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Abstract

We consider the linearized version of the stationary Navier-Stokes equa-
tions on a subdomain Ω of a smooth, compact Riemannian manifold M . The
emphasis is on regularity: the boundary of Ω is assumed to be only C1 and
even Lipschitz, and the data are selected from appropriate Sobolev-Besov
scales. Our approach relies on the method of boundary integral equations,
suitably adapted to the variable coefficient setting we are considering here.
Applications to the stationary, non-linear Navier-Stokes equations in this
context are also discussed.

Key words. Stationary Navier-Stokes system, Lipschitz domains, bound-
ary problems, Sobolev-Besov spaces
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1. Introduction

In this paper we study the linearized version of the stationary Navier-
Stokes equations on a fixed subdomain Ω of a smooth, compact Riemannian
manifold M . Let Tr denote the trace on ∂Ω. With Def standing for the
deformation tensor and with d denoting the exterior derivative operator on
M , set L = 2Def∗Def, δ = d∗. We consider the Dirichlet problem for the
(modified) Stokes system

Lu +∇ωu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM),

δu = h ∈ Lp

s+ 1
p−1

(Ω), (1.1)

Tr u = g ∈ Bp,p
s (∂Ω, Λ1TM).

Here, ω, f , h and g are given and ω is assumed to be divergence-free. We are
interested in this equation as it is an important first step toward solving the
stationary Navier-Stokes system via fixed point techniques. We elaborate
more on this in the second part of this introduction.

A related, simpler PDE, the Dirichlet problem for the Stokes system

Lu + dπ = f in Ω,

δu = 0 in Ω, (1.2)
Tr u = f on ∂Ω

in arbitrary Lipschitz domains on manifolds, has been studied in [46]. There
it has been established that there exists 1 ≤ qΩ < 2 such that, for each
qΩ < p < (1− 1/qΩ)−1, the solution (u, π) of (1.2) satisfies
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‖N (u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω,Λ1TM) (1.3)

and

‖N (∇u)‖Lp(∂Ω) + ‖N (π)‖Lp(∂Ω) ≤ C‖f‖Lp
1(∂Ω,Λ1TM). (1.4)

Here N is the standard nontangential maximal operator; cf. (4.16) and [46]
for more details. For further reference, let us also introduce here the critical
index

pΩ := max
{

qΩ , qM\Ω̄
}

. (1.5)

See the body of the text for a thorough discussion of notation as well as
other relevant definitions; cf. especially the first part of §2.

As an initial, natural step in the direction of understanding (1.1), we
study the Poisson problem for the Stokes system in non-smooth domains
with data in Sobolev-Besov spaces. This is concerned with finding a velocity
field u ∈ Lp

s+ 1
p

(Ω, Λ1TM) along with a pressure function π ∈ Lp

s+ 1
p−1

(Ω),

solving the equation (1.2). Our main novel technical achievement is prov-
ing sharp estimates for this problem both in lower dimensional Lipschitz
domains, as well as in C1 domains of arbitrary dimension.

Let us now momentarily digress and explain why we find it both natural
and important to study these (and related) problems on Riemannian man-
ifolds. For starters, note that our setting applies to the case of a bounded
Euclidean domain in Rn, since such a domain can be embedded in a (suf-
ficiently large) flat torus (equipped with the canonical metric). However,
the main advantage of working with a general Riemannian metric tensor is
that this gives rise to a context in which variable-coefficient operators arise
naturally. For example, any (scalar) divergence-form operator

Lu =
∑

1≤i,j≤n

∂i(aij(x)∂ju), (1.6)

induced by a positive definite matrix A(x) = (aij(x))ij can be viewed (mod-
ulo a multiple of suitable power of det [A(x)]) as the Laplace-Beltrami op-
erator ∆g associated with the Riemannian metric tensor

g(x) := (det [A(x)])1/(n−2)
∑

1≤i,j≤n

aij(x) dxi ⊗ dxj , (1.7)

where aij are the entries of A−1, for n ≥ 3.
Formulating and studying the Navier-Stokes equations on Riemannian

manifolds has a fairly rich history, going back to an influential paper by
D.Ebin and J. Marsden, [16], where the correct form of these equations has
been first identified. One of the important observations made in [16] is as
follows. While in the flat, Euclidean setting, the operator L in (1.1) is the
ordinary, constant coefficient Laplacian, the correct replacement – in the
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context of a Riemannian manifold – is not the Hodge-Laplacian on forms,
but rather the deformation-Laplacian 2 Def∗Def (the two do not coincide
unless the manifold is Ricci-flat). Other papers dealing with fluid dynamics
problems on Riemannian manifolds are [7], [39], [48], [51], [53], [60], [59]. In
addition, a number of authors have dealt with special geometric settings,
such as that of a sphere (cf. [62], [63]). Another distinct advantage of working
in a non-zero curvature ambient space is that in that setting we are able
to remove certain topological assumptions of artificial nature customarily
imposed on the domain Ω. For instance, suitably altering the underlying
manifold, matters can be always arranged so that the complement Ωc is
simultaneously connected and compact (even when ∂Ω is not necessarily
connected).

This point of view has been systematically emphasized by Mitrea and
Taylor who, starting in the mid 1990’s, have treated boundary value prob-
lems for elliptic differential operators in Lipschitz subdomains of Rieman-
nian manifolds, via layer potential methods. This program has produced
[40], [42], [43], [44], [45], and [46]. In particular, building on the work in
[18], they have extended the main results of Jerison and Kenig [34] to in-
clude Poisson problems with Neumann and Dirichlet boundary conditions
in Lipschitz domains for the Laplace-Beltrami operator associated with a
rough metric tensor. In [11], we have extended the scope of this work by
allowing scalar, lower-order, nonlinear perturbations.

Here, we are led to considering similar issues for systems of PDE’s. More
specifically, our strategy for dealing with (1.1) is to regard this problem as
a linear perturbation of the Poisson problem for the Stokes system

Lu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM),

δu = h ∈ Lp

s+ 1
p−1

(Ω), (1.8)

Tr u = g ∈ Bp,p
s (∂Ω, Λ1TM).

These results are important for theory of partial regularity, as they clarify
the (maximal) amount of smoothness exhibited by the solution on Sobolev-
Besov scales.

As far as this latter problem is concerned, we are able to prove optimal
(in the sense that the range of indices s and p is largest possible) well-
posedness results for the following types of subdomains of the manifold M :

(i) arbitrary Lipschitz domains of dimension ≤ 3;
(ii) Lipschitz domains with a sufficiently small Lipschitz constant of ar-

bitrary dimension.

Note that the last category above includes the class of all C1 domains.
We also derive certain partial results in the case of Lipschitz domains of
arbitrary space dimension; they require |p− 2| to be sufficiently small. It is
clear that many of our estimates have applications to the dynamic case as
well, although this point of view will be pursued elsewhere.
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There is a rather extensive literature devoted to the study of the Stokes
system (1.8) in domains exhibiting a limited amount of smoothness. Our
results unify and extend most of these, at least as far as the range of indices
p, s are concerned, in the context when ∂Ω is rough and when there are no
artificial topological assumptions on Ω.

When ∂Ω ∈ C1,1, the classical approach based on the Agmon-Douglis-
Nirenberg theory [1] applies. This point of view has been exploited in [2],
which also made essential use of the resolvent estimates from [28]; cf. also
[61] and the approach via pseudodifferential operators from [59]. Certain
lower dimensional cases (dim ≤ 3) for C2 domains have been treated earlier
in [8] and [25]. For indices related by s + 1/p = 1, Euclidean domains with
a small Lipschitz constant have been dealt with in [26] based on flattening
the boundary and a priori estimates. Lp estimates in conical domains have
been derived in [12], [13]. See also [5] for regularity issues related to the
Stokes system in Lipschitz domains.

Our analysis of the linearized Stokes system relies on the method of
layer potentials. This approach has proved very effective in the treatment
of elliptic equations for smooth, flat, Euclidean domains. In the case of the
Stokes system, this technique goes back to the pioneering work of Odqvist
and Lichtenstein and, more recently, to Solonnikov [54] and Ladyzenskaja
[38], among others.

In late 1980’s, Fabes, Kenig and Verchota [17] have successfully employed
the method of layer potentials for the Dirichlet problem for the Stokes sys-
tem (with nontangential maximal function estimates) in Euclidean Lips-
chitz domains. Subsequently, their work has been used in [14] (which also
has an extensive list of references) to prove short time existence of solutions
for the (non-stationary) Navier-Stokes equations in three-dimensional Eu-
clidean Lipschitz domains, based on the Fujita-Kato approach [22]. Related
results are in [46] for Lipschitz subdomains of Riemannian manifolds. More
recently, and in the same geometrical context, Monniaux [47] has proved
the existence of mild solutions u ∈ C([0, T ); L3(Ω,R3)) for the Navier-
Stokes equations (with small initial data in L

3/2
1 (Ω,R3)). This is remarkable

since, at the present time, it is not known whether the Stokes semi-group
in L2(Ω,R3) extends to an analytic semi-group in L3(Ω,R3), for any Lips-
chitz domain Ω ⊂ R3. For smooth domains, see [28] and [29]. Other papers,
dealing with related regularity issues are [24] and [37].

The final step in our analysis –utilizing the results for the linearized
problem in the treatment of the stationary Navier-Stokes system– requires
a proper understanding of how the solution u of (1.8) depends on lower order
perturbations of the Stokes system. A priori regularity results and uniform
estimates eventually allow us to conveniently implement the Schauder fixed-
point theory in the framework of Lebesgue spaces; see §7 for the actual
details.

The layout of the first part of the paper (dealing with linear BVP’s) is as
follows. Section 2 contains a detailed description of the geometric setting,
as well as of function spaces and relevant differential operators. Here we
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also introduce the hydrostatic single layer operator S and summarize some
of its mapping properties. The double layer operator is considered in detail
in §3. In Section 4 we deal with the issue of inverting S on Besov spaces in
arbitrary Lipschitz domains of dimension ≤ 3. Here, the starting point is an
adaptation of the Hölder estimate from [52], which we further interpolate
with the L2-theory from [46]. The well-posedness of the Poisson problem
for the Stokes system is then established in §5, both for domains with small
Lipschitz constant as well as for arbitrary Lipschitz domains of dimension
≤ 3. As a preamble for the nonlinear problem, a perturbation of (1.8) is
considered in §6.

Our tools and techniques, including elements of Calderón-Zygmund the-
ory, smoothness spaces, interpolation, pseudodifferential operators, and Ho-
dge theory, are based on the earlier work of many people. In particular, the
harmonic analysis approach to problems arising in PDE’s as presented in
Kenig’s book [36] has been particularly influential for our work.

The last section §7 is devoted to the nonlinear problem - the stationary
Navier-Stokes equation

Lu +∇uu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM),

δu = h ∈ Lp

s+ 1
p−1

(Ω), (1.9)

Tru = g ∈ Bp,p
s (∂Ω, Λ1TM),

in Sobolev-Besov spaces, via a fixed-point argument.
In the case of smooth domains in Rn with n ≤ 6, solutions to the

stationary-Navier Stokes equations have been constructed for arbitrary smo-
oth f (and h = 0, g = 0) by J. Frehse, M. Ružička and M. Struwe in a series
of papers [19], [20], [21] and [56], [57]. In the case of periodic boundary
conditions the same result is true up to dimension 15.

The solutions these authors produce are smooth in the interior even for
large (smooth) data. Their approach avoids using perturbation techniques
and, instead, relies on a suitable maximum principle. This is particularly
relevant in dimensions ≥ 5, where the standard methods are no longer
applicable (for large data). Let us also mention that the issue of establishing
regularity up to the boundary is open even for smooth large data.

Another important open problem, in the case of the stationary Navier-
Stokes equations, is the existence of a solution with arbitrarily large pre-
scribed boundary data on domains with disconnected boundary in dimen-
sions n ≥ 2 (under the natural condition that the total flux through the
boundary is zero). The interested reader is referred to [23] for a discussion.

The role of self-similarity in the Euclidean context was studied in [50]
in connection with the interior regularity of the solution of the evolution
problem (where a surprising negative results has been proved in the critical
case). Another relevant reference in this regard is [65]. In this connection, a
very interesting open problem is that of the existence of a non-trivial self-
similar singular solution of the Navier-Stokes equations in a cone, with the
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singularity located at the boundary (this is not known even in the case of a
half-space).

Finally, Stokes and Navier-Stokes equations in nonsmooth domains have
also been treated in [17], [5], [52], [58], [46], while Sobolev and Besov data
have been emphasized in [39], [60], [30], [31], and [32], to give just a few
examples.

Acknowledgments. We are grateful to Michael Taylor for his interest in our
work and for his support over the years. We also thank the editor and the
referees for their constructive criticism. Their comments and suggestions
have led to the present version of the paper.

2. Notation, definitions and preliminary results

Let M be a smooth, compact, boundaryless manifold of (real) dimension
n. As usual, by TM and T ∗M we denote, respectively, the tangent and
cotangent bundle on M . Also, Λ`TM stands for the corresponding (exterior)
power bundle. We assume that M is equipped with a smooth Riemannian
metric tensor g = gjkdxj⊗dxk, denote by (gjk)jk the inverse matrix to (gjk)
and set g := det (gjk)jk. Thus, in local coordinates, the volume element is
given by dVol =

√
g dx1...dxn.

The pairing 〈dxj , dxk〉 := gjk defines an inner product in Λ1TM . More
generally, if {ωj}j is a local orthonormal frame for Λ1TM , then we take
{ωI}I to be a local orthonormal frame for Λ`TM . Here, for each increasing
multi-index of length `, I = (i1, i2, ..., i`), we set ωI := ωi1 ∧ ωi2 ∧ ... ∧ ωi`

,
with wedge denoting the ordinary exterior product of forms.

As it is customary, we may identify vector fields with one-forms (i.e.,
TM ∼= T ∗M = Λ1TM) via ∂j 7→ gjkdxk (lowering indices). This mapping
is an isometry whose inverse (raising indices) is given by dxj 7→ gjk∂k. In
the sequel, we shall not make any notational distinction between a vector
field and its associated one-form. Under this identification, we have grad ≡ d
and div ≡ −δ. Hereafter, we let d and δ stand, respectively, for the exterior
derivative and exterior co-derivative operators.

