficients satisfying

(4.17) ajk ∈ Lip, bj ∈ H1,s, c ∈ Ls/2,
for some s > n. Finally, let Ω ⊂ M be a connected Lipschitz domain in M . Then
there exists ε = ε(L,Ω) > 0 such that the Dirichlet boundary problem

(4.18) Lu− a(x, u)u = f ∈ Lqr(Ω) in Ω, u
∣∣
∂Ω

= g ∈ Lp(∂Ω), u ∈ D0,p.

has at least one solution u ∈ D0,p ∩Cδloc(Ω) (δ > 0), provided 2− ε ≤ p ≤ ∞ and
(i) a is a Carathéodory function such that

(4.19) 0 ≤ a(x, u) ≤ k1(x) + k2(x)|u|m,
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where k1, k2 ≥ 0, k1 ∈ Ls(Ω) for some s > n/2, k2 ∈ Lt(Ω) for some t > n/2, and

(4.20) 0 ≤ m < p
2− n/t
n− 1

.

If p =∞ it suffices to assume that for any M > 0,

(4.21) sup
u∈[−M,M ]

a(x, u) ∈ Ls(Ω) for some s = s(M) > n/2, a(x, u) ≥ 0.

(ii) g ∈ Lp(∂Ω) and f ∈ Lqr(Ω), where

(4.22) 1 ≤ q ≤ ∞, r > n/2,
1
p
>

1
q

+
2

n− 1

( n
2r
− 1
)
.

Moreover, there is a constant C = C(p, q, r) > 0 such that the solution u satisfies
the estimate

(4.23) ‖u‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)).

If in addition the function b(x, u) = a(x, u)u satisfies

(4.24) 0 ≤ ∂

∂u
b(x, u) ≤ k1(x) + k2(x)|u|m,

with k1, k2, m as before, then the solution u to the equation (4.18) is unique. If
p =∞ the uniqueness follows, provided that for any M > 0,
(4.25)

sup
u∈[−M,M ]

∂

∂u
b(x, u) ∈ Ls(Ω) for some s = s(M) > n/2,

∂

∂u
b(x, u) ≥ 0.

Proof. Assume first that p <∞. The idea is to consider the map

(4.26) T : D0,p ∩Cloc(Ω)→ D0,p ∩ Cloc(Ω),

defined as follows. For a fixed g ∈ Lp(∂Ω) and f ∈ Lqr(Ω) (p, q, r are as in the
statement of our theorem) we take v = Tu to be the solution to the linear problem

(4.27) Lv − a(x, u)v = f in Ω, v
∣∣
∂Ω

= g, v ∈ D0,p.

We need to show that this map T is well defined for any u ∈ D0,p ∩ Cloc(Ω). By
Theorem 3.1 it suffices to show that V (x) = a(x, u(x)) ∈ Ls(Ω) for some s > n/2.
This, however, follows from Corollary 4.2. By (3.7) we also have that

(4.28) ‖v‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)),

for any u ∈ D0,p ∩ Cloc(Ω).
Next, we need to check that the map T is continuous and compact. Continuity

follows directly from Corollaries 3.2 and 4.2. It remains to show compactness. Let
(ui)i∈N be any bounded sequence in the norm of D0,p ∩ Cloc(Ω). From (4.28) we
get that vi = Tui are also uniformly bounded in the norm. It follows that

(4.29) hi = a(x, ui(x))vi(x)

belongs to Lps(Ω), and there is a constant C such that ‖hi‖Lps(Ω) ≤ C for all i.
Finally, notice that

(4.30) Lvi = f + hi in Ω, vi
∣∣
∂Ω

= g, vi ∈ D0,p, i = 1, 2, . . . .

Let Vi = L−1f̃ + L−1h̃i, where L−1 has the same meaning as in Theorem 2.3. It
follows that there are δ > 0 and C > 0 such that

(4.31) ‖Vi‖Dδ,p ≤ C, i = 1, 2, 3, . . . .
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Theorem 2.4 of [3] gives that Dδ,p ⊂⊂ D0,p; hence there is a subsequence of (Vi)i∈N,
which for simplicity we denote again by (Vi)i∈N, that is convergent in D0,p. Denote
this limit by V0. Also by Theorem 2.5 of [3] this subsequence can be chosen such
that

(4.32) Vi
∣∣
∂Ω
→ V0

∣∣
∂Ω

in Lp(∂Ω) as i→∞.
Finally, let wi, i = 0, 1, 2, . . . , solve the equation

(4.33) Lwi = 0 in Ω, wi
∣∣
∂Ω

= g − Vi
∣∣
∂Ω
, wi ∈ D0,p.

It follows from (4.32) and Theorem 3.1 that wi → w0 in D0,p as i → ∞. Since
vi = Vi + wi, we get that vi → v0 in D0,p as i → ∞. Hence T is compact. The
Schauder fixed point theorem therefore implies that T has a fixed point which is
the desired solution to (4.18). The estimate (4.23) follows from (4.28).