The Hodge Laplacian is then given by

∆ := −dδ − δd. (2.1)

Furthermore, if ∇ is the Levi-Civita connection and Ric is the Ricci tensor
on M then, under the above identification, the Bochner Laplacian and the
Hodge Laplacian are related by

−∇∗∇ ≡ ∆ + Ric, (2.2)

a special case of the Weitzenbock identity.
We let OPS`

cl denote the collection of all classical pseudodifferential
operators P (x, D) of order `. In particular, their symbols p(x, ξ) ∈ S`

cl
satisfy p(x, ξ) ∼ p`(x, ξ) + p`−1(x, ξ) + · · ·, where pj(x, ξ) is smooth and
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homogeneous of degree j in ξ for |ξ| ≥ 1, j = `, `− 1, .... Also, we denote by
σ(P ; x, ξ) the principal symbol p`(x, ξ). Set ØPS`

cl for the class of formal
adjoints of operators in OPS`

cl.
The deformation tensor DefX of a field X ∈ TM is given by

(DefX)(Y, Z) = 1
2{〈∇Y X, Z〉+ 〈∇ZX, Y 〉}, ∀X, Y, Z ∈ T ∗M. (2.3)

Thus, Def : C∞(M, TM) → C∞(M, S2T ∗M), where S2T ∗M stands for
symmetric tensor fields of type (0, 2). In coordinate notation,

(Def X)jk = (Def X)(∂j , ∂k) = 1
2 (Xj;k + Xk;j), ∀ j, k. (2.4)

Here, for a vector field X = Xj∂j it is customary to set Xk;j := ∂jXk −
Γ l

kjXl, where Γ l
kj are the Christoffel symbols associated with the metric. In

the sequel, we shall find it convenient to denote TM 3 Z 7→ (Def X)(Y,Z) ∈
R by (Def X)Y ∈ Λ1TM .

At each x ∈ M , the principal symbol of the deformation operator is

σ(Def;x, ξ)u = −i 1
2 (ξ ⊗ u + u⊗ ξ), ∀ ξ ∈ T ∗x M, u ∈ TxM. (2.5)

The adjoint of the operator Def is Def∗v = −div v, v ∈ S2T ∗M , or in local
coordinates, (Def∗v)j = −vjk

;k. Thus if we consider the second-order partial
differential operator

L := 2 Def∗Def = ∇∗∇− grad div− Ric ≡ −∆ + dδ − 2 Ric (2.6)

then, at each x ∈ M ,

σ(L; x, ξ) = |ξ|2I + ξ ∧ (ξ ∨ ·), ξ ∈ T ∗x M \ 0, (2.7)

where, here and elsewhere, ξ∨ stands for the interior product (with ξ), and
I is the identity.

Consider an arbitrary Lipschitz subdomain Ω of M . This means that
∂Ω can be covered by a finite family of open cylinders {Zi}1≤i≤N with the
following properties (in local coordinates in Rn). For each i, there exists a
Lipschitz function ϕi : Rn−1 → R so that 2‖ϕi‖L∞ is less than the height
of Zi and, if 2Zi denotes the concentric double of Zi, in the rectangular
coordinate system defined by Zi one has

Ω ∩ 2Zi = {x = (x′, xn); ϕi(x′) < xn} ∩ 2Zi, (2.8)
∂Ω ∩ 2Zi = {x = (x′, xn); ϕi(x′) = xn} ∩ 2Zi.

See, e.g., [49] for more details. The families {Zi}1≤i≤N , {ϕi}1≤i≤N with the
above properties define what we are going to call the Lipschitz character of
Ω. In particular,
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max
{
‖ϕi‖L∞ ; 1 ≤ i ≤ N

}
(2.9)

will be referred to as the Lipschitz constant of Ω.
The standard Sobolev scale Lp

s(M), 1 < p < ∞, s ≥ 0, is obtained by
lifting Lp

s(Rn) := {(I−∆)s/2f ; f ∈ Lp(Rn)} to M via a smooth partition of
unity and pull-back. Let Lp

s(Ω) denote the restriction of elements in Lp
s(M)

to the Lipschitz domain Ω, and Lp
s,0(Ω) stand for the subspace consisting

of restrictions to Ω of elements from Lp
s(M) with support contained in Ω̄.

Finally, for s > 0 and 1 < p, q < ∞ with 1/p + 1/q = 1, we set Lp
−s(Ω) :=

(Lq
s,0(Ω))∗. Boundary Sobolev spaces Lp

s(∂Ω), 1 < p < ∞, 0 ≤ s ≤ 1,
can be introduced by starting with the Euclidean model, Lp

s(Rn−1), via a
partition of unity and pull-back. These Sobolev scales are then related to
Besov spaces via real interpolation:

(Lp(Ω), Lp
k(Ω))

s,q
= Bp,q

sk (Ω), (2.10)

(Lp(∂Ω), Lp
1(∂Ω))s,q = Bp,q

s (∂Ω),

when 0 < s < 1, 1 < p, q < ∞ and k is a positive integer. Furthermore,
the trace operator Tr is well-defined from either Lp

s(Ω) or Bp,p
s (Ω) onto

Bp,p
s−1/p(∂Ω) for each 1 < p < ∞ and 1/p < s < 1+1/p. For a more detailed

exposition, the interested reader is referred to [3], [34], [44], [64]. We set
Lp

s(Ω, Λ`TM) := Lp
s(Ω) ⊗ Λ`TM

∣∣∣
Ω

and Bp,p
s (∂Ω, Λ`TM) := Bp,p

s (∂Ω) ⊗
Λ`TM

∣∣∣
∂Ω

etc., but we shall occasionally drop the dependence of the various
spaces of forms on the exterior power bundle.

Next we discuss the single layer potential operator, starting with the
construction of a suitable fundamental solution. Let Ω ⊂ M be a connected
Lipschitz domain (note that we do not insist on ∂Ω being connected). By
eventually altering M away from Ω, matters will henceforth be arranged so
that:

M has no nontrivial Killing fields, (2.11)

and

M \Ω is connected. (2.12)

See [46] for more details. Now (2.11) guarantees that KerDef = {0}. In
particular, the elliptic operator

L := 2Def∗Def : L2
1(M,TM) → L2

−1(M, TM) (2.13)

is invertible. Next, let H(M) be the (finite dimensional) space of all har-
monic one-forms on M , and denote by Ph the orthogonal projection on
H(M). The Green operator at the level of one-forms is then defined by
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G := (−∆)−1P⊥h where (−∆)−1 is the inverse of −∆ on H(M)⊥. Conse-
quently, Pd := dδG and Pδ := δdG are projections onto the ranges of d and
δ, respectively. As in [46], consider

L̃ := P⊥d LP⊥d + PdLPd ∈ OPS2(TM, TM), (2.14)

which is self-adjoint, elliptic and also invertible from L2
1(M,TM) onto

L2
−1(M, TM). If we now set

Φ := P⊥d L̃−1 ∈ OPS−2(Λ1TM, Λ1TM), (2.15)
Ψ := −δG(LΦ− I) ∈ OPS−1(Λ1TM,R),

then, in the sense of distributions (and with I denoting the identity opera-
tor),

LΦ + dΨ = I and δΦ = 0 on M. (2.16)

Denote by Γ (x, y) and Θ(x, y) the Schwartz kernels of Φ and Ψ , respectively.
Then the above identity yields

LxΓ (x, y) + dxΘ(x, y) = Diracy(x), δxΓ (x, y) = 0, (2.17)

on M , where Diracy is the Dirac distribution with mass at y. At the level
of principal symbols, a straightforward algebraic calculation gives that

σ(Φ;x, ξ) = |ξ|−2 − |ξ|−4ξ ∧ (ξ ∨ ·), x ∈ M, ξ ∈ T ∗x M \ 0, (2.18)
σ(Ψ ; x, ξ) = i|ξ|−1ξ ∨ · , x ∈ M, ξ ∈ T ∗x M \ 0.

Next, denote by ν ∈ T ∗M ≡ Λ1TM the outward unit conormal to ∂Ω
and by dσ the surface measure on ∂Ω. For a Λ1TM -valued function f on
∂Ω, we introduce the single layer potential

Sf(x) :=
∫

∂Ω

〈Γ (x, y), f(y)〉 dσy, x ∈ M \ ∂Ω, (2.19)

along with

Qf(x) :=
∫

∂Ω

〈Θ(x, y), f(y)〉 dσy, x ∈ M \ ∂Ω. (2.20)

Finally, set

Sf := Tr (Sf) on ∂Ω. (2.21)

The theorem below summarizes some of the most important mapping
properties of the operators (2.19)-(2.21) on Sobolev-Besov scales in Lipschitz
domains.
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Theorem 2.1. For each Ω, Lipschitz domain, the following hold.

(i) For 0 < s < 1/p < 1, the operator

Q : Bp,p
−s (∂Ω, Λ1TM) → Bp,p

−s+1/p(Ω, Λ1TM) ∩ Lp
−s+1/p(Ω, Λ1TM),

(2.22)
is well-defined and bounded.

(ii) For 1 < p < ∞ and 0 < s < 1,

S : Bp,p
−s (∂Ω,Λ1TM) → Bp,p

−s+1+1/p(Ω, Λ1TM) ∩ Lp
−s+1+1/p(Ω, Λ1TM)

(2.23)
is well-defined and bounded. Also,

Sν = 0 and Qν = constant in Ω. (2.24)

(iii) For 0 < s < 1, the estimates

∥∥∥dist(·, ∂Ω)1−s|∇Sf |
∥∥∥

L∞(Ω)
≤ C‖f‖(Cs(∂Ω,Λ1TM))∗ , (2.25)

∥∥∥dist(·, ∂Ω)1−s|Qf |
∥∥∥

L∞(Ω)
≤ C‖f‖(Cs(∂Ω,Λ1TM))∗ ,

hold uniformly in f .
(iv) For 1 < p < ∞, and 0 < s < 1,

S : Lp
−s(∂Ω,Λ1TM) −→ Lp

1−s(∂Ω, Λ1TM), (2.26)
S : Bp,p

−s (∂Ω,Λ1TM) −→ Bp,p
1−s(∂Ω,Λ1TM)

are well-defined and bounded. Furthermore, there exists ε = ε(Ω) > 0 so
that whenever 2− ε < p < 2 + ε and 0 < s < 1, the above operators are
Fredholm with index zero. In each case,

KerS = Rν, (2.27)

independently of s, p.

The proof is essentially contained in [46].

3. The double layer potential on Sobolev-Besov spaces

In the previous section we have established mapping properties for the
single layer potential S and its corresponding boundary version S. Here
we consider the double layer potential D, the pressure operator P, and the
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(boundary) principal-value double layer K. The main results are the map-
ping properties of D, P on Sobolev-Besov scales in Propositions 3.3 and 3.4,
and the Fredholmness of K on (essentially) C1 domains in Proposition 3.5.

Recall that Γ (x, y), Θ(x, y) are the Schwartz kernels of the pseudodif-
ferential operators (2.15). Consider the double layer potential operator

Df(x) :=
∫

∂Ω

〈−2
[
Defy(Γ (x, ·))ν]

(y) + Θt(y, x)ν(y), f(y)
〉

dσy, x ∈ Ω,

(3.1)
along with its (principal value) boundary version for x ∈ ∂Ω

Kf(x) := p.v.
∫

∂Ω

〈−2
[
Defy(Γ (x, ·))ν]

(y) + Θt(y, x)ν(y), f(y)
〉

dσy.

(3.2)
We shall also need the formal transposed of (3.2), i.e.,

K∗f(x) := p.v.
∫

∂Ω

〈−2
[
Defx(Γ (·, y))ν

]
(x) + Θ(x, y)ν(x), f(y)

〉
dσy,

(3.3)
for x ∈ ∂Ω. The general jump formulas derived in [40] (cf. also the discussion
in [46]) give that

Df |∂Ω = ( 1
2I + K)f, on ∂Ω, (3.4)

and

u := Sf, π := Qf =⇒
[
2(Defu)ν − πν

]∣∣∣
∂Ω

= (− 1
2I + K∗)f, on ∂Ω.

(3.5)
In particular, (2.24) gives

K∗ν ∈ Rν. (3.6)

For further reference, let us also note that whenever Lu+dπ = 0 and δu = 0
in Ω, the following Green formula holds:

u = D(u|∂Ω)− S
([

2(Def u)ν − πν
]∣∣∣

∂Ω

)
, in Ω. (3.7)

This is seen by paring u with (2.17) and then successively integrating by
parts.

Proposition 3.1. With the above notation,

∂Ω ∈ C∞ =⇒ K ∈ OPS−1

cl (Λ1TM |∂Ω , Λ1TM |∂Ω). (3.8)
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Proof. That K is a zero-order pseudodifferential operator is standard. The
subtler fact that this operator is actually smoothing of order one is going
to be a consequence of the special structure of the main singularity of the
integral kernel in (3.2), which we now proceed to analyze.

Recall the symbol of Φ from (2.18). Working in local coordinates and
(occasionally) identifying one-differential forms with vector fields (via the
metric tensor), one can regard Γ (x, y) as a matrix with entries given (modulo
a purely dimensional constant which we suppress) by

Γrs(x, y) =
1

n− 2
e0(x− y, y)−(n−2)/2 grs(x)

+e0(x− y, y)−n/2(xθ − yθ)(xη − yη)grθ(x)gsη(x) (3.9)
+{less singular terms}.

This formula holds for dim M = n ≥ 3, the case n = 2 will be treated
separately in the next section. Here, as usual, the summation convention is
used, and we set

e0(z, y) := gjk(y)zjzk. (3.10)
Similarly, given the formula for the symbol of Ψ from (2.18), Θ(x, y) can be
thought of as the vector with components

Θs(x, y) = 2e0(x−y, y)−n/2(xτ −yτ )gsτ (x)+{less singular terms}. (3.11)

Our aim is to identify the top singularity in

νj(x)gjk(x)
(
∂xk

Γ`s(x, y) + ∂x`
Γks(x, y)

)
− ν`(x)Θs(x, y). (3.12)

Now, from (3.9), we obtain after some algebra

νj(x)gjk(x)∂xk
Γ`s(x, y) = −e0(x− y, y)−n/2νj(x)(xj − yj)gs`(x)

−n
2 e0(x− y, y)−(n+2)/2νj(x)(xj − yj)(xθ − yθ)(xη − yη)g`θ(x)gsη(x)

+e0(x− y, y)−n/2ν`(x)(xη − yη)gsη(x) (3.13)

+e0(x− y, y)−n/2νs(x)(xθ − yθ)g`θ(x)
+{less singular terms},

and

νj(x)gjk(x)∂x`
Γks(x, y) = −e0(x− y, y)−n/2νs(x)(xτ − yτ )g`τ (x)

−n

2
e0(x− y, y)−(n+2)/2νj(x)(xj − yj)(xθ − yθ)(xη − yη)g`θ(x)gsη(x)

+e0(x− y, y)−n/2ν`(x)(xη − yη)gsη(x) (3.14)

+e0(x− y, y)−n/2νj(x)(xj − yj)gs`(x)
+{less singular terms}.
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Also,

−ν`(x)Θs(x, y) = −2 e0(x− y, y)−n/2ν`(x)(xτ − yτ )gsτ (x) (3.15)
+{less singular terms}.

Note that the first term in the right side of (3.15) cancels the third term in
the right side of (3.13) along with the third term in the right side of (3.14).
Also, the fourth term in the right side of (3.13) cancels the first term in
the right side of (3.14). Finally, the first term in the right side of (3.13)
cancels the fourth term in the right side of (3.14). Thus, on account of these
cancellations, the main singularity in (3.12) is given by

−n e0(x−y, y)−(n+2)/2νj(x)(xj−yj)(xθ−yθ)(xη−yη)g`θ(x)gsη(x). (3.16)

Let us now denote by νe = (νe
j )j the Euclidean normal to ∂Ω. In par-

ticular, ν, the unit conormal to ∂Ω with respect to the metric gjk is related
to νe by

νj(x) =
(
g`k(x)νe

` (x)νe
k (x)

)−1/2
νe

j (x), 1 ≤ j ≤ n. (3.17)

Due to the presence of the factor 〈νe(x), x − y〉 (Euclidean inner product)
in (3.16), the desired conclusion, i.e. (3.8), follows much as in the case of
the harmonic double layer potential. See also [59, Proposition 11.2, Vol. II,
p. 36].

Next, let ∆0 stand for the Laplace-Beltrami operator on M and de-
note by G0 the inverse of −∆0 : {u ∈ L2

1(M); 〈u, 1〉 = 0} → {u ∈
L2
−1(M); 〈u, 1〉 = 0}. If we now introduce

Υ := −δGL(ΦL− I)dG0 ∈ OPS0
cl(R,R), (3.18)

then, so we claim,

ΨL = Υδ. (3.19)

To justify the claim, first note that

ΨL = −δG(LΦ− I)L = −δGL(ΦL− I). (3.20)

Also, as in (3.10) of [46], LΦ− I = Pd(LΦ− I) thus, by adjunction,

ΦL− I = (ΦL− I)Pd = (ΦL− I)dδG = (ΦL− I)dG0δ. (3.21)

Returning with this in (3.20), we finally get (3.19), on account of (3.18).
If now denote by Ξ(x, y) the Schwartz kernel of Υ t (i.e. the transposed

of (3.18)) then, at the level of Schwartz kernels, (3.19) translates into
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LxΘt(y, x) = dxΞ(x, y). (3.22)

Let us also recall from (2.17) that

LxΓ (x, y) = −dxΘ(x, y) + Diracy(x). (3.23)

By adjunction, this further gives

LyΓ (x, y) = −dyΘt(y, x) + Diracy(x). (3.24)

We are now ready to compute LDf . Specifically, if we introduce

Pf(x) :=
∫

∂Ω

〈−2
[
Defy(Θ(x, ·))ν]

(y)−Ξ(x, y)ν(y) , f(y)
〉

dσy, x ∈ Ω,

(3.25)
then from (2.17) and (3.22) we have

LxDf(x) :=
∫

∂Ω

〈−2
[
Defy(LxΓ (x, ·))ν]

(y) + LxΘt(y, x)ν(y), f(y)
〉

dσy

= −dx

[∫

∂Ω

〈−2
[
Defy(Θ(x, ·))ν]

(y)−Ξ(x, y)ν(y) , f(y)
〉

dσy

]

= −dxPf(x). (3.26)

Going further, we claim that

δxΘt(y, x) = −Diracy(x). (3.27)

To see this, note that Φd = L̃−1P⊥d d = 0 so that, further, Ψd = −δG(LΦ−
I)d = δdG0 = −I, modulo constants. Re-writing this last identity at the
level of Schwartz kernels yields (3.27). The bottom line is that for every
f : ∂Ω → Λ1TM |∂Ω ,

u := Df, π := Pf =⇒ Lu + dπ = 0, δu = 0 in Ω. (3.28)

Proposition 3.2. Let Ω be a Lipschitz domain and assume that {τj}j is a
frame for the tangent bundle T∂Ω ⊂ TM . Then there exist singular integral
operators Rj ,R0, 1 ≤ j ≤ n−1, of Calderón-Zygmund type with the property
that

∇Df = Rj(∇τj f) +R0f, (3.29)

for each f ∈ Lp
1(∂Ω,Λ1TM).
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An explanation is in order here. The class of Calderón-Zygmund kernels
referred to above consists of Schwartz kernels of certain pseudodifferential
operators. More specifically, if p(x, ξ), q(ξ, x) ∈ S−1

cl have principal symbols
that are odd in ξ, then we take the Schwartz kernels of p(x,D) ∈ OPS−1

cl
and q(D, x) ∈ ØPS−1

cl to be in that class. We may also want to include
weakly singular kernels, in order to accommodate residual terms. See also
[42] for a discussion.

Proof. In local coordinates, the Radon-Nikodym derivative ρ := dσ/dσe,
of the area element on ∂Ω inherited from the Riemannian metric with re-
spect to that inherited from the standard Euclidean metric, is given by
the formula ρ(x) =

√
g(x)(gjk(x)νe

j (x)νe
k (x))1/2. If we now recall that

νe = (νe
j )j denotes the Euclidean normal to ∂Ω, it follows that νj(x) =√

g(x)ρ(x)−1νe
j (x).

Assume next that, in local coordinates, the first-order differential oper-
ator Def is given by

(Defu)α = aαβ
j ∂ju

β + bαβuβ , (3.30)

where the summation convention is used. In particular, working in local
coordinates and with orthonormal frames we have

Lu = 2 Def∗Def u = 2
(
aµβ

j aµγ
k ∂xj ∂xk

uβ
)γ

+ {lower order terms} (3.31)

and, via a straightforward calculation,

(Def u)ν = σ(Def∗; ν)Def u =
(
aµβ

j aµγ
k νk∂xj u

β
)γ

+ {lower order terms}.
(3.32)

Identifying one-differential forms with vector fields (via the metric tensor),
one can regard Γ (x, y) as a matrix with entries Γαβ(x, y). Similarly, Θ(x, y)
is identified with (Θα(x, y))α. For an arbitrary, fixed f ∈ Lp

1(∂Ω, Λ1TM) it
follows that the α-component of Df is given by

−
∫

∂Ω

2 aµβ
j (y)aµγ

k (y)νe
k (y)

[
∂yj Γαβ(x, y)

]
fγ(y)

√
g(y) dσe(y)

+
∫

∂Ω

Θα(y, x)νe
γ (y)fγ(y)

√
g(y) dσe(y) + {lower order terms}

=: I + II + {lower order terms}. (3.33)

Before we proceed with the main arguments, we make an important
observation to the effect that, for any 1 < p < ∞ and j ∈ {1, ..., n},

∇x

(
∂yj Γ (x, y) + ∂xj Γ (x, y)

)
and ∇y

(
∂yj Γ (x, y) + ∂xj Γ (x, y)

)

are Calderón-Zygmund kernels. (3.34)
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Indeed, take for instance the first expression in (3.34). With [·, ·] standing
for the usual commutator bracket, this is the Schwartz kernel of ∇x

[
Φ, ∂xj

]
.

Now, if
{
p1, p2

}
:= ∂ξj

p1∂xj
p2 − ∂xj

p1∂ξj
p2 denotes the Poisson bracket,

then the principal symbol of
[
Φ, ∂xj

] ∈ OPS−2

cl is (cf., e.g., [59], Vol. II,
pp. 13)

i
{
ξj , σ(Φ;x, ξ)

}
= i∂xj

σ(Φ;x, ξ). (3.35)

Since ∂xj σ(Φ; x, ξ) ∈ S−2

cl is even (cf. (2.18)), the claim (3.34) follows. Sim-
ilarly, since ∂xj

σ(Ψ ; x, ξ) ∈ S−1

cl is odd (cf. (2.18)),

∂xj
Θ(x, y) + ∂yj

Θ(x, y) is a Calderón-Zygmund kernel. (3.36)

Turning now to the analysis of ∇Df , we need to consider the effect of
applying ∂xs , 1 ≤ s ≤ n to I and II in (3.33). First, when ∂xs hits the
lower order terms, the highest singularity comes from terms of the form
∂xsΓαβ(x, y). By (3.9), these kernels are of Calderón-Zygmund type.

Second, there is the case when ∂xs
hits I or II in (3.33). The main

singularities in ∂xsI are contained in terms of the form ∂xs∂yj Γαβ(x, y). In
the sequel, we find it convenient to replace these by −∂ys∂yj Γαβ(x, y). By
(3.34), this can be arranged modulo Calderón-Zygmund kernels which, once
again, suits our purposes. Next, for each fixed s, we write

aµβ
j (y)aµγ

k (y)νe
k (y)∂ys∂yj Γαβ(x, y)fγ(y)

√
g(y)

= aµβ
j (y)aµγ

k (y)
{[

νe
k (y)∂ys − νe

s (y)∂yk

]
∂yj Γαβ(x, y)

}
fγ(y)

√
g(y)

+aµβ
j (y)aµγ

k (y)νe
s (y)∂yk

∂yj Γαβ(x, y)fγ(y)
√

g(y) (3.37)
=: III + IV.

Observe that III is a linear span of tangential derivatives. Hence, when
III is integrated against

∫
∂Ω

dσe, this tangential derivative can be passed
on to the other factors. The resulting terms obviously have the right form.

There remains IV . In order to treat this term, we shall use the PDE
satisfied by Γ and Θ. The incisive observation is that

IV =
(
LyΓ (x, y)

)
αγ

νe
s (y)fγ(y)

√
g(y) + {residual terms}

=
(−dyΘt(y, x)

)
αγ

νe
s (y)fγ(y)

√
g(y) + {residual terms} (3.38)

= ∂yγ Θα(y, x)νe
s (y)fγ(y)

√
g(y) + {residual terms}.

The source of main singularities in the residual terms are of the type
∇yΓ (x, y), hence acceptable. Also, in the last (non-residual) term in (3.38),
we can replace νe

s (y)∂yγ with νe
γ (y)∂ys at the expense of picking up a tan-

gential derivative. When integrating this expression on ∂Ω, this tangential
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derivative is ultimately passed on to f (via an integration by parts), and the
integral operator arising in this fashion is of Calderón-Zygmund type. Fi-
nally, we may replace ∂ys

Θα(x, y) by −∂xs
Θα(x, y) at the expense of picking

up further Calderón-Zygmund kernels (cf. (3.36)), and this cancels precisely
the main singularity in ∂xs

II (recall that II has been introduced in (3.33)).
This takes care of IV (as well as of II) and concludes the proof of the
proposition.

The identity (3.29) is instrumental in establishing mapping properties
for the double layer potential on Sobolev-Besov spaces.

Proposition 3.3. Assume that Ω ⊂ M is a Lipschitz domain. Then for
each 1 < p < ∞, 0 < s < 1, the operator

D : Bp,p
s (∂Ω,Λ1TM) −→ Lp

s+1/p(Ω, Λ1TM) ∩Bp,p
s+1/p(Ω, Λ1TM) (3.39)

is well-defined and bounded.

Proof. For each 0 < s < 1, we claim that the estimates

‖dist (·, ∂Ω)−s|∇Df | ‖L1(Ω) + ‖Df‖L1(Ω) ≤ C‖f‖B1,1
s (∂Ω,TM) (3.40)

and

‖dist (·, ∂Ω)1−s|∇Df | ‖L∞(Ω) + ‖Df‖L∞(Ω) ≤ C‖f‖B∞,∞
s (∂Ω,TM), (3.41)

hold uniformly for f ∈ B1,1
s (∂Ω, TM) and f ∈ B∞,∞

s (∂Ω, TM), respec-
tively. Indeed, with Proposition 3.2 at hand, these are proved much as in
the case of Cauchy type operators treated in §3 of [41].

Note that (3.40), (3.41) and Stein’s interpolation theorem for analytic
families of operators give that for 1 ≤ p ≤ ∞, 0 < s < 1,

‖dist (·, ∂Ω)1−s−1/p|∇Df | ‖Lp(Ω) + ‖Df‖Lp(Ω) ≤ C‖f‖Bp,p
s (∂Ω,TM), (3.42)

uniformly in f ∈ Bp,p
s (∂Ω, TM). Now, this already leads to the desired

conclusion when s + 1/p ≤ 1, thanks to real-variable characterizations of
the Sobolev-Besov spaces in [34]. In the case when s + 1/p > 1, we first
invoke standard interior estimates to obtain from (3.42) that

‖dist (·, ∂Ω)2−s−1/p|∇2Df | ‖Lp(Ω) + ‖∇Df‖Lp(Ω) ≤ C‖f‖Bp,p
s (∂Ω,TM),

(3.43)
and then proceed as before.

Next, we consider similar issues for the operator P, introduced in (3.25).
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Proposition 3.4. Let Ω be a Lipschitz domain. Then, for each 1 < p < ∞,
0 < s < 1, the operator

P : Bp,p
s (∂Ω, Λ1TM) −→ Lp

s+1/p−1(Ω, Λ1TM) ∩Bp,p
s+1/p−1(Ω,Λ1TM)

(3.44)
is well-defined and bounded.

Proof. For starters, we note that (3.43) and (3.26) give

‖dist (·, ∂Ω)2−s−1/p|∇Pf | ‖Lp(Ω) ≤ C(Ω, p, s)‖f‖Bp,p
s (∂Ω,TM), (3.45)

which, much as in the proof of Proposition 3.3, establishes the claim made
about (3.44) when s + 1/p > 1.