If p = ∞, it suffices to assume (4.21). To see this, we modify the function a
exactly as in [3]. Consider a function ψM defined as follows:

(4.34) ψM (x) =

{
x, for |x| ≤ 2M,

2Msgn(x), otherwise.

Here M is taken to be equal to the right-hand side of the estimate (3.7). Next we
solve the Dirichlet problem

(4.35) Lu− a(x, ψM (u))u = f in Ω, u
∣∣
∂Ω

= g, u ∈ D0,q.

The exact choice of 2 ≤ q < ∞ is not important. Notice that a(x, ψM (u)) ∈
Lmin{s,t}(Ω); hence (4.19)-(4.20) hold. It follows that there is at least one solution
u to (4.35). We will show that this u also solves the original equation.

To see this, set V (x) = a(x, ψM (u)) ∈ Ls(Ω) for some s > n/2. Consider the
linear problem

(4.36) (L− V )v = f in Ω, v
∣∣
∂Ω

= g, u ∈ D0,q,

for any 2 ≤ q ≤ ∞. Since g ∈ L∞(Ω), Theorem 3.1, namely the uniqueness and
existence results there, gives us that there is a unique function v ∈ D0,2 solving
(4.36), and moreover v ∈ D0,∞ = L∞(Ω). Since u from (4.35) solves (4.36) and
u ∈ D0,2, it follows that u = v; hence u ∈ L∞(Ω).

Finally, the estimate (3.7) shows that ‖u‖L∞(Ω) ≤M . That is, ψM (u(x)) = u(x)
for all x ∈ Ω, and hence u indeed solves (4.18).

For uniqueness, it has been shown in [3] (Example 5.3) that (4.18) might have
more that one solution. Hence we need a stronger condition on the function a.
(4.24) and (4.25) give us that. Let u1, u2 ∈ D0,p∩Cloc(Ω) be two different solutions
to (4.18) with u1

∣∣
∂Ω

= u2

∣∣
∂Ω

. Then, writing

(4.37) a(x, u1(x))u1(x)− a(x, u2(x))u2(x) = V12(x)(u1(x) − u2(x))

with

(4.38) V12(x) =
∫ 1

0

∂

∂u
b(x, u2(x) + t(u1(x) − u2(x)) dt,

we have V12(x) ≥ 0 and V12 ∈ Ls(Ω), for some s > n/2. Hence, the function
w = u1 − u2 satisfies the PDE

(4.39) (L− V12)w = 0 in Ω, w
∣∣
∂Ω

= 0, w ∈ D0,p.
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The uniqueness result from Theorem 3.1 for this linear equation guarantees that
w = 0 in Ω. �

Example 4.4. A good example illustrating Theorem 4.3 is the equation

(4.40) ∆u− |u|qu = 0 in Ω, u
∣∣
∂Ω

= g ∈ Lp(∂Ω),

for some q ≥ 0. Theorem 4.3 gives us that the solution u to the equation (4.40)
exists and is unique, provided that

(4.41) 0 ≤ q < 2p
n− 1

.

If p =∞, q can be taken arbitrarily large. In particular, if dim M = 3, then, given
any g ∈ Lp(∂Ω) (p > 2 − ε), the solution u exists, provided q < p. As we will
see later, if we consider only nonnegative solutions (i.e., g ≥ 0), then the condition
(4.41) is not necessary, and the solution u ∈ D0,p exists for any given q ≥ 0.

We can also extend the range of q for which (4.40) is solvable to negative numbers,
namely the interval −1 < q < 0. This does not follow immediately from Theorem
3.2, and the proof requires a bit of additional work.

Denote by φi : R→ R+ the function

(4.42) φi(u) =

{
|u|q, for |u| > 1/i,
i−q, otherwise,

i = 1, 2, . . . .

Since φi(u) ∈ L∞(R), it makes sense to consider an approximate solution to the
equation (4.40):

(4.43) ∆ui − φi(ui)ui = 0 in Ω, ui
∣∣
∂Ω

= g ∈ Lp(∂Ω), ui ∈ D0,p,

for any 2− ε < p ≤ ∞. Theorem 4.3 tells us that ui exists and, for some C > 0,

(4.44) ‖ui‖D0,p ≤ C‖g‖Lp(∂Ω), i = 1, 2, 3, . . . .

We want to argue that (ui)i∈N has a convergent subsequence in D0,p. To see this,
consider hi = φi(ui)ui. Clearly,

(4.45) |hi| = |φi(ui)ui| ≤ |ui|q+1.

Since 0 < 1 + q < 1, it follows from (4.44) and (4.45) that for some C > 0,

(4.46) ‖hi‖D0,p ≤ C, i = 1, 2, 3, . . . .

This means ui solves the PDE

(4.47) ∆ui = hi in Ω, ui
∣∣
∂Ω

= g ∈ Lp(∂Ω), ui ∈ D0,p.

Compare this with (4.29)-(4.30)! Hence, essentially the same argument as used in
(4.29)-(4.33) gives us that a subsequence of (ui)i∈N (again denoted by (ui)i∈N) is
convergent in D0,p. Denote this limit by u. Clearly, u

∣∣
∂Ω

= ui
∣∣
∂Ω

= g almost
everywhere on ∂Ω. Also, for any test function ψ ∈ C∞0 (Ω),

0 = (ui,∆ψ)− (φi(ui)ui, ψ)(4.48)

= (ui,∆ψ)− (|ui|qui, ψ) + (|ui|qui − φi(ui)ui, ψ), i = 1, 2, . . . .
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Now, ui(x) → u(x) for every x ∈ ∂Ω, and we also have that ui → u in Cloc(Ω).
Hence clearly the first two terms on the right in (4.48) converge to (u,∆ψ) −
(|u|qu, ψ) as i→∞. The last term is nonzero only if |ui| < i−1. Hence we get

lim
i→∞

|(|ui|qui − φi(ui)ui, ψ)| ≤ lim
i→∞

∫
{x∈Ω:|ui(x)|<i−1}

2|ui|q+1ψ dVol

≤ 2 lim
i→∞

i−(q+1)‖ψ‖L∞(Ω)Vol(Ω) = 0.(4.49)

Hence:
(u,∆ψ)− (|u|qu, ψ) = 0, for all ψ ∈ C∞0 (Ω),

or equivalently

(4.50) ∆u− |u|qu = 0 in Ω in the sense of distributions.

This proves the existence. For uniqueness, let u1, u2 ∈ D0,p be two different
solutions to the equation (4.40) for some −1 < q < 0 and p > 2− ε. Pick any i ∈ N
and consider the following two sets:

(4.51) Ω1 = {x ∈ Ω : |u1(x)| < i−1 & |u2(x)| < i−1}, Ω2 = Ω \ Ω1.

We claim that if x ∈ Ω2, then

(4.52) 0 ≤ |u1(x)|qu1(x)− |u2(x)|qu2(x)
u1(x)− u2(x)

≤ i−q.

The first inequality is clear, and the second one can be proven by considering two
cases when u1(x) and u2(x) have the same signs and when the signs are different.
Let

Vi(x) =

{ |u1(x)|qu1(x)−|u2(x)|qu2(x)
u1(x)−u2(x) , for x ∈ Ω2,

0, for x ∈ Ω1,

hi(x) =

{
|u1(x)|qu1(x) − |u2(x)|qu2(x), for x ∈ Ω1,

0, for x ∈ Ω2.
(4.53)

It follows that Vi, hi ∈ L∞(Ω) and ‖hi‖L∞(Ω) ≤ 2i−1−q. If we denote by w the
difference u1 − u2, we get that

(4.54) (∆− Vi)w = hi, w
∣∣
∂Ω

= 0, w ∈ D0,p.

This and Theorem 3.1 yield that there is C > 0, independent of i, such that

(4.55) ‖w‖D0,p ≤ C‖hi‖L∞(Ω) ≤ 2Ci−1−q.

Since i can be taken arbitrarily large, it follows that ‖w‖D0,p = 0; hence u1 = u2.

5. Boundary value problems for nonnegative solutions

Consider now a special case of the equation (4.1) when the solution u does not
change sign, i.e., it is either always nonnegative or nonpositive. We formulate our
result only for nonnegative solutions, since the other case is analogous. The main
point is that instead of the condition (4.24) we have to require (4.25) only.

Theorem 5.1. Let M be a smooth n-dimensional Riemannian manifold (n ≥ 3)
with Lipschitz metric tensor g. Let L be a strongly elliptic, (formally) selfadjoint,
negative definite second-order differential operator acting on functions on M that
can be locally written as (3.1) with coefficients satisfying (4.17) for some s > n. Let
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Ω ⊂ M be a connected Lipschitz domain in M . Consider the following Dirichlet
boundary problem:

(5.1) Lu− b(x, u) = f in Ω, u
∣∣
∂Ω

= g ∈ Lp(∂Ω), u ∈ D0,p,

where b(x, u) is a Carathéodory function, b(x, 0) = 0 and for any M > 0,

(5.2) sup
u∈[−M,M ]

∂

∂u
b(x, u) ∈ Ls(Ω) for some s = s(M) > n/2,

∂

∂u
b(x, u) ≥ 0.

There exists ε = ε(L,Ω) > 0 such that the following is true. For any 2 − ε ≤
p ≤ ∞, if r, q satisfy the conditions

(5.3) 1 ≤ q ≤ ∞, r > n/2,
1
p
>

1
q

+
2

n− 1

( n
2r
− 1
)
,

then, given any g ∈ Lp(∂Ω), g ≥ 0, and f ∈ Lqr(Ω), f ≤ 0, there exists a unique
solution u ∈ D0,p to the equation (5.1). (Here the trace of u on ∂Ω is taken in the
nontangential a.e. sense.) Also, u ≥ 0 and u ∈ Cδloc(Ω) for some δ > 0.