As for the remaining set of indices s, p, we proceed as follows. First we
note that the top singularity in the (vector-valued) integral kernel of P is

Cn

(
gjk(y)νj(y)∂ys

∂yk

(
e0(x− y, y)

)−(n−2)/2
)

s
. (3.46)

This can be justified via a direct calculation based on the explicit definition
of P. Alternatively, one may use (3.16), the identity LD = −dP, along
with Weitzenbock’s formula (2.2), to the effect that locally, L = gjk∂j∂k +
{lower order terms}.

Next, observe that νj(y)∂ys − νs(y)∂yj is a tangential derivative, and
that

gjk(y)∂xj ∂xk

(
e0(x− y, y)

)−(n−2)/2

= 0. (3.47)

Based on these remarks and (3.46), we may produce in this context an
identity which is similar in spirit to (3.29). Specifically, there exists a family
of operators Qj whose integral kernels are Schwartz kernels of operators in
OPS−1

cl , or ØPS−1

cl (and which have odd principal symbols), such that

Pf = Qj(∇τj f) + {lower order terms}, (3.48)

for each function f ∈ Lp
1(∂Ω,Λ1TM) (where, as in (3.29), {τj}j is a fixed

frame for T∂Ω). From this and (3.50) in Proposition 3.3 of [46], it follows
that the operator (3.44) is well-defined and bounded whenever 0 < s <
1/p < 1.

With this at hand, and granted what we have already established in the
first part of the proof, the claim about (3.44) for the full range of indices
1 < p < ∞, 0 < s < 1, follows via (complex) interpolation.

Next we discuss the following.
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Proposition 3.5. Let Ω be a Lipschitz subdomain of M . For each 1 < p <
∞ and 0 < s < 1 the assumption that ∂Ω has a small Lipschitz constant
(depending on s, p) implies that

± 1
2I + K are Fredholm with index zero on (3.49)

Lp
s(∂Ω, Λ1TM) and on Bp,p

s (∂Ω, Λ1TM).

In particular, this is the case for C1 domains.

Proof. When ∂Ω is only Lipschitz, then

K is bounded on Lp(∂Ω, Λ1TM) and on Lp
1(∂Ω,Λ1TM). (3.50)

with operator norms bounded by constants which depend exclusively on p
and the Lipschitz character of Ω. This follows from (3.2), (3.9), (3.11) and
the general discussion contained in §§1-2 of [40].

Let us first deal with the case ∂Ω ∈ C1, when a stronger conclusion
holds, namely that

K is compact on Lp(∂Ω, Λ1TM) and on Lp
1(∂Ω, Λ1TM) (3.51)

for each 1 < p < ∞, 0 < s < 1. This clearly implies (3.49). For starters,
the fact that K is compact when acting on Lp(∂Ω, Λ1TM) follows from the
structure of (3.16). See [33], whose main results extend to variable coefficient
kernels, much as in §1 of [42].

Next, let Ωj ↗ Ω be a nested sequence of smooth domains, suitably
approximating the C1 domain Ω. Among other things, we assume that the
Lipschitz constants of Ωj are bounded, and that there exist homeomor-
phisms Λj : ∂Ωj → ∂Ω which are bi-Lipschitz, with constants bounded
uniformly in j. Denote by Kj the operator constructed similarly to (3.2)
in connection with ∂Ωj and which is further identified, via the change of
variables mappings Λj , with an operator acting on ∂Ω. Then, with L(X,Y )
standing for the (normed) space of all linear bounded operators from X into
Y and with L(X) abbreviating L(X,X), we have

sup ‖Kj‖L(Lp
1(∂Ω,TM)) < +∞, (3.52)

and

Kj −→ K strongly in Lp(∂Ω, Λ1TM). (3.53)

See [33] and [10] for details in similar circumstances. For each 1 < p < ∞,
0 < s < 1, standard interpolation inequalities also give

max
{‖K −Kj‖L(Lp

s(∂Ω,TM)) , ‖K −Kj‖L(Bp,p
s (∂Ω,TM))

}
(3.54)

≤ ‖K −Kj‖1−s
L(Lp(∂Ω,TM))‖K −Kj‖s

L(Lp
1(∂Ω,TM)).
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Since, by Proposition 3.1, each Kj is smoothing, hence compact on any
Sobolev space, it follows from (3.52)-(3.53) that (3.51) holds.

The case when ∂Ω only has a small Lipschitz constant is treated as
follows. First, for each 1 < p < ∞, 0 < s < 1, interpolation inequalities give

max
{‖K‖L(Lp

s(∂Ω,TM)) , ‖K‖L(Bp,p
s (∂Ω,TM))

}
(3.55)

≤ ‖K‖1−s
L(Lp(∂Ω,TM))‖K‖s

L(Lp
1(∂Ω,TM)).

Next, work in local coordinates (in which ∂Ω is a portion of the graph of
ϕ : Rn−1 → R) and recall from the proof of Proposition 3.1 that the main
singularity in (3.12) is given by (3.16). In concert with Theorems 1.3, 1.10
and (1.11) in [33] (results which extend to variable coefficient kernels, much
as in §1 of [42]), this shows that

max
{‖K‖L(Lp

s(Σ,TM)) , ‖K‖L(Bp,p
s (Σ,TM))

} ≤ C(s, p, ‖∇ϕ‖BMO), (3.56)

for each relatively compact subset Σ of the hypersurface {(x′, ϕ(x′)); x′ ∈
Rn−1}, and where C(s, p, ‖∇ϕ‖BMO) → 0 as ‖∇ϕ‖BMO → 0.

In particular, given λ ∈ R \ 0, it follows that λI + K : Lp
s(Σ, TM) →

Lp
s(Σ,TM) and λI + K : Bp,p

s (Σ, TM) → Bp,p
s (Σ, TM) are invertible (via

Neumann series) if ‖∇ϕ‖BMO is small enough. With this at hand, a variant
of the the localization technique from §10 in [40] yields that, given λ ∈ R\0,
the operator λI + K is bounded from below, modulo compact operators,
both on Lp

s(∂Ω, TM) and on Bp,p
s (∂Ω, TM), granted that ∂Ω has a small

Lipschitz constant (relative to 1 < p < ∞, 0 < s < 1, and λ). In particular,
by the homotopic invariance of the index, we may conclude that ± 1

2I + K
are Fredholm with index zero both on Lp

s(∂Ω, TM) and on Bp,p
s (∂Ω, TM),

for 1 < p < ∞, 0 < s < 1, provided that ∂Ω has a small enough Lipschitz
constant. This justifies (3.49) and finishes the proof of the proposition.

4. The lower dimensional case

In this section we continue to deal with the same issues as above but
in dimensions 2 and 3. In this particular context, the subtle interplay be-
tween the dimension of the ambient space and the exponents (integrability
and smoothness) used to describe the spaces from which boundary data
are selected allows for the sharpest form of our results. Most importantly,
all our theorems in this section are proved on arbitrary Lipschitz domains
(in particular, no smallness assumption on the Lipschitz constant – as in
Proposition 3.5 – is made). The case n = 2, considered in detail below, is
also special due to the fact that the main singularity displayed by the kernel
Γ has logarithmic nature.

Our main results in this section deal with the invertibility of the single
layer operator (2.21) on Besov spaces in Lipschitz domains of dimension
≤ 3. More specifically, we have:
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Theorem 4.1. Assume that dimM = 2 and let Ω ⊂ M be a fixed, con-
nected Lipschitz domain. Also, recall the critical Dirichlet exponent pΩ ∈
[1, 2) from (1.5). Then the operator

S : Bp,p
−s (∂Ω, Λ1TM)/Rν −→ Bp,p

1−s(∂Ω,Λ1TM)/Rν (4.1)

is an isomorphism for all pairs of indices (s, 1/p) ∈ (0, 1)× (0, 1) satisfying
one of the following three conditions:

(I) : 1− 1
pΩ

≤ 1
p ≤ 1

pΩ
,

(II) : 1
pΩ

≤ 1
p < s + 1

pΩ
, (4.2)

(III) : s− 1
pΩ

< 1
p < 1− 1

pΩ
.

A key ingredient in the proof of the above result is an adaptation of
the Hölder estimate established in [52] to the two dimensional, variable
coefficient setting. Specifically, we shall prove the following.

Proposition 4.2. Retain the same hypotheses as in the above theorem.
Then for each 0 < α < 1

pΩ
there exists a finite constant C = C(∂Ω, α) > 0

such that

sup
x∈Ω

[
dist(x, ∂Ω)1−α|∇u(x)|

]
≤ C‖u‖Cα(∂Ω,Λ1TM), (4.3)

uniformly for all null-solutions (u, π) of (1.2).

In proving Proposition 4.2, our approach closely parallels that in [52],
where the case n = 3 has been treated. The main differences are: (i) the
involvement of the L2 theory from [46], in the variable coefficient case, (ii)
overcoming certain technical difficulties inherent to the case n = 2 (e.g., in
this case, the fundamental solution exhibits a different behavior at infinity
and certain Sobolev embeddings cease to hold, and (iii) keeping a more
careful track of the range of α’s for which (4.3) is valid (as far as this range
is concerned, the two-dimensional case turns out to be different than the
three-dimensional one). Here we would like acknowledge once and for all the
strong influence that [9] and [52] have played on our main results in this
section.

Turning to details, we first note that, in the case n = 2, the analogues
of (3.9) and (3.11) are

Γrs(x, y) =
1
4π

{
−grs(x) log

[
e0(x− y, y)1/2

]

+e0(x− y, y)−1/2(xθ − yθ)(xη − yη)grθ(x)gsη(x)
}

(4.4)

+{less singular terms},
and
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Θs(x, y) =
1
2π

e0(x− y, y)−1(xτ − yτ )gsτ (x) (4.5)

+{less singular terms},

respectively.
Fix a Lipschitz domain Ω ⊂ M . For x ∈ Ω, denote by x∗ the ‘reflection’

of x across ∂Ω; i.e. a point x∗ ∈ M\Ω̄ such that dist(x∗, ∂Ω) ≈ dist(x, ∂Ω).
In particular,

dist(x∗, y) ≈ dist(x, y), uniformly for y ∈ ∂Ω. (4.6)

In the sequel, we shall find it convenient to work with a perturbed version
of (4.4), i.e.

Γ̃ (x, y) := Γ (x, y)− Γ (x∗, y), x, y ∈ Ω. (4.7)

A different normalization has been considered in Appendix A of [6]. The idea
is that Γ̃ (x, y) exhibits better decay properties than Γ (x, y); this is made
precise in the lemma below. Hereafter, Br(x) will denote the (geodesic) ball
of radius r > 0 centered at x ∈ M .

Lemma 4.3. There exists a constant C = C(∂Ω) > 0 such that the follow-
ing hold. For any point x0 ∈ ∂Ω and any r > 0,

|Γ̃ (x, y)| ≤ C, uniformly for (4.8)
y ∈ Ω ∩ ∂B100r(x0) and x ∈ Ω ∩B2r(x0),

and

|Γ̃ (x, y)| ≤ C
r

r + |x0 − y| , uniformly for (4.9)

x ∈ Ω ∩ ∂Br(x0), dist(x, ∂Ω) ≥ r/2, y ∈ ∂Ω.

Furthermore,

|∇I Γ̃ (x, y)|+ |∇II Γ̃ (x, y)| ≤ C
1

|x− y| , uniformly for x ∈ Ω, y ∈ ∂Ω,

(4.10)
where ∇I , ∇II denote the gradients with respect to the first and second
variable, respectively.
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Proof. The first inequality follows from

|Γ̃ (x, y)| ≤ |x− x∗| sup
ξ∈[x,x∗]

1
|ξ − y| ≤ Cr

1
r

= C. (4.11)

As for the second, let x̂ ∈ ∂Ω be such that dist(x, ∂Ω) = |x − x̂| and
assume that y ∈ ∂Ω lies to the right of x̂. Choose a system of coordinates
with x̂ at its origin and such that the segment [x, x̂] is vertical. Let ζ :=
γ(t) = (r cos t, r sin t), π

2 ≤ t ≤ 3π
2 , a path joining x and x∗. Then

Γ̃ (x, y) = −
∫ 3π

2

π
2

d

dt
[Γ (γ(t), y)] dt = −

∫ 3π
2

π
2

〈(∇IΓ )(ζ, y), γ̇(t)〉 dt, (4.12)

so that

|Γ̃ (x, y)| ≤ C

∫ 3π
2

π
2

r

|ζ − y| dt. (4.13)

Now |ζ−y| ≥ C|x0−y| and |ζ−y| ≥ Cr. In particular, |ζ−y| ≥ C(r+|x0−y|),
uniformly in t ∈ [π

2 , 3π
2 ]. Returning with this in (4.13) yields (4.9).

Finally, (4.10) follows from (4.4) and (4.6).

Consider next the Green function

G(x, y) := Γ̃ (x, y)− wx(y), x, y ∈ Ω, (4.14)

where

Lwx + dqx = 0 in Ω,

N (wx) ∈ L2(∂Ω),
δwx = 0 in Ω, (4.15)
wx |∂Ω= Γ̃ (x, ·) |∂Ω on ∂Ω.

Here, N stands for the nontangential maximal operator, i.e.

Nw(x) := sup {|w(y)|; y ∈ γ(x)}, x ∈ ∂Ω, (4.16)

where γ(x) ⊆ Ω is a suitable nontangential approach region; see [40]. Also,
·|∂Ω denotes the nontangential boundary trace operator. That is,

w
∣∣
∂Ω

(x) := lim
y∈γ(x)

w(y), x ∈ ∂Ω. (4.17)

Finally, set

πx(y) := Θ(x, y)− qx(y), x ∈ Ω. (4.18)

Generally speaking, for a pair (u, π) satisfying Lu + dp = 0 and δu = 0
(near the boundary of Ω) we define the conormal derivative
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∂u

∂ν
:= 2Def(u)ν − πν, on ∂Ω. (4.19)

In particular, these considerations apply to the pair (G(x, ·), πx).
As in [9], [52], the strategy for proving Proposition 4.2 relies on the

following key lemma.

Lemma 4.4. Fix z ∈ Ω and 0 ≤ α < 1
pΩ

. Then there exists C > 0 such
that

∫

∂Ω

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣ |y − x0|α dσy ≤ C|x− x0|α, (4.20)

uniformly for x0 ∈ ∂Ω and x ∈ Ω such that |x− x0| ≤ 2 dist (x, ∂Ω).

Preparatory to the proof of this result, we first establish two preliminary
estimates in Lemmas 4.5 and 4.6 below.

Lemma 4.5. Assume x0 ∈ ∂Ω, x ∈ Ω, r := |x−x0| and dist(x, ∂Ω) ≥ r/2.
Then

∫

∂Ω\B100r(x0)

|N (G(x, ·))|p dσ ≤ C r (4.21)

for each pΩ < p < ∞.

Proof. Set D := Ω\B̄100r(x0) so that ∂Ω\B100r(x0) ⊆ ∂D. Consequently,
∫

∂Ω\B100r(x0)

|N (G(x, ·))|p dσ ≤
∫

∂D

|N (G(x, ·))|p dσ. (4.22)

Since the estimate (1.3) holds for p > pΩ in D and G(x, ·) |∂Ω≡ 0, we
may write

∫

∂D

|N (G(x, ·))|p dσ ≤ C

∫

∂D

|G(x, ·)|p dσ = C

∫

Ω∩∂B100r(x0)

|G(x, ·)|p dσ

≤ C

∫

Ω∩∂B100r(x0)

|Γ̃ (x, ·)|p dσ + C

∫

Ω∩∂B100r(x0)

|wx|p dσ

=: I + II. (4.23)

Note that the integrand in I is ≤ C on the domain of integration, by
Lemma 4.3. Thus,

|I| ≤ Cr (4.24)

which is of the right order. Next,
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∫

Ω∩∂B100r(x0)

|wx|p dσ ≤ C

∫

B200r(x0)∩∂Ω

|N (wx)|p dσ (4.25)

≤ C

∫

∂Ω

|N (wx)|p dσ ≤ C

∫

∂Ω

|wx|pdσ

= C

∫

∂Ω

|Γ̃ (x, ·)|p dσ ≤ C

∫

R

(
r

r + |y|
)p

dy

= Cr,

where the last inequality utilizes Lemma 4.3.

Next, for τ, R > 0 let

Dτ,R(x0) :=
{

y ∈ Ω;
R

τ
< |y − x0| < τR

}
. (4.26)

Lemma 4.6. Retain the previous notation and definitions. Then, for each
p > pΩ, there holds

1
R2

∫

D2,R(x0)

|G(x, ·)|2 dVol ≤ Cp

( r

R

) 2
p

. (4.27)

Proof. If 1
p + 1

p′ = 1 we have

∫

D1,R(x0)

|G(x, ·)|2 dVol (4.28)

≤
(∫

D1,R(x0)

|G(x, ·)|p dVol

) 1
p

·
(∫

D1,R(x0)

|G(x, ·)|p′ dVol

) 1
p′

=: I · II.

Also, by Lemma 4.5, if R ≥ 100r, then

|I| ≤ C

(
R

∫

∂Ω\B100r(x0)

|N (G(x, ·))|p dσ

) 1
p

≤ CR
1
p · r 1

p = CR
2
p

( r

R

) 1
p

.

(4.29)
Now, in general,

‖u‖Lp′ (R2) ≤ Cp‖u‖
2
p′
L2(R2) · ‖∇u‖1−

2
p′

L2(R2), ∀p′ ∈ (2,∞), (4.30)

so that
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II ≤ C

(∫

D1,R(x0)

|G(x, ·)|2 dVol

) 1
p′

·
(∫

D1,R(x0)

|∇G(x, ·)|2 dVol

) 1
2− 1

p′

.

(4.31)
By the boundary Caccioppoli’s inequality for the Stokes system (cf. [27,
Theorem 2.2, p. 203] and [52]), the last factor above is

≤ C

(
1

R2

∫

D1,R(x0)

|G(x, ·)|2 dVol

) 1
2− 1

p′

. (4.32)

Consequently,

∫

D1,R(x0)

|G(x, ·)|2 dVol ≤ CR
−1+ 2

p′ ·
( r

R

) 1
p ·R 2

p · (4.33)

(∫

D1,R(x0)

|G(x, ·)|2 dVol

) 1
p′

·
(∫

D2,R(x0)

|G(x, ·)|2 dVol

) 1
2− 1

p′

.

Thus, all in all,

∫

D1,R(x0)

|G(x, ·)|2 dVol (4.34)

≤ CR
p
(
−1+ 2

p′
)
·R2 · r

R
·
(∫

D2,R(x0)

|G(x, ·)|2 dVol

)p
(

1
2− 1

p′
)

.

If we now introduce

Φ(R) :=
1

R2

∫

D1,R(x0)

|G(x, ·)|2 dVol, (4.35)

then the above becomes

Φ(R) ≤ C0 · r

R
· Φ(2r)1−

p
2 . (4.36)

Note that, also by Lemma 4.5,

Φ(R) ≤ C0
r

R
. (4.37)

Thus, inductively,

Φ(R) ≤ Ck

( r

R

)αk

, k = 0, 1, 2, ..., (4.38)

where
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Ck+1 = Ck · [C0 · 2−αk ]2−p and αk+1 = αk

(
1− p

2

)
+ 1 (4.39)

for k = 0, 1, 2, .... It follows that αk → α∗ as k →∞, with α∗ = α∗
(
1− p

2

)
+

1, i.e. α∗ = 2
p . As a consequence, (4.27) follows by choosing k sufficiently

large.

We are now in a position to complete the

Proof of Lemma 4.4. For starters, fix z ∈ Ω, x0 ∈ ∂Ω, x ∈ Ω and set
r := |x − x0|. Also, for R, τ > 0, recall the domain Dτ,R(x0) introduced in
(4.26) and fix some xR ∈ D2,R(x0) such that dist(xR, ∂Ω) ≈ R. Then, for
each τ ∈ [1, 2] fixed,

∫

R≤|y−x0|≤2R

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣
2

dσy

≤
∫

∂Dτ,R(x0)

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣
2

dσy (4.40)

≤ C

∫

∂Dτ,R(x0)

|∇tanG(x, ·)|2 dσ + CR |πx(z)− πx(xR)|2.

Here, the last inequality follows from [46] and rescaling.
We continue by estimating the pressure term above. To this end, let

γ : [0, 1] → M be a C1 curve so that γ(0) = xR, γ(1) = z and |γ̇(t)| ≈ 1,
dist(γ(t), ∂Ω) ≈ |γ(t)− x0| ≥ CR. Matters can also be arranged so that

∫ 1

0

dt

dist(γ(t), ∂Ω)2
≤ C R−1. (4.41)

Then, by the Fundamental Theorem of Calculus,

|πx(xR)− πx(z)| ≤
∫ 1

0

|dπx(γ(t))| dt ≤
∫ 1

0

|(LΓ (x, ·))(γ(t))| dt. (4.42)

Note that

[∆∆− 2 δd Ric ] G(x, ·) = 0 in Ω \ {x}, (4.43)

and that the fourth-order differential operator in the left side is elliptic.
Thus, if y ∈ Ω is such that ρ(y) := dist(y, ∂Ω) ≈ |y− x0|, standard interior
estimates give, in concert with Lemma 4.5, that
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|(LΓ (x, ·))(y)| ≤ Cρ(y)−4

∫

Bρ(y)/100(y)

|G(x, ·)| dVol

≤ Cρ(y)−3

∫

ρ(y)≤|x0−·|≤2ρ(y)

|N (G(x, ·))| dσ (4.44)

≤ Cρ(y)−2
(
ρ(y)−1

∫

ρ(y)≤|x0−·|≤2ρ(y)

|N (G(x, ·))|p dσ
)1/p

≤ Cρ(y)−2ρ(y)−1/p
(∫

∂Ω\B100r(x0)

|N (G(x, ·))|p dσ
)1/p

≤ Cρ(y)−2
( r

R

)1/p

,

at least for R ≥ 100r. Invoking (4.41) this ultimately leads to

|πx(xR)− πx(z)| ≤ CR−1− 1
p · r 1

p , (4.45)

for each p > pΩ . Integrating over τ ∈ [
1, 3

2

]
in (4.40) then yields

∫

R≤|y−x0|≤2R

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣ dσy

≤ CR
1
2

(∫

R≤|y−x0|≤2R

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣
2

dσy

) 1
2

(4.46)

≤ R
1
2


 1

R

∫

D 3
2 ,R

(x0)

|∇G(x, ·)|2 dVol + R |πx(xp)− πx(x0)|2



1
2

≤ C

(
1

R2

∫

D2,R(x0)

|G(x, ·)|2 dVol + C
( r

R

) 2
p

) 1
2

≤ C
( r

R

) 1
p

,

where Caccioppoli’s inequality has been used in the next-to-the-last esti-
mate.

Shortly, we shall also need the fact that
∫

∂Ω∩B100r(x0)

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣ dσy ≤ C. (4.47)

To justify this, given that G(x, y) = Γ̃ (x, y) and πx = Θ(x, ·)− qx, matters
are readily reduced -by invoking (4.5), (4.10)- to checking that

∫

∂Ω∩B100r(x0)

∣∣∣∣
∂wx

∂ν
− qx(z)ν

∣∣∣∣ dσy ≤ C. (4.48)
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However, by Cauchy-Schwarz’s inequality and (4.10),

∫

∂Ω∩B100r(x0)

∣∣∣∣
∂wx

∂ν
− qx(z)ν

∣∣∣∣ dσy

≤ Cr

(∫

∂Ω∩B100r(x0)

∣∣∣∣
∂wx

∂ν
− qx(z)ν

∣∣∣∣
2

dσ

)1/2

(4.49)

≤ Cr‖wx‖L2
1(∂Ω,Λ1TM) + Cr‖qx‖L2(∂Ω)

≤ Cr‖Γ̃ (x, ·)‖L2
1(∂Ω,Λ1TM) ≤ C,

as desired.
Having disposed of (4.46) and (4.47), the proof of (4.20) is simple. Fix

x ∈ Ω and x0 ∈ ∂Ω such that r := |x− x0| ≈ dist (x, ∂Ω). Next, recall that
0 ≤ α < 1

pΩ
and choose α < 1

p < 1
pΩ

. Also, set ε := −α + 1
p > 0, so that

1
p = α + ε. Then, by (4.46),

∫

R≤|y−x0|≤2R

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣ |y − x0|α dσy (4.50)

≤ C
( r

R

) 1
p

Rα = Crα ·
( r

R

)ε

,

uniformly for R ≥ 100r. If we new pick R = 2jr, with j = 10, 11, . . ., in
(4.50) and sum up the resulting estimates, we eventually get

∫

∂Ω\B100r(x0)

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣ |y − x0|α dσy ≤ Crα, (4.51)

for each 0 ≤ α < 1
pΩ

. Now, (4.20) follows from (4.47) and the above estimate.
2

We can now now focus attention on the

Proof of Proposition 4.2. Fix some z ∈ Ω and let x ∈ Ω be arbitrary.
Also, let x0 ∈ ∂Ω be such that |x−x0| = dist(x, ∂Ω). Note that there is no
loss of generality if we assume that u(x0) = 0. Thus, by Lemma 4.4,

|u(x)| =
∣∣∣∣
∫

∂Ω

(∂G(x, y)
∂νy

− πx(z)ν(y)
)
· u(y) dσy

∣∣∣∣ (4.52)

≤ C‖u‖Cα(∂Ω,Λ1TM)

∫

∂Ω

∣∣∣∣
∂G(x, y)

∂νy
− πx(z)ν(y)

∣∣∣∣ |x0 − y|α dσy

≤ C|x− x0|α‖u‖Cα(∂Ω,Λ1TM).

Consequently, if ρ := dist(x, ∂Ω) = |x − x0|, then by (4.52) and interior
estimates
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|∇u(x)| = Cρ−3

∫

Bρ/100(x))

|u(y)| dVoly ≤ Cρα−1‖u‖Cα(∂Ω,Λ1TM), (4.53)

as desired. 2

Before turning to the proof of Theorem 4.1, we need one more prelimi-
nary result.

Lemma 4.7. Fix z ∈ Ω and assume that u, π solve (1.2) and π(z) = 0.
Then

∥∥∥dist(·, ∂Ω)1−απ
∥∥∥

L∞(Ω)
≤ C(Ω, α)

∥∥∥dist(·, ∂Ω)1−α|∇u|
∥∥∥

L∞(Ω)
, (4.54)

for each α ∈ (0, 1).

Proof. The estimate we seek is local in character so it suffices to assume
that Ω is a starlike Lipschitz domain with respect to z = 0. Let M denote
the right hand-side in (4.54).

Going further, we claim that it is enough to show that
∥∥∥dist(·, ∂Ω)2−α|∇π|

∥∥∥
L∞(Ω)

≤ CM. (4.55)

Indeed, granted (4.55), we may then write

|π(x)| =
∣∣∣
∫ 1

0
d
dt [π(tx)] dt

∣∣∣ ≤ C
∫ 1

0
|(∇π)(tx)||x| dt (4.56)

≤ CM
∫ 1

0
dist(tx, ∂Ω)α−2|x| dt.

Note that dist(tx, ∂Ω) ∼= dist(x, ∂Ω) + |x|(1 − t), uniformly for t ∈ [0, 1],
and that

∫ 1

0

|x| dt

[dist(x, ∂Ω) + |x|(1− t)]2−α
dt ≤ C

∫ ∞

dist(x,∂Ω)

ds

s2−α

≤ C dist(x, ∂Ω)α−1, (4.57)

after making the change of variables s := dist(x, ∂Ω)+|x|(1−t). This proves
the claim.

Now, the fact that u solves (4.43) plus standard interior estimates allows
us to write

|∇2u(x)| ≤ C dist(x, ∂Ω)−1 sup
2|x−y|<dist(x,∂Ω)

|∇u(y)| (4.58)

≤ C dist(x, ∂Ω)−2+αM.
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Hence, given that |∇π| = |Lu| in Ω, we may write

dist(x, ∂Ω)2−α|∇π(x)| ≤ C dist(x, ∂Ω)2−α|∇2u(x)| ≤ CM, (4.59)

uniformly for x ∈ Ω. The proof of the lemma is therefore completed.