Moreover, there is a constant C = C(p, q, r) > 0 such that

(5.4) ‖u‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)).

Proof. Notice that the equation (5.1) does not differ from equation (4.1), since we
can put

(5.5) a(x, u) =
∫ 1

0

∂

∂u
b(x, tu) dt.

It follows that a(x, u)u = b(x, u), and moreover a(x, u) satisfies, for any M > 0,

(5.6) sup
u∈[−M,M ]

a(x, u) ∈ Ls(Ω) for some s = s(M) > n/2, a(x, u) ≥ 0.

Fix f and g as in the statement of our theorem. First we solve the following
linear problem:

(5.7) Lv = f in Ω, v
∣∣
∂Ω

= g ∈ Lp(∂Ω), v ∈ D0,p.

The solution to this problem exists by Theorem 3.1, and moreover v ≥ 0, as follows
from (3.14) and (3.17). Also,

(5.8) ‖v‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)).

We solve (5.1) by constructing a sequence of approximate solutions (ui)i∈N and
then letting i→∞. We take

gi(x) =

{
g(x), if g(x) ≤ i,
i, otherwise,

fi(x) =

{
f(x), if dist(x, ∂Ω) ≥ 1/i,
0, otherwise.

(5.9)

Notice that gi ∈ L∞(∂Ω) and fi ∈ Lr(Ω). Let ui be the solution to the nonlinear
equation

(5.10) Lui − b(x, ui) = fi in Ω, ui
∣∣
∂Ω

= gi, ui ∈ D0,∞.

First, we have to make sure the equation (5.10) is solvable. This is quite clear, since
Theorem 4.2 applies. This theorem also gives that ui ∈ L∞(Ω) and ui is uniquely
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determined since (5.2) holds. Also the same argument as used for the function v
shows that ui ≥ 0.

Our goal is to prove that for any i = 1, 2, 3, . . .

(5.11) 0 ≤ ui ≤ ui+1 ≤ v.
Fix any i ∈ N. The difference wi = ui+1 − ui solves the PDE

(5.12) (L − Vi)wi = hi in Ω, wi
∣∣
∂Ω

= gi+1 − gi, wi ∈ D0,∞,

where hi = fi+1 − fi ∈ Lr(Ω), hi ≤ 0, and

(5.13) Vi(x) =
∫ 1

0

∂

∂u
b(x, ui(x) + t(ui+1(x) − ui(x)) dt,

i.e., V12(x) ≥ 0 and V12 ∈ Ls(Ω) for some s > n/2 by (5.2). Hence wi ≥ 0 by (3.14)
and (3.17). Similarly, the difference Wi = v − ui solves the PDE

(5.14) L(Wi) = Hi = −b(x, ui) + f − fi in Ω, Wi

∣∣
∂Ω

= g− gi, Wi ∈ D0,p.

Since ui ≥ 0, we have −b(x, ui) ≤ 0. Also f − fi ≤ 0, from which follows that
Hi ≤ 0. Moreover, b(x, ui) ∈ L∞(Ω), f − fi ∈ Lqr(Ω), and therefore Hi ∈ Lqr(Ω).
Finally, Wi

∣∣
∂Ω
≥ 0, which again gives that Wi ≥ 0. So (5.11) holds. It follows that

for any x ∈ Ω the number

(5.15) u(x) = lim
i→∞

ui(x)

is well defined and 0 ≤ u(x) ≤ v(x). Hence the function u belongs to D0,p and the
estimate (5.4) holds. We also see that u

∣∣
∂Ω

= g a.e. on ∂Ω, where this trace is
taken in the nontangential sense. This follows from the fact that for all i we have
ui
∣∣
∂Ω

= gi a.e., v
∣∣
∂Ω

= g a.e. and gi → g as i→∞.
It remains to prove that

(5.16) Lu− b(x, u) = f in Ω

in the sense of distributions. But this is easy. Take any test function ψ ∈ C∞0 (Ω).
On O = suppψ ⊂⊂ Ω we have that v

∣∣
O ∈ L

∞(O) and also ui(x)→ u(x) pointwise
for x ∈ O. From (5.10),

(5.17) (ui, L∗ψ)− (b(x, ui), ψ) = (fi, ψ), i = 1, 2, . . . .

Hence b(x, ui(x))→ b(x, u(x)), and by (5.2) the sequence (b(., ui(.)))i∈N has an Ls

(s > n/2) majorant on O. Finally, fi → f in Lr(O). This means that we can pass
to the limit as i→∞ in all three terms of (5.17) to get the desired result:

(5.18) (u, L∗ψ)− (b(x, u), ψ) = (f, ψ).

This proves the existence of a solution to (5.1). The proof of uniqueness goes as
follows. Assume that u1 and u2 both solve (5.1). Consider an increasing sequence
of connected Lipschitz domains Ω1 ⊂⊂ Ω2 ⊂⊂ . . . converging to Ω = Ω0, such that
the Lipschitz character of these domains is the same. That is, there is a universal
constant L > 0 such that for any x ∈ ∂Ω there are a neighborhood U of x and a
smooth coordinate system on U in which for each i = 0, 1, 2, . . . we can write U ∩Ωi
as

(5.19) U ∩Ωi = {x = (x′, xn) ∈ U : xn > ϕi(x′)}
(compare with (2.39)), where the functions ϕi have Lipschitz constants bounded
by L. On each domain Ωi one can consider the linear Dirichlet boundary problem
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(3.6). One also gets the appropriate estimate (3.7) for Ωi. Crucial here is that
the constant C in the estimate (3.7) can be taken the same for each domain Ωi,
i.e., independent of i. This follows from the fact that these domains have the same
Lipschitz character. (See also [20] for more details.)

Denote Vij(x) = a(x, uj(x))
∣∣
Ωi

, for i = 1, 2, . . . and j = 1, 2. (The function a is
defined by (5.5).) Since uj ∈ L∞loc(Ω), clearly Vij ∈ Ls(Ωi), for some s > n/2. It
follows that uj restricted to Ωi solves the PDE

(5.20) (L− Vij)uj = f in Ωi, uj
∣∣
∂Ωi

= gij , uj ∈ D0,p(Ωi),

where

(5.21) gij = uj
∣∣
∂Ωi
∈ Lp(∂Ωi), i = 1, 2, . . . .

It is possible to identify the boundaries ∂Ωi with ∂Ω via the flow of a smooth vector
field X on M , nonzero near ∂Ω and pointing inside Ω (see [4] for more details).
Using this identification, it follows that

(5.22) gij → g in Lp(∂Ω) as i→∞, j = 1, 2.

This, (5.20) and (3.7) give us, on each domain Ωi for j = 1, 2,

(5.23) ‖uj‖D0,p(Ωi) ≤ C(‖f‖Lqr(Ωi) + ‖gij‖Lp(∂Ωi)) ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)).

This gives that uj ∈ Cloc(Ω) for j = 1, 2. Interior regularity results for the equation
(5.20) actually give uj ∈ Cδloc(Ω), for some δ > 0.

The difference w = u1 − u2 satisfies in Ωi the PDE

(5.24) (L − Ṽi)w = 0 in Ωi, w
∣∣
∂Ωi

= gi1 − gi2, w ∈ D0,p(Ωi),

where

(5.25) Ṽi(x) =
∫ 1

0

∂

∂u
b(x, u1(x) + t(u2(x) − u1(x)) dt, for x ∈ Ωi.

It follows that Ṽi ∈ Ls(Ωi) for some s > n/2, and Ṽi ≥ 0. Hence, again by (3.7),
we get

(5.26) ‖w‖D0,p(Ωi) ≤ C‖gi1 − gi2‖Lp(∂Ωi) → 0, as i→∞.
Now, as follows from Definition 2.1, an appropriate choice of nontangetial regions
{γi(.)} for the domains Ωi and {γ(.)} for Ω implies that

(5.27) ‖w‖D0,p(Ω) = lim
i→∞

‖w‖D0,p(Ωi) = 0.

Hence u1 = u2, and uniqueness follows. �

6. Dirichlet boundary problems with bmo boundary data

As we saw in Theorem 4.3, if u
∣∣
∂Ω
∈ L∞(∂Ω), we do not require any condition

on the growth of a(x, u) in the variable u, whereas u
∣∣
∂Ω
∈ Lp(∂Ω), p <∞, requires

at most polynomial growth in the variable u.
Recall that the space BMO of bounded mean oscillations introduced by John

and Nirenberg [14] is contained in all Lp spaces for p < ∞ but is larger than L∞.
Hence we can expect that the boundary condition u

∣∣
∂Ω
∈ BMO(∂Ω) should allow

us to solve the nonlinear problem for functions a(x, u) with faster than polynomial
growth in the variable u, but not arbitrary growth as in the L∞ case. This is indeed
the case, as follows from Theorem 6.5. Let us start with a few definitions.
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Definition 6.1. We say that f : ∂Ω→ R is a function of bounded mean oscillation,
and write f ∈ BMO, provided that

(a) f is an integrable function on ∂Ω, and
(b) there exists a constant A such that, for any ball B on ∂Ω,

(6.1)
1

σ(B)

∫
B

|f(x)− fB| dσ(x) ≤ A.

Here σ is the surface measure on ∂Ω and fB = σ(B)−1
∫
B
f dσ(x).

The smallest bound A for which (6.1) holds is taken to be the norm of the space
and is denoted by ‖f‖BMO. Notice that the constants have zero BMO norm. To
avoid this problem, we put

(6.2) ‖f‖bmo = ‖f‖L1(∂Ω) + ‖f‖BMO.

(6.2) satisfies all properties of a norm. The L1 norm in (6.2) could be replaced by
the Lq norm for any q < ∞, giving us an equivalent norm. The space equipped
with the norm (6.2) we denote by bmo or bmo(∂Ω).