We are finally ready to present the

Proof of the Theorem 4.1. Fix α ∈ (0, 1). For each ϕ ∈ B1,1
1−α(∂Ω, Λ1TM),

we let Φ ∈ Liploc(Ω,Λ1TM) ∩W 1,1(Ω,Λ1TM) be such that

TrΦ = ϕ on ∂Ω, and dist(·, ∂Ω)α−1|∇Φ| ∈ L1(Ω). (4.60)

Such an extension operator can be constructed following [55], as in [18].
Next, recall the definition of the conormal derivative, i.e. ∂u

∂ν := 2Def(u)ν −
πν for any null-solution (u, π) of the Stokes system. Mimicking Green’s
formula, we introduce the pairing

〈
∂u

∂ν
, ϕ

〉
:=

∫

Ω

〈Def(u) , Def(Φ)〉 dVol +
∫

Ω

〈π , δΦ〉 dVol, (4.61)

where (u, π) is a null-solution of the Stokes system and ϕ is a one-form on
∂Ω. Note that, by (4.60) and Lemma 4.7,

∣∣∣∣
〈

∂u

∂ν
, ϕ

〉∣∣∣∣ ≤ C‖dist(·, ∂Ω)1−α|∇u|‖L∞(Ω)‖dist(·, ∂Ω)α−1|∇Φ|‖L1(Ω)

+C‖dist(·, ∂Ω)1−απ‖L∞(Ω)‖dist(·, ∂Ω)α−1|∇Φ|‖L1(Ω)

≤ C‖dist(·, ∂Ω)1−α|∇u|‖L∞(Ω)‖ϕ‖B1,1
1−α(∂Ω,Λ1TM), (4.62)

assuming that the pressure function is normalized, i.e.

π(z) = 0 for some fixed z ∈ Ω. (4.63)

Consequently, for each α ∈ (0, 1), we have that

∂u

∂ν
∈ (B1,1

1−α(∂Ω, Λ1TM))∗ =: B∞,∞
α−1 (∂Ω, Λ1TM) (4.64)

and the estimate
∥∥∥∥

∂u

∂ν

∥∥∥∥
B∞,∞

α−1 (∂Ω,Λ1TM)

≤ C‖dist(·, ∂Ω)1−α|∇u|‖L∞(Ω) (4.65)

holds, whenever the normalization (4.63) is enforced. In particular, thanks
to Proposition 4.2 we may further conclude that, for each 0 < α < 1/pΩ ,

∥∥∥∥
∂u

∂ν

∥∥∥∥
B∞,∞

α−1 (∂Ω,Λ1TM)

≤ C‖u‖Cα(∂Ω,Λ1TM), (4.66)
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granted that (4.63) holds.
Let us point out that similar considerations apply to the complement

domain. In fact, when applied to u := Sf with f ∈ B∞,∞
α−1 (∂Ω, Λ1TM)

considered both in Ω+ := Ω and in Ω− := M \ Ω̄, this yields, via the
jump-relation (3.5),

‖f‖B∞,∞
α−1 (∂Ω,Λ1TM)

≤
∥∥∥∥∥

∂u

∂ν

∣∣∣∣
∂Ω+

∥∥∥∥∥
B∞,∞

α−1 (∂Ω,Λ1TM)

+

∥∥∥∥∥
∂u

∂ν

∣∣∣∣
∂Ω−

∥∥∥∥∥
B∞,∞

α−1 (∂Ω,Λ1TM)

≤ C‖Sf‖B∞,∞
α (∂Ω,Λ1TM) + ‖Comp(f)‖, (4.67)

for each 0 < α < 1/pΩ . Here Comp stands for a generic compact opera-
tor (which arises when trying to accommodate the normalization condition
(4.63) for π := Qf). In particular, the operator

S : B∞,∞
α−1 (∂Ω, Λ1TM)/Rν −→ B∞,∞

α (∂Ω, Λ1TM)/Rν (4.68)

has closed range if 0 < α < 1/pΩ . Since the latter operator is the dual of

S : B1,1
−α(∂Ω,Λ1TM)/Rν −→ B1,1

1−α(∂Ω, Λ1TM)/Rν (4.69)

it follows from Banach’s closed range theorem that the above operator also
has closed range. In fact, (4.69) is onto as well, since it has been proved in
[42] that

S : Lp
s(∂Ω, Λ1TM)/Rν −→ Lp

s(∂Ω, Λ1TM)/Rν (4.70)

is an isomorphism whenever pΩ < p < (1−1/pΩ)−1, 0 ≤ s ≤ 1, and L2(∂Ω),
L2

1(∂Ω) imbed densely into B1,1
−α(∂Ω) and B1,1

1−α(∂Ω), respectively.
At this stage, there remains to show that the operator (4.69) is also

one-to-one. To this end, fix f ∈ B1,1
−α(∂Ω, Λ1TM) such that Sf = c ν on

∂Ω for some c ∈ R. The goal is to show that f = c ν for a possibly different
constant c ∈ R. We shall see that this indeed the case when f is regarded
as an element in (B1,1

−α(∂Ω, Λ1TM))∗∗ = (Cα(∂Ω, Λ1TM))∗.
Let us set u := Sf , π := Qf in Ω± and notice that, by (iii) in Theo-

rem 2.1,
∥∥∥dist(·, ∂Ω)α−1|∇u|

∥∥∥
L1(Ω±)

≤ C‖f‖(Cα(∂Ω,Λ1TM))∗ . (4.71)

For an arbitrary, fixed, ψ ∈ Cα(∂Ω,Λ1TM) with
∫

∂Ω
〈ψ, ν〉 dσ = 0, let

(w, q) solve the Dirichlet problem for the Stokes system with boundary
datum ψ. This can be done by originally regarding ψ in L2 (in which case
[46] guarantees well-posedness); then Proposition 4.2 and Lemma 4.7 ensure
that



34 MARTIN DINDOŠ AND MARIUS MITREA

∥∥∥dist(·, ∂Ω)1−α|∇w|
∥∥∥

L∞(Ω)
≤ C‖ψ‖Cα(∂Ω,Λ1TM). (4.72)

The point is that we can now define ∂u/∂ν as an element in (Cα(∂Ω,Λ1TM))∗

by setting
〈

∂u

∂ν
, ψ

〉
:=

∫

Ω

〈Def(u) , Def(w)〉 dVol. (4.73)

Note that, once again, this is a natural extension of Green’s formula and
that

∣∣∣∣
〈

∂u

∂ν
, ψ

〉∣∣∣∣ ≤ C‖dist(·, ∂Ω)α−1|∇u|‖L1(Ω)‖dist(·, ∂Ω)1−α|∇w|‖L∞(Ω)

≤ C‖f‖(Cα(∂Ω,Λ1TM))∗‖ψ‖Cα(∂Ω,Λ1TM). (4.74)

Thus, ∂u/∂ν ∈ (Cα(∂Ω, Λ1TM))∗ and ‖∂u/∂ν‖(Cα(∂Ω,Λ1TM))∗ ≤
C‖f‖(Cα(∂Ω,Λ1TM))∗ , as claimed. In turn, this can be used to justify the
identity

〈
∂Sf

∂ν
, ψ

〉
=

〈
Sf,

∂w

∂ν

〉
= 0. (4.75)

Consequently,
[

∂Sf
∂ν

]
= 0 (as an equivalence class) in (Cα(∂Ω, Λ1TM))∗/Rν,

when considered both from Ω+ and Ω− and, ultimately,

[f ] =

[
∂Sf

∂ν

∣∣∣∣
∂Ω−

]
−

[
∂Sf

∂ν

∣∣∣∣
∂Ω+

]
= 0 in (Cα(∂Ω, Λ1TM))∗/Rν, (4.76)

as desired. This proves that the operator (4.69) is indeed injective.
At this stage, we may conclude that the operator (4.69) is an isomor-

phism for any 0 < α < 1/pΩ . Thus, by duality, we see that (4.68) is also
an isomorphism, whenever 0 < α < 1/pΩ . The full range of indices, as de-
scribed in (I) − (III) in the statement of Theorem 4.1, is then obtained
from the invertibility results proved for the operators (4.68), (4.69) and
(4.70), via the complex interpolation method. This finishes the proof of the
theorem. 2

We conclude this section by recording the three-dimensional version of
Theorem 4.1.

Theorem 4.8. Assume that dimM = 3 and let Ω ⊂ M be a fixed, con-
nected Lipschitz domain. Also, recall the critical Dirichlet exponent pΩ ∈
[1, 2) from (1.5). Then

S : Bp,p
−s (∂Ω, Λ1TM)/Rν −→ Bp,p

1−s(∂Ω, Λ1TM)/Rν (4.77)
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is an isomorphism for all pairs of indices (s, 1/p) ∈ (0, 1)× (0, 1) satisfying
one of the following conditions:

(I ′) : 1− 1
pΩ

≤ 1
p ≤ 1

pΩ
,

(II ′) : 1
pΩ

≤ 1
p < s

2 + 1
pΩ

, (4.78)

(III ′) : s
2 − 1

pΩ
+ 1

2 < 1
p < 1− 1

pΩ
.

Its proof is akin to that of Theorem 4.1 and, therefore, is omitted.

5. The Poisson problem for the Stokes system

In this section we treat the Poisson problem for the Stokes system in C1

and Lipschitz domains, for data in Sobolev-Besov spaces. Our first impor-
tant result in this regard is as follows.

Theorem 5.1. Let Ω be a connected, C1 subdomain of M . Then for each
1 < p < ∞, 0 < s < 1, the boundary value problem

u ∈ Lp

s+ 1
p

(Ω, Λ1TM),

π ∈ Lp

s+ 1
p−1

(Ω), 〈π, 1〉 = 0,

Lu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM), (5.1)

δu = h ∈ Lp

s+ 1
p−1

(Ω),

Tru = g ∈ Bp,p
s (∂Ω, Λ1TM),

has a unique solution, granted that the data satisfy the (necessary) compat-
ibility condition

〈h, 1〉 =
∫

∂Ω

〈ν, g〉 dσ. (5.2)

Furthermore, a natural accompanying estimate holds.
Finally, similar results are valid in the case when ∂Ω has a small enough

Lipschitz constant (relative to s, p).

Note that −1 + 1/p < s + 1/p− 1 < 1/p so Lp

s+ 1
p−1

(Ω) = Lp

s+ 1
p−1,0

(Ω).

In particular, the pairings 〈π, 1〉 and 〈h, 1〉 are meaningful.
Before proving Theorem 5.1, we state several preparatory lemmas. Our

first auxiliary result is inspired by Green’s formula and duality; compare
with (4.19) and (4.61).
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Lemma 5.2. Let Ω be a Lipschitz domain and assume that 1 < p < ∞,
0 < s < 1. Then for any (u, π) solution of the homogeneous version of
(5.1), we can define 2(Def u)ν − πν as an element in Bp′,p′

s−1 (∂Ω, Λ1TM) =
(Bp,p

1−s(∂Ω,Λ1TM))∗, if 1/p + 1/p′ = 1, via

〈2(Defu)ν − πν , Trw〉 := 2
∫

Ω

〈Def u , Def w〉 dVol +
∫

Ω

〈π, δw〉 dVol, (5.3)

for any w ∈ Lp′

1−s+1/p′(Ω, Λ1TM).

Our second lemma is a slight extension of a result in [4]:

Lemma 5.3. For any Lipschitz domain Ω and each 1 < p < ∞, 0 < s < 1,
the operator

δ : Lp
s+1/p,0(Ω, Λ1TM) −→ {f ∈ Lp

s+1/p−1(Ω); 〈f, 1〉 = 0} (5.4)

is onto. In fact, (5.4) has a (linear, bounded) right inverse, denoted in the
sequel by δ−1.

Next, record a version of Theorem 2.9 in [35].

Lemma 5.4. Let {Tz}z∈U be an interpolating family of operators between
two interpolation scales of Banach spaces {Xz}z∈U , {Yz}z∈U . Suppose that
U , the space of parameters, is connected and that Tz : Xz → Yz is a Fred-
holm operator for each z ∈ U . Then its index is independent of z ∈ U .

Finally, we record a simple but useful observation.

Lemma 5.5. Let X, Y be two Banach spaces such that the inclusion Y ↪→ X
is continuous with dense range. Also, assume that T ∈ L(X) ∩ L(Y ) is
Fredholm of index zero both when acting on X and when acting on Y . Then
Ker (T ; X) = Ker (T ; Y ).

We are now in a position to present the

Proof (Proof of Theorem 5.1.). First, for each 1 < p < ∞, 0 < s < 1,
consider the mapping

A : Lp
s+1/p(Ω,Λ1TM)⊕ Lp

s+1/p−1(Ω) −→ (5.5)

Lp
s+1/p−2(Ω, Λ1TM)⊕ Lp

s+1/p−1(Ω) ⊕ Bp,p
s (∂Ω, Λ1TM),

given by

A(u, π) := (Lu + dπ, δu, Tru). (5.6)
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Clearly, this is well-defined, linear and bounded between two complex in-
terpolation scales of Banach spaces. Our intention is to show that this map
is Fredholm with index zero.

To this end, let us first prove thatA has finite dimensional kernel. Indeed,
if (u, π) solves the homogeneous version of (5.1), Lemma 5.2 gives that

ξ := −
[
2(Defu)ν − πν

]∣∣∣
∂Ω

∈ Bp′,p′
s−1 (∂Ω,Λ1TM), where 1/p + 1/p′ = 1.

(5.7)
Then, in the current context, Green’s formula (3.7) reduces to

u = Sξ in Ω. (5.8)

In particular, dπ = −Lu = −LSξ = dQξ which forces π = Qξ + c, for some
constant c. Using this and (5.7) in (3.5) then gives ( 1

2I +K∗)ξ ∈ Rν. Hence
the mapping

Null-space of A 3 (u, π) 7→ [ξ] ∈ Ker
(

1
2I + K∗; Bp′,p′

s−1 (∂Ω, TM)/Rν
)

(5.9)
is well-defined and, by (5.8), one-to-one. In particular,

dim [Null-space of A] ≤ dimKer
(

1
2I + K∗; Bp′,p′

s−1 (∂Ω, TM)/Rν
)
. (5.10)

Now, since the operator

1
2I + K∗ : Bp′,p′

s−1 (∂Ω, TM)/Rν −→ Bp′,p′
s−1 (∂Ω, TM)/Rν (5.11)

is well-defined and Fredholm with index zero (by Proposition 3.5), it follows
that the dimension of its kernel is finite. In light of (5.11), this proves the
claim that (5.5)-(5.6) has finite dimensional kernel.