Remark. The balls on the boundary ∂Ω are defined using the distance function
d(., .) inherited from the manifold M . Hence for any x ∈ ∂Ω and r > 0 we can take

(6.3) B = B(x, r) = {y ∈ ∂Ω : d(x, y) < r}.

The paper [14] by John and Nirenberg established several important properties
of bmo functions. The first one is that there is a constant C > 0 such that for any
bmo function f and any 2 ≤ p <∞

(6.4) ‖g‖Lp(∂Ω) ≤ Cp‖g‖bmo,

i.e., the Lp norm of f increases at most linearly as p→∞.
If a function satisfies (6.4), then the measure of the level set {x ∈ ∂Ω; f(x) > α}

decays exponentially as α→∞, i.e., there are positive constants K, b such that

(6.5) σ({x ∈ ∂Ω; f(x) > α}) ≤ Ke−bα.

Here b on the right-hand side of (6.5) depends on the right-hand side of (6.4);
namely, (6.5) works for any b < C/‖g‖BMO.

For reasons that will become clear later, we want to work with a space slightly
larger than bmo, but satisfying (6.4). We call this space LI(∂Ω) (LI stands for
linear increase). We also define the space DLI in a way that resembles Definition
2.1.

Definition 6.2. Let LI(∂Ω) be a space of all functions f : ∂Ω→ R for which

(6.6) LI(∂Ω) = {f : ∂Ω→ R; sup
p≥2

p−1‖f‖Lp(∂Ω) <∞}.

Then for any 2 ≤ q <∞ the space LI(∂Ω) equipped with the norm

(6.7) ‖f‖q = sup
p≥q

p−1‖f‖Lp(∂Ω)

is a Banach space. Also all norms ‖.‖q are equivalent. Consider also

(6.8) ‖f‖∞ = lim
q→∞

‖f‖q.
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Definition 6.3. Let the meaning of Ω ⊂ M , {γ(x)}x∈∂Ω and Ω̃ be exactly the
same as in Definition 2.1. Consider

(6.9) DLI = {f : Ω→ R;M0f ∈ LI(∂Ω)}.
Then

(6.10) ‖f‖DLI
q

= ‖M0f‖q, for 2 ≤ q ≤ ∞,

defines a norm on the space DLI for any 2 ≤ q <∞ (a pseudonorm if q =∞). All
these norms are equivalent, and moreover the normed space DLI is complete.

Remark. The proofs of the statements in Definitions 6.2 and 6.3 are fairly straight-
forward. Clearly (6.4) implies that bmo(∂Ω) ⊂ LI(∂Ω). We note that ‖.‖∞ and
‖.‖DLI

∞
satisfy all the properties of a norm except

(6.11) ‖g‖∞ = 0 =⇒ g = 0 and ‖f‖DLI
∞

= 0 =⇒ f = 0.

For example, if g ∈ L∞(∂Ω), then ‖g‖∞ = 0. However, the number ‖g‖∞ still
carries information on b in the estimate (6.5). In particular, there exists C > 0
such that (6.5) is true for any b for which

(6.12) b < C/‖g‖∞ and g ∈ LI(∂Ω).

It follows from (6.5) and (6.12) that, given any 1 ≤ p < ∞, there exists a
constant C = C(p) > 0 such that for any g ∈ LI(∂Ω) and any

(6.13) a < C/‖g‖∞, we have exp(ag) ∈ Lp(∂Ω).

In particular, if ‖g‖∞ = 0, then exp(ag) is integrable for any a ∈ R. Since for any
f ∈ DLI,

(6.14) exp(aM0f) ∈ Lp(∂Ω) =⇒ exp(af) ∈ Lp(Ω),

(6.13) also implies that for any 1 ≤ p <∞ and f ∈ DLI there exists C = C(p) > 0
such that

(6.15) a < C/‖f‖DLI
∞

=⇒ exp(af) ∈ Lp(Ω).

Definition 6.4. Let a = a(x, u) be a Carathéodory function. We say that a grows
at most exponentially in the variable u, provided we can bound a by

(6.16) a(x, u) ≤ k(x)eA|u|

for some A > 0 and k ≥ 0, k ∈ Ls(Ω), where s > n/2.
We say that a grows less than exponentially in the variable u, provided there is

s > n/2 such that for any A > 0 there is a function k ≥ 0, k ∈ Ls(Ω), for which
the bound (6.16) holds.

Finally, we have everything in place to proceed.

Theorem 6.5. Let M be a smooth n-dimensional Riemannian manifold (n ≥ 3)
whose metric tensor g is Lipschitz. Let L be a strongly elliptic, (formally) self-
adjoint, negative definite second-order differential operator acting on functions on
M that can be locally written as (3.1) with coefficients satisfying (4.17) for some
s > n. Let Ω ⊂ M be a connected Lipschitz domain in M . Consider the following
Dirichlet boundary problem:

(6.17) Lu− a(x, u)u = f in Ω, u
∣∣
∂Ω

= g ∈ LI(∂Ω), u ∈ DLI.
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Let a(x, u) ≥ 0 be a Carathéodory function that grows at most exponentially in the
variable u, i.e., (6.16) holds. Also, let r, q satisfy the following conditions:

(6.18) r > n/2, q >
n− 1

2(1− n/(2r)) .

Then there exists a constant C > 0 such that for any given f ∈ Lqr(Ω), g ∈ LI(∂Ω)
and

(6.19) ‖g‖∞ < C/A, where A is the number from (6.16),

there exists a solution u ∈ DLI ∩Cδloc(Ω) (δ > 0) to the equation (6.17). Moreover,
for some C = C(p, r) > 0

(6.20) ‖u‖DLI
2
≤ C(‖f‖Lqr(Ω) + ‖g‖2), ‖u‖DLI

∞
≤ C‖g‖∞.

In particular, if the function a grows less than exponentially, the solution to
(6.17) exists for all g ∈ LI(∂Ω).

If in addition the function b(x, u) = a(x, u)u satisfies

(6.21) 0 ≤ ∂

∂u
b(x, u) ≤ k(x)eA|u|,

where A and k are the same as in Definition 6.4, then the solution u to (6.17) is
unique among all functions in DLI for which ‖u‖DLI

∞
< C/A. In particular, if the

function a grows less than exponentially, the solution u is unique in DLI.

Corollary 6.6. Keeping the same assumptions on M , Ω, L, q, r as in the theorem
above, it follows that the Dirichlet problem

(6.22) Lu− a(x, u)u = f ∈ Lqr(Ω), u
∣∣
∂Ω

= g ∈ bmo(∂Ω), u ∈ DLI,

is solvable for any g ∈ bmo(∂Ω), provided the Carathéodory function a(x, u) ≥ 0
grows less than exponentially in u.

If a(x, u) ≥ 0 grows exponentially in u, then the Dirichlet problem (6.22) is
solvable, provided g can be written as

(6.23) g = g1 + g2, where g1 ∈ L∞(Ω) & ‖g2‖BMO < C/A,

for some C > 0 and A from the estimate (6.16). (Said differently, (6.23) means
that (6.22) is solvable for small BMO perturbations of L∞ boundary data g.)

Proof. We will be brief, since the main idea of the proof is the same as in Theorem
4.3. We begin with the observation we made in [3], that for fixed r, q the constant
C > 0 in the estimate (3.7) can be taken independent of 2 ≤ p ≤ ∞; that is, the
solution u to (3.6) satisfies

(6.24) ‖u‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)) for any 2 ≤ p <∞ and g ∈ Lp(∂Ω).

This essentially follows from the fact that (6.24) is a result of interpolation between
the estimates for p = 2 and p =∞.

Next, let the meaning of f+, f−, g+, g−, u(+)
V and u(−)

V be the same as in (3.14)-
(3.17). It follows from (3.17) that the solution u = uV = u

(+)
V − u

(−)
V to (3.6)

satisfies

(6.25) |uV (x)| ≤ u(+)
V (x) + u

(−)
V (x) ≤ h(x) = u

(+)
0 (x) + u

(−)
0 (x),
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where u(+)
0 and u(−)

0 are solutions for V = 0 to (3.14), (3.15), respectively. Clearly
(6.24) implies that

(6.26) ‖h‖D0,p ≤ C(‖f‖Lqr(Ω) + ‖g‖Lp(∂Ω)) for any 2 ≤ p <∞.

Now, since g ∈ LI(∂Ω), i.e., ‖g‖Lp(∂Ω) ≤ Cp, (6.26) gives us

(6.27) ‖h‖DLI
2
≤ C(‖f‖Lqr(Ω) + ‖g‖2), ‖h‖DLI

∞
≤ C‖g‖∞.

Hence by (6.15) and (6.16) there exists C > 0 such that for any g ∈ LI(∂Ω)
satisfying ‖g‖∞ < C/A, where A is the number from (6.16), we get that V =
k exp(Ah) ∈ Ls′(Ω) for some s′ > n/2.

It follows that the map T : u 7→ v defined by (4.27) is well defined as a map from
the set

(6.28) S = {u : Ω→ R : u ∈ Cloc(Ω) & |u(x)| ≤ h(x) for all x ∈ Ω|}

into itself. Notice also that the set S is closed and convex in the topology of D0,p

for any 2 ≤ p < ∞. As before, the map T : S → S is continuous and compact in
the D0,p topology; hence by the Schauder fixed point theorem, T has a fixed point
in S. This proves the existence.

For uniqueness, the argument given in the proof of Theorem 4.3 goes through,
provided the solutions u1, u2 that we consider satisfy

(6.29)
∂

∂u
b(., ui(.)) ∈ Ls

′
(Ω), for some s′ > n/2, i = 1, 2.