Next, for a generic function k(x, y), we introduce the Newtonian type
potential operator

Πkf(x) :=
∫

Ω

〈k(x, y), f(y)〉 dVoly, x ∈ Ω. (5.12)

In particular, LΠΓ + dΠΘ = I and δΠΓ = 0. Taking

u := ΠΓ f1 + δ−1f2 +Df3 ∈ Lp
s+1/p(Ω, Λ1TM), (5.13)

π := ΠΘf1 + Pf3 ∈ Lp
s+1/p−1(Ω),

for f1 ∈ Lp
s+1/p−2(Ω, Λ1TM), f2 ∈ Lp

s+1/p−1(Ω) with 〈f2, 1〉 = 0 and f3 ∈
Bp,p

s (∂Ω,Λ1TM), arbitrary, gives that the range of A contains that of
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(f1, f2, f3) 7→
(
f1 + Lδ−1f2 , f2 , Tr [ΠΓ f1] + ( 1

2I + K)f3

)
. (5.14)

However, this latter operator is Fredholm since, in matrix form, it reads



I Lδ−1 0
0 I 0

Tr ΠΓ 0 1
2I + K


 (5.15)

(here Proposition 3.5 is invoked). This observation allows us to further con-
clude that A has closed range, of finite codimension. Thus, the mapping
(5.5)-(5.6) is Fredholm. From [46] we know that its index is zero for p = 2,
s = 1/2, hence its index is zero for any 1 < p < ∞, 0 < s < 1, by
Lemma 5.4. Also, by Lemma 5.5, the null-space of A for p ∈ (1,∞),
s ∈ (0, 1), is identical to that corresponding to p = 2, s = 1/2. That is,
(u, π) ∈ KerA if and only if u = 0 and π is a constant. As this space is
one-dimensional, we infer that A has a range of codimension one. On the
other hand, by the Divergence Theorem, the range of A is always contained
in the subspace

X := {(f, h, g) ∈ Lp
s+1/p−2(Ω, TM)⊕ Lp

s+1/p−1(Ω,TM)⊕Bp,p
s (∂Ω, TM);

〈h, 1〉 =
∫

∂Ω
〈ν, g〉 dσ}, (5.16)

codimension one in Lp
s+1/p−2(Ω, TM)⊕Lp

s+1/p−1(Ω)⊕Bp,p
s (∂Ω, TM). Con-

sequently, this forces RangeA = X. This finishes the proof of the theorem.

Theorem 5.6. The conclusion in Theorem 5.1 remains valid when ∂Ω is
only Lipschitz, provided we make the extra assumption that p ∈ (2−ε, 2+ε),
for some ε = ε(∂Ω) > 0. If dim M = 2 then the conclusion holds for all
pairs (s, 1/p) ∈ (0, 1)×(0, 1) satisfying one of the conditions (4.2). A similar
conclusion holds if dim M = 3 and (s, 1/p) ∈ (0, 1)× (0, 1) satisfies one of
the three conditions listed in (4.78).

Proof. We shall use the same approach as in the proof of Theorem 5.1, so
we will only stress the main novel points. Much as before, the crucial step
is proving that A (defined in (5.5)-(5.6)) is Fredholm with index zero. To
see that A has a finite dimensional kernel we rely again on (5.8). Taking
the trace of both sides yields 0 = Tru = Sξ so that ξ ∈ Rν, by (2.27) in
Theorem 2.1. Returning with this back in (5.8) gives that u = 0, thanks
to (2.24). Hence π is a constant which proves that dim(KerA) ≤ 1. The
desired conclusion in dimensions 2 and 3 follows from Theorems 4.1 and
4.8, respectively.

There remains to prove that A has closed range. This is done as in the
second half of the proof of Theorem 5.1, the most notable exception being
the replacement of (5.13) by
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u := ΠΓ f1 + δ−1f2 + Sf3 ∈ Lp
s+1/p(Ω, Λ1TM), (5.17)

π := ΠΘf1 +Qf3 ∈ Lp
s+1/p−1(Ω),

where f1, f2 are as before and, this time, f3 ∈ Bp,p
s−1(∂Ω, Λ1TM). In this

scenario, the role of (5.15) is played by the operator



I Lδ−1 0
0 I 0

Tr ΠΓ 0 S


 (5.18)

which, by (iv) in Theorem 2.1, is Fredholm. Again, in dimensions 2 and
3 the corresponding result follows from the theorems proved in Section 4.
This concludes the proof.

6. A perturbation of the Stokes system

In this section we discuss the Poisson problem for the linearization (1.1)
of the stationary Navier-Stokes system. This problem can be viewed as a
perturbation of the Stokes system (1.2). Our main result is the following.

Theorem 6.1. Let Ω be a connected, C1 subdomain of M , and assume that
ω ∈ Ln(Ω, TM) is divergence-free. Then for each 1 < p < ∞, 0 < s < 1,
the boundary value problem

u ∈ Lp

s+ 1
p

(Ω, Λ1TM),

π ∈ Lp

s+ 1
p−1

(Ω), 〈π, 1〉 = 0,

Lu +∇ωu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM), (6.1)

δu = h ∈ Lp

s+ 1
p−1

(Ω),

Tru = g ∈ Bp,p
s (∂Ω, Λ1TM),

has a unique solution, provided that the data satisfy the (necessary) compat-
ibility condition (5.2). In fact, the same results are valid in the case when
∂Ω has a small enough Lipschitz constant (relative to s, p).

Furthermore, similar conclusions hold when Ω is a Lipschitz domain
and dim M = 2, for all pairs (s, 1/p) ∈ (0, 1) × (0, 1) satisfying one of the
conditions (4.2). The same is true if dim M = 3 and (s, 1/p) ∈ (0, 1)×(0, 1)
satisfies one of the three conditions in (4.78). Finally, if dim M ≥ 4 then
the result holds provided that p ∈ (2−ε, 2+ε), where ε = ε(∂Ω) > 0 depends
only on the Lipschitz character of the domain.

Before presenting the proof of the main theorem we discuss a couple of
preliminary results. Recall that n := dim M ≥ 2.
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Lemma 6.2. Let Ω be a Lipschitz domain and assume that ω ∈ Lr(Ω, TM)
is a divergence-free field. Then the operator

∇ω : Lp
θ(Ω, TM) −→ Lp

θ−1−n/r(Ω,TM) (6.2)

is well-defined and bounded, in fact compact, for each r, p, θ such that

1 < p < ∞, 0 < θ < 1 +
n

r
, − 1

n
<

1
p
− θ

n
< 1− 1

r
. (6.3)

Proof. First, if ω = ωj∂j and u = uk∂k, then

(∇ωu)k = (ωj∂ju
k + Γ k

`ju
`ωj)k, (6.4)

where Γ k
`j are the Christoffel symbols associated with the metric. If the

divergence-free condition on ω is taken into account then the above becomes

(∇ωu)k = ∂j(ωjuk) + Γ k
`ju

`ωj − (∂j log g1/2)ωjuk. (6.5)

We first consider two distinguished cases, i.e.

1 < p < ∞, 0 < θ ≤ min {n/r, 1}, 0 <
1
p
− θ

n
< 1− 1

r
, (6.6)

and

1 < p < ∞, 1 < θ < 1 +
n

r
, − 1

n
<

1
p
− θ

n
< 1− 1

r
− 1

n
, (6.7)

respectively. When (6.6) holds, we use (6.5) in concert with the sequence of
embeddings

Lp
θ ↪→ Lq,

1
q

=
1
p
− θ

n
,

Lr · Lq ↪→ Lt,
1
t

=
1
r

+
1
q
, (6.8)

Lt
−1 ↪→ Lp

θ−1−n
r
,

in order to justify the estimate

‖∇ωu‖Lp
θ−1−n/r

(Ω,TM) ≤ C‖ω‖Lr(Ω,TM) · ‖u‖Lp
θ(Ω,TM). (6.9)

On the other hand, if (6.7) holds, then we utilize (6.4) together with

Lp
θ−1 ↪→ Lq,

1
q

=
1
p
− θ − 1

n
,

Lr · Lq ↪→ Lt,
1
t

=
1
r

+
1
q
, (6.10)

Lt ↪→ Lp
θ−1−n

r
,
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in order to conclude that (6.9) holds in this case as well. By interpolating
between the regions (6.6) and (6.7) it follows that (6.9) holds for any θ, p, r
as in (6.3).

This proves the fact that the operator in (6.2) is well-defined and bounded.
Finally, that (6.2) is in fact compact, follows readily from the estimate (6.9),
Rellich’s selection lemma and a standard approximation argument.

Next we prove some Korn type estimates.

Proposition 6.3. Let Ω be a Lipschitz domain and assume that 1 < p < ∞.
Then there exists a constant C = C(Ω, p) > 0 such that

‖u‖Lp
1(Ω,TM) ≤ C

{
‖Def u‖Lp(Ω,S2TM) + ‖u‖Lp(Ω,TM)

}
, (6.11)

uniformly for u ∈ Lp
1(Ω,TM). Furthermore,

‖u‖Lp
1(Ω,TM) ≈ ‖Def u‖Lp(Ω,S2TM), (6.12)

uniformly for u ∈ Lp
1,0(Ω,TM).

It is worth pointing out that our proof of the estimate (6.11) works under
the rather weak assumption that the metric tensor has Lipschitz coefficients.
The case when p = 2 and both ∂Ω and the metric are C∞, has been treated
in [59, Vol. I, Corollary 12.3, p. 400], via pseudodifferential techniques.

Proof. Working in local coordinates and assuming that u = uj∂j , the com-
ponents of the deformation tensor become (Defu)jk = εjk(u)+O(|u|), where
we set

εjk(u) := 1
2 (∂juk + ∂kuj), and u` := g`ju

j . (6.13)

A direct calculation shows that

∂i∂juk = ∂iεjk(u) + ∂jεik(u)− ∂kεij(u), ∀ i, j, k. (6.14)

In particular,

∑

j,k

‖∂juk‖Lp(Ω) ≤ C
∑

j,k

∑

i

‖∂i∂juk‖Lp
−1(Ω) + C

∑

j,k

‖∂juk‖Lp
−1(Ω)

≤ C
∑

i,j,k

‖∂iεjk(u)‖Lp
−1(Ω) + C

∑

k

‖uk‖Lp(Ω)

≤ C
∑

j,k

‖εjk(u)‖Lp(Ω) + C
∑

j,k

‖∂iεjk(u)‖Lp
−1(Ω)

+C‖u‖Lp(Ω,TM) (6.15)
≤ C‖Def u‖Lp(Ω,S2TM) + C‖u‖Lp(Ω,TM).

Now (6.11) readily follows from this.
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Next, (6.12) amounts to proving that the operator

Def : Lp
1,0(Ω, TM) → Lp(Ω,S2TM) (6.16)

is continuous and bounded from below. While continuity is clear from def-
initions, the latter claim can be further reduced (via the Open Mapping
Theorem) to showing that

(i) the operator (6.16) has closed range, and (6.17)
(ii) the operator (6.16) is one-to-one.

That (6.16) has closed range follows from (6.11), as this estimate entails
the boundedness of this operator from below, modulo compact operators.
As for the injectivity of (6.16), we note that if u ∈ Lp

1,0(Ω, TM) is such that
Def u = 0 in Ω, then Def ũ = 0 in M , where tilde denotes extension by zero
outside Ω. Consequently, due to the absence of global Killing fields on M
(cf. (2.11)), this forces ũ = 0 and, ultimately, u = 0 on Ω. This takes care
of (ii) in (6.17) and finishes the proof of the proposition.

We now establish some L2-a priori estimates which are needed for the
nonlinear problem.

Proposition 6.4. Let Ω be an arbitrary Lipschitz domain and assume that
ω ∈ Ln(Ω, TM) is divergence-free. Then

‖u‖2L2
1(Ω,Λ1TM) ≤ C

(
‖f‖2L2

−1(Ω,Λ1TM) + ‖π‖L2(Ω)‖h‖L2(Ω)

)
, (6.18)

uniformly for u ∈ L2
1,0(Ω,Λ1TM), π ∈ L2(Ω), satisfying

Lu +∇ωu + dπ = f, δu = h in Ω. (6.19)

The constant C appearing in (6.18) depends exclusively on Ω; in particular,
it is independent of the vector field ω.

Proof. Recall that, in general, (∇X)t = −∇X − (div X) for any X ∈
TM . Also, with p = 2, θ = 1 and r = n, Lemma 6.2 gives that ∇ωu ∈
L2
−1(Ω, TM) =

(
L2

1,0(Ω, TM)
)∗

. Thus, the pairings below are meaningful,
and integrating by parts yields

〈f, u〉 = 〈Lu, u〉+〈∇ωu, u〉+〈dπ, u〉 = 2 ‖Defu‖2L2(Ω,S2TM) +〈π, h〉. (6.20)

With this at hand, the desired conclusion follows from (6.12) in Proposi-
tion 6.3.
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Finally, we are now ready to tackle the

Proof of Theorem 6.1. Let us start by recalling the map (5.5)-(5.6) and
then introduce the perturbation

Aω := A+ (∇ω, 0, 0). (6.21)

From the proof of Theorem 5.1 we know that A is Fredholm with index
zero. Thus, on account of Lemma 6.2 (used here with θ := s + 1/p, and
r = n), the map (6.21) is also Fredholm with index zero (in the context
of (5.5)). Furthermore, from Lemma 5.5, its kernel is independent of p, s.
Consequently, by Proposition 6.4, the null-space of Aω is simply the one-
dimensional space {0}×R. With these at hand, we can now finish the proof
of the well-posedness of (6.1) much as we did in the non-perturbed case
(treated in Theorem 5.1).

When Ω is only Lipschitz and (s, 1/p) satisfy appropriate conditions, we
argue analogously, by relying on Theorem 5.6. 2

7. The stationary Navier-Stokes equations

Having dealt with the linearization of the stationary Navier-Stokes equa-
tions, we are now ready to discuss the Poisson problem in the nonlinear case.

Theorem 7.1. Let Ω be a connected, C1 subdomain of M and assume that
dimM = n ∈ {2, 3, 4}. Then for each pair of indices s, p satisfying

1 < p < ∞, 0 < s < 1, 1 ≤ s +
1
p
,

1
p
− s

n− 1
≤ n− 2

2(n− 1)
, (7.1)

the boundary value problem

u ∈ Lp

s+ 1
p ,0

(Ω, Λ1TM),

π ∈ Lp

s+ 1
p−1

(Ω),

Lu +∇uu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM), (7.2)

δu = 0 in Ω,

has at least one solution. Furthermore, there exits κ > 0 so that the solution
is unique whenever

‖f‖Lp

s+ 1
p
−2

(Ω,Λ1TM) ≤ κ. (7.3)

In fact, the same results are valid in the case when ∂Ω has a small
enough Lipschitz constant (relative to s, p).