Given this and (6.21), it follows that u1 = u2. (6.21) also gives that (6.29) certainly
holds, provided ‖ui‖DLI

∞
≤ C/A. �

Now we return to the discussion of Example 5.11 of [3] in the light of Theorems
5.1 and 6.5.

Example 6.7. In [3] we considered the following situation. Let Ω ⊂ M be a con-
nected Lipschitz domain on a two-dimensional compact Riemannian manifold M .
We want to impose a given Gaussian curvature K(x) ≤ 0 on the set Ω by confor-
mally altering a given metric g whose Gauss curvature is k(x). By a well-known
formula, whose proof can be found in appendix C of [23], if g, g′ are conformally
related, i.e., g′ = e2ug, then K and k are related by the PDE

(6.30) K(x) = e−2u(−∆u+ k(x)),

where ∆ is the Laplace operator for the original metric tensor g.
As explained in [3], the fact that this problem is only two dimensional and we

mainly considered the case of dim M ≥ 3 is not too important. The only reason we
did not consider the case dim M = 2 in close detail is that in this case the kernel
E(x, y) of the inverse L−1 of the operator (2.17) does not satisfy (2.9) but contains
a logarithmic singularity of the form log |x− y|. Hence it would require additional
space to develop the results of section 2 for this case. However, it can be shown
that all results of sections 2 and 3 (and hence also section 4) extend to this case.
It is therefore legitimate to consider (6.30).

It follows from (6.30) that we want to solve the PDE

(6.31) ∆u+K(x)e2u = k(x).
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We also want to impose Dirichlet boundary conditions on u, i.e., we specify g′ on
∂Ω. Rewriting (6.31) in the form considered in Theorems 5.1 and 6.5, we see that

(6.32) a(x, u) = −K(x)
e2u − 1
u

and f(x) = k(x)−K(x).

Clearly, a(x, u) ≥ 0, since K(x) ≤ 0. It follows that (6.16) holds provided K(x) ∈
Ls(Ω), for some s > 1. If we also assume that k ∈ Ls(Ω), then all assumptions of
Theorem 6.4 and Corollary 6.5 are satisfied. Notice that the uniqueness condition
also holds, since b(x, u) = −K(x)(e2u−1), and therefore ∂

∂ub(x, u) = −2K(x)e2u ≥
0.

It follows that there is a constant C > 0 such that, given any h = u
∣∣
∂Ω
∈ LI(∂Ω)

with ‖h‖∞ < C (or given any h = h1 + h2 with h1 ∈ L∞(∂Ω) and ‖h2‖BMO < C),
we can construct a unique conformal metric g′ on Ω with prescribed curvature
K(x) ≤ 0, K(x) ∈ Ls(Ω) (s > 1) and boundary “values”

(6.33) g′
∣∣
∂Ω

= e2hg
∣∣
∂Ω
,

where g is the original metric tensor on M .
In some cases Theorem 5.1 also applies. It is enough to assume K(x) ∈ Ls(Ω) for

some s ≥ 2. The reason we do not want just s > 1 is that in order to have (3.26) we
need p > s(n− 1)/(s− 1)n, where n = dim M . This condition does not represent
a problem for n ≥ 3. For n = 2 it means that we should take s > (1 − 1/2p)−1,
where p is the regularity of the boundary data. To be on the safe side, s ≥ 2 would
always suffice.

We also need h = u
∣∣
∂Ω
≥ 0 and k(x)−K(x) ≤ 0. Hence, given k,K ∈ Ls(Ω) for

s ≥ 2 such that

(6.34) k(x) ≤ K(x) ≤ 0, for all x ∈ Ω,

then for any h ∈ Lp(∂Ω), h ≥ 0, and p > 2 − ε there is a unique conformal metric
tensor g′ on Ω whose curvature is K(x) and has boundary “values” given by (6.33).

Notice that the solution u to (6.31) is nonnegative and g′ = e2ug; hence at every
point x ∈ Ω we have g′ ≥ g. This has the following consequence. If dg is the
distance function on Ω generated by the metric tensor g and dg′ is the distance
function generated by g′, then, for any two points x, y ∈ Ω,

(6.35) dg(x, y) ≤ dg′(x, y),

i.e., the distances (and therefore also the volume of Ω) have increased.
Due to the symmetry, there is one more case to which we can apply Theorem

5.1. Namely, if k,K ∈ Ls(Ω) with s ≥ 2 and

(6.36) K(x) ≤ 0, K(x) ≤ k(x),

then for any h ∈ Lp(∂Ω), h ≤ 0, and p > 2 − ε there is a unique conformal metric
tensor g′ on Ω whose curvature is K(x) and which has boundary “values” given by
(6.35).

In this case u ≤ 0 on Ω, and so for any two points x, y ∈ Ω we have

(6.37) dg(x, y) ≥ dg′(x, y).

For a discussion of a different boundary value problem (with u→∞ as x→ ∂Ω)
for this PDE, see the paper by Mazzeo and Taylor [17].
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