Furthermore, similar conclusions hold when Ω is a Lipschitz domain
and dim M = 2 for all pairs (s, 1/p) ∈ (0, 1) × (0, 1) satisfying (7.1) and
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one of the conditions (4.2). The same is true if dim M = 3 and (s, 1/p) ∈
(0, 1)× (0, 1) satisfies (7.1) and one of the conditions in (4.78). Finally, if
dim M = 4 then the same result holds granted that, in addition to (7.1), we
also have p ∈ (2− ε, 2 + ε) for some ε = ε(∂Ω) > 0 depending only on the
Lipschitz character of the domain.

Proof. For some fixed, sufficiently large R (to be specified momentarily),
consider the closed, convex set

O := {u ∈ L2
1,0(Ω,Λ1TM); δu = 0 in Ω and ‖u‖L2

1,0(Ω,Λ1TM) ≤ R}. (7.4)

Also, for a fixed f ∈ L2
−1(Ω, Λ1TM), introduce the (nonlinear) operator

Tf : O → O as follows. For each u ∈ O, we let (v, π) be the unique solution
of the boundary value problem

v ∈ L2
1,0(Ω, Λ1TM),

π ∈ L2(Ω), 〈π, 1〉 = 0,

Lv +∇uv + dπ = f ∈ L2
−1(Ω, Λ1TM), (7.5)

δv = 0 in Ω,

and then set Tf (u) := v. Since

L2
1(Ω) ↪→ Ln(Ω) for n ≤ 4, (7.6)

Proposition 6.4 and Theorem 6.1 show that

Tf : O −→ O (7.7)

is well-defined if R = R(Ω, f) > 0 is sufficiently large. In fact, in terms of
the mapping A introduced in (5.5)-(5.6) with p = 2, s = 1/2, we have

Tf (u) = pr1
[(
A+ (∇u, 0, 0)

)−1

(f, 0, 0)
]
, ∀u ∈ O, (7.8)

where pr1(a, b) := a is the canonical projection onto the first factor of a
Cartesian product. It follows that the mapping (7.7) is continuous for n ≤ 4,
given that (7.6) holds and

Ln(Ω,TM) 3 u 7→ ∇u ∈ L
(
L2

1(Ω,TM), L2
−1(Ω, TM)

)
(7.9)

is well-defined, linear and bounded for n ≤ 4. Furthermore, since the embed-
ding (7.6) is compact for n = 2, 3 we see, on account of (7.9), that Tf is also
compact when n = 2, 3. Consequently, the standard version of Schauder’s
Fixed Point Theorem applies and yields some u ∈ O such that Tf (u) = u.
This proves the existence part in the theorem in the special case p = 2,
s = 1/2, n ≤ 3.
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Consider now the case when n ≤ 3 and s, p are as in (7.1), and observe
that Lp

s+1/p−2(Ω) ↪→ L2
−1(Ω). Thus, for any f ∈ Lp

s+1/p−2(Ω, Λ1TM) we
can produce, thanks to what we have proved so far, a one-form u and a
scalar function π such that

u ∈ L2
1,0(Ω,Λ1TM),

π ∈ L2(Ω), 〈π, 1〉 = 0,

Lu +∇uu + dπ = f ∈ Lp
s+1/p−2(Ω,Λ1TM), (7.10)

δu = 0 in Ω.

By virtue of (7.6) and Theorem 6.1, it follows a posteriori that the solution
u ∈ Lp

s+1/p(Ω, Λ1TM) and π ∈ Lp
s+1/p−1(Ω). Hence, (u, π) solves (7.2).

As for the case when n = 4, the problem with the approach above is the
lack of compactness of the map Tf in (7.7). Consequently, we shall to treat
this case separately. Our approach is based on the following version of the
Schauder-Tychonoff Theorem (see, e.g., [15, Thm. 3.6.1, p. 161]):

Theorem 7.2. Let E be a separated, locally convex topological vector space,
and let O be a nonempty, closed, convex subset of E. Also, assume that
T : O → O is a continuous map such that T (O) is relatively compact in E.
Then T has a fixed point.

For the applications we have in mind, E will be the separable Hilbert
space L2

1,0(Ω, Λ1TM) equipped with the weak topology, and keep O as in
(7.4). The subspace of all divergence free fields in L2

1,0(Ω, Λ1TM) is closed
in the strong norm, hence also weakly closed. Also, since any closed ball in
a reflexive Banach space is weakly compact, it follows that

O is a compact subset of E . (7.11)

Thus, by employing the weak topology on the space L2
1,0(Ω,Λ1TM), the

demand that Tf (O) is relatively compact is automatically taken care of.
Instead another issue arises in this setting. Specifically, we need to establish
the continuity of the map (7.7) in the weak topology.

For starters, we note that while the topology of E is not ‘globally’ metriz-
able, it is so at a ‘local’ level –that is, the topology induced by E on any
bounded subset of L2

1,0(Ω,Λ1TM) is metrizable (c.f. [59] Vol. I, p. 486). Con-
sequently, it suffices to check the continuity of Tf by working with sequences.
To this end, fix f ∈ L2

−1(Ω, Λ1TM), let uj ∈ O converge to u0 in E , and
assume that (vj , πj) solve (7.5) for u = uj . In particular, ‖vj‖L2

1(Ω,Λ1TM),
‖v0‖L2

1(Ω,Λ1TM) ≤ R. Then, if we set ṽj := vj − v0, π̃j := πj − π0, we have

Lṽj +∇u0 ṽj + dπ̃j = fj := ∇u0−uj vj in Ω,

δṽj = 0 in Ω, (7.12)
ṽj ∈ L2

1,0(Ω, Λ1TM),
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for each j. Our goal is to show that ṽj → 0 in E . As ṽj = pr1
[A−1(fj , 0, 0)

]
and A−1 is weakly continuous since it is linear, it is enough to show that
fj → 0 weakly in L2

−1(Ω,Λ1TM). Continuing our series of reductions and
observing that L4/3(Ω, Λ1TM) ↪→ L2

−1(Ω, Λ1TM), it suffices to prove that

fj → 0 weakly in L4/3(Ω, Λ1TM). (7.13)

With this objective in mind, observe first that the inclusion

ι : L2
1,0(Ω, Λ1TM) ↪→ Lp(Ω, Λ1TM) (7.14)

is well-defined and bounded for 1 < p ≤ 4, as well as compact for 1 < p < 4.
In particular,

uj → u0 in any Lp(Ω, Λ1TM) with p < 4. (7.15)

Going further,

‖fj‖Lq(Ω,Λ1TM) ≤ C‖uj − u0‖Lp(Ω,Λ1TM)‖vj‖L2
1,0(Ω,Λ1TM) (7.16)

≤ C‖uj − u0‖Lp(Ω,Λ1TM),

if 1/q = 1/p+1/2, and 2 < p ≤ 4, (which forces q ≤ 4/3). Hence, on account
of (7.15)-(7.16),

fj → 0 in any Lq(Ω, Λ1TM) with q < 4/3. (7.17)

However, ‖fj‖L4/3(Ω,Λ1TM) ≤ C as seen from (7.16) with p = 4, and since
L4/3(Ω,Λ1TM) is a reflexive space, (7.13) follows with the help of (7.17).
This finishes the proof of the continuity of Tf in (7.7) when n = 4. The
remaining steps in the existence part when n = 4 are then carried out much
as before.

Turning to uniqueness in the case when (7.3) holds, note that it suffices
to treat the case p = 2, s = 1/2, regardless of the smoothness of the domain
(C1 or just Lipschitz). To this end, let us assume that (uj , πj), j = 1, 2,
solve (7.2) for p = 2, s = 1/2, and set w := u1 − u2, π := π1 − π2. Then
Lw +∇u1w + dπ = −∇wu2, and w ∈ L2

1,0(Ω, TM), δw = 0. It follows then
from Proposition 6.4 and the estimates (6.9), (7.3) that

‖w‖L2
1(Ω,TM) ≤ C‖∇wu2‖L2

−1(Ω,TM) ≤ C‖w‖L2
1(Ω,TM)‖u1‖L2

1(Ω,TM)

≤ C‖w‖L2
1(Ω,TM)‖f‖L2

−1(Ω,TM) ≤ Cκ‖w‖L2
1(Ω,TM). (7.18)

Clearly, (7.18) forces w = 0 if κ > 0 is sufficiently small (so that Cκ < 1).
This concludes the proof of the theorem.

Next we discuss well-posedness for small data.
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Theorem 7.3. Let Ω be a connected, C1 subdomain of M , with dimM =
n ≥ 2. Let 1 < p < ∞, 0 < s < 1 such that s + 1

p ≥ 1
2 and

1
p
− s

n− 1
≤ min

{
1
2

,
1

n− 1

}
, (7.19)

(with strict inequality if n = 3 and s + 1
p ≥ 1).

Then there exist two constants κ, κ∗ > 0, depending only on Ω, s, p,
and which have the following significance. For each f , g, h satisfying the
compatibility condition (5.2) and with

‖f‖Lp

s+ 1
p
−2

(Ω,Λ1TM) + ‖h‖Lp

s+ 1
p
−1

(Ω) + ‖g‖Bp,p
s (∂Ω,Λ1TM) ≤ κ, (7.20)

the boundary value problem

u ∈ Lp

s+ 1
p

(Ω, Λ1TM),

π ∈ Lp

s+ 1
p−1

(Ω), 〈π, 1〉 = 0,

Lu +∇uu + dπ = f ∈ Lp

s+ 1
p−2

(Ω, Λ1TM), (7.21)

δu = h ∈ Lp

s+ 1
p−1

(Ω),

Tru = g ∈ Bp,p
s (∂Ω, Λ1TM),

has a unique solution for which

‖u‖Lp

s+ 1
p

(Ω,Λ1TM) + ‖π‖Lp

s+ 1
p
−1

(Ω,Λ1TM) ≤ κ∗. (7.22)

Also, this solution depends on the data in a C1 fashion.
In fact, the same results are valid in the case when ∂Ω has a small

enough Lipschitz constant (relative to s, p). Moreover, similar conclusions
hold when Ω is an arbitrary Lipschitz domain provided that, in addition to
the above assumptions, one of the conditions in (4.2) holds if n = 2, one of
conditions in (4.78) holds if n = 3, and p is sufficiently close to 2 if n ≥ 4.

The starting point is the following abstract perturbation result.

Lemma 7.4. Let A : X → Y be a linear isomorphism between two Banach
spaces and let B : X ⊕X → Y be a bounded, bilinear map. Then there exist
two small neighborhoods of the origin, U ⊆ X and V ⊆ Y , respectively, so
that the application

X 3 x 7→ Ax + B(x, x) ∈ Y (7.23)

is a C1-diffeomorphism of U onto V .
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Proof. By composing with A−1 we see that there is no loss of generality
in assuming that X = Y and A = I, the identity operator. In this setting,
consider the application

F : X −→ X, F(x) := x + B(x, x), x ∈ X, (7.24)

and observe that F(0) = 0, and F ∈ C1 with derivative

dF : X −→ L(X), dF(x)y = y + B(x, y) + B(y, x). (7.25)

In particular, dF(0) = I, so the desired conclusion now follows from the
Inverse Mapping Theorem.

We shall also need a bilinear estimate in Sobolev spaces.

Lemma 7.5. Assume that Ω is a Lipschitz domain and that s, p are as in
the statement of Theorem 7.3. Then

‖∇uv‖Lp
s+1/p−2(Ω,Λ1TM) ≤ C‖u‖Lp

s+1/p
(Ω,Λ1TM) · ‖v‖Lp

s+1/p
(Ω,Λ1TM), (7.26)

uniformly in u and v.

Proof. First we record a pointwise multiplication result for Sobolev spaces
in Lipschitz domains, to the effect that for 1 < p0, p1, p

∗ < ∞ and s0, s1, s
∗ ≥

0,

Lp0
s0

(Ω) · Lp1
s1

(Ω) ↪→ Lp∗
s∗ (Ω), (7.27)

continuously, whenever

s∗ ≤ min {s0, s1}, s0 + s1 > n(1/p0 + 1/p1 − 1), (7.28)
s∗ − n/p∗ < min

{
s0 − n/p0, s1 − n/p1, s0 + s1 − n/p0 − n/p1

}
.

In fact, equality can be allowed in the second line of (7.28) provided that
si 6= n/pi, i = 0, 1. Indeed, this is well known when Ω is replaced by Rn,
and this latter case readily implies the desired result.

We now observe that for 0 < s+1/p < 1, the estimate (7.26) reduces to
verifying that

Lp

s+ 1
p

(Ω) · Lp′

2−s− 1
p

(Ω) ↪→ Lp′

1−s− 1
p

(Ω), (7.29)

where 1/p + 1/p′ = 1. This, in turn, can be checked with the help of (7.27)-
(7.28) which work in this context, given our assumptions on s, p. Going
further, if 1 ≤ s + 1/p, then it suffices to ensure that

Lp

s+ 1
p

(Ω) · Lp

s+ 1
p−1

(Ω) · Lp′

2−s− 1
p

(Ω) ↪→ L1(Ω). (7.30)

Once again, we employ (7.27)-(7.28), which leads to the kind of restrictions
on the indices s, p described in the lemma.
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We are finally ready for the

Proof (Proof of Theorem 7.3.). The idea is to use Lemma 7.5 in which
we take A as in (5.6) and

B
(
(u1, π1), (u2, π2)

)
:= (∇u1u2, 0, 0). (7.31)

Then the desired conclusion follows from Theorem 5.1, Lemma 7.5 and
Lemma 7.3.

Remark. When h = 0 in (7.21), the assumptions on the indices s, p made
in Theorem 7.3 can be relaxed to

1 < p < ∞, 0 < s < 1,
1
p
− s

n− 1
≤ 1

n− 1
, (7.32)

if ∂Ω ∈ C1; when ∂Ω is merely Lipschitz, one further assumes the extra
hypotheses listed in the last part of the statement of Theorem 7.3.

The proof is virtually the same as before with the notable difference
that, this time, one invokes Lemma 6.2 instead of Lemma 7.5.
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