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§1. Introduction

Let Pg,, be the vector space of all polynomials of degree at most d in R™. Let K be a

convex body of volume 1 in R™ and let 1 < g < co. Since Pg,,, is finite dimensional, the
1

norms ( Jx |p|q) * are all equivalent to each other. Recently there has been considerable

interest in the behaviour of the constants in these equivalences as ¢ varies when we consider
arbitrary unit-volume convex bodies K. See for example the work of Brudnyi and Ganzburg
[BG], Gromov and Milman [GM], Bourgain [Bour|, Bobkov [Bobk] and Nazarov, Sodin and
Volberg [NSV].

In this paper, we wish to complete the analysis of the constants in these equivalences as
well as to extend these results to the vector-valued setting. For a (real or complex) Banach
space X with norm || - || and a polynomial p : R™ — X of degree at most d, we define
the functional p#(z) = ||p(z)||2. For a convex body K in R™ of volume 1, we consider

1
the usual L? norms of p# over K that is, |[p¥||, = (pr# qdm) (fK ||lp(z ||dd:v> !

When ¢ = 0, we set ||[p#||o = exp [} logp™ (z) dz and ||p¥ || is the usual L> norm of p#.
Let 0 < r < g < oco. Holder’s inequality gives a trivial inequality for the L9 norms
with (best possible) constant 1 and for the reverse inequality we have:

Theorem 1 Let p: R™ — X be a polynomial of degree at most d, let K be a convex
body in R™ of volume 1 and let 0 < r < q < co. Then there exists an absolute constant C
independent of p,d, K,n,q,r and X such that

1
[nB(n,q+1)]e "
||p#||q <C = ™|l
[nB(n,r + 1)
where B denotes the classical Beta function.
Recall that nB(n,q+1) = — fo u?d(1 — u)™; in the limiting cases ¢ = 0 and q = oo,

the quantity [nB(n,q+ 1 )]3 is to be understood as 1/n and 1 respectively. In particular
we note that the estimate in Theorem 1 is independent of the norm || - || from X.
By standard estimates for the Beta function we obtain:

Corollary Let p : R™ — X be a polynomial of degree at most d, let K be a convex
body in R™ of volume 1 and let 0 < r < q < co. Then there exists an absolute constant C
independent of p,d, K,n,q,r and X such that

(a) if n < r < q then
lp*llg < C llp* |l

(b) if r <n <gq then

# <C n #| .
I#l <C ot Il

(c) if r < q<mn then

max(q, 1)
#lg <C —= lIp* |,

lp max(r, 1)
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Up to the numerical constant C, the constant on the right hand side of Theorem 1 is
optimal if one seeks an inequality valid for arbitrary convex bodies K. One simply takes
pz) = 2¢ and K = {(z1,2') € R® : 0 < z; < 1, |2'| < 1— 21}. The scalar-valued
case ¢ = oo, < 1 (in which case the constant on the right hand side is essentially n)
is due to Brudnyi and Ganzburg [BG]. For dimensionless bounds, the scalar-valued cases
r=0,qg>0and r=d, ¢ > 2d are due to Bobkov [Bobk] (in these cases the dimensionless
bound on the right hand side is essentially ¢). One can then extrapolate these bounds
to get sharp dimension free Khinchine-Kahane type inequalities in the exponential class.
This refined earlier work of Bourgain [Bour| which in turn extended a result of Gromov
and Milman [GM] to the general degree d case from the linear case d = 1. Nazarov, Sodin
and Volberg [NSV] have also obtained Bobkov’s dimensionless bound in the case r = 0
and ¢ > 0 (by different methods), as well as other interesting results. Our Theorem 1
may be viewed as a completion of all these results, giving the precise behaviour in all the
parameters, d,n,q and 7.

The case » < 1 and general ¢ has a stronger formulation in terms of distributional
inequalities for vector-valued polynomials over convex bodies in R™ (which may be of
independent interest for certain problems in real and harmonic analysis). In fact, we have:

Theorem 2 Let p: R"™ — X be a polynomial of degree at most d, and let K be a
conver body in R™ of volume 1. Let 0 < q < co. Then there exists an absolute constant C
independent of p,d, K,n,q and X so that for any a > 0,

Ip*lly o '{w € K : p*(z) <a}| < Cn(nB(n,q+1)s.

In particular, we have:

Corollary Let p : R™ — X be a polynomial of degree at most d, let K be a convex
body in R™ of volume 1 and let 0 < q < oco. Then there exists an absolute constant C
independent of p,d, K,n,q and X so that for any o > 0,

(a) if n < q then

Ip#(lg o~ {z € K : p*(z) < a}| < Cn;
(b) if ¢ < n then

lp*llq @' {z € K : p#(z) < a}| < Cmax(g,1).

As before, up to the constant C, the inequalities are sharp (to see this we use the
same example as for Theorem 1). The scalar-valued case ¢ = oo is due to Brudnyi and
Ganzburg [BG]. Nazarov, Sodin and Volberg [NSV] have obtained Theorem 2 indepen-
dently by somewhat different methods. In §6, Remark 2 below, we shall show how one can
obtain the case r < 1 and general g in Theorem 1 from Theorem 2.
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In common with Bobkov’s work [Bobk] (and that of Nazarov, Sodin and Volberg
[NSV]) the main tool in this current work is the utilisation of a certain powerful extremal
result of Kannan, Lovéasz and Simonovits Which we now state. For a,b € R" and A > 1

define the measures p, 5 x by (@, lapr) = fo a(l —t) + bt)(A — )" Ldt.

Theorem ([KLS]). Suppose f1, fa, f3, f4 are continuous nonnegative integrable func-
tions on R™ and o, B > 0. Suppose that for every a,b € R™ and A > 1,

(/ fldlffa,b,)\)a(/ f2d,U'a,b,)\)ﬂ < </ deMa,b,A)a(/ f4d,u'a,b,>\)ﬂ

Then for every convex open set K in R™
([£)([#) <([5)([r)
K K K K

(Note that the reverse implication is straightforward.)

Finally, C' will denote a generic absolute constant whose precise value may change
from line to line.

Acknowledgement We would like to thank A. Giannopoulos and A. Volberg for bring-
ing these problems to our attention. We also thank F. Nazarov, M. Sodin and A. Volberg
for generously sharing their unpublished work [NSV] with us and for drawing our attention
to several references. Finally we thank the referee for several helpful comments.

§2. Reduction to weighted inequalities in dimension 1

We shall first prove the results in the scalar-valued setting and then show in §5 how one
can extend the arguments to the vector-valued setting. In the scalar-valued setting, by
the Kannan, Lovasz and Simonovits theorem of the introduction, Theorems 1 and 2 are
equivalent (after a limiting argument because x{zck : |p(z)|<a} 15 DOt a continuous function)
to Theorems 3 and 4 respectively:

Theorem 3 Let p : R — C be a polynomial of degree at most d, n € N, A > 1
and 0 < r < g < o0o. Then there exists an absolute constant C independent of the above

parameters such that
f p@)|4(A ="~ dty +
JA—=t)n—tdt
0

OO = s
(f ) < olnB(n.a+1)]
j‘ n 1dt N [nB(n’T_I- 1)]
0
Theorem 4 Let Letp : R — C be a polynomial of degree at mostd, n € N, A > 1 and
0 < g < 0. Then there exists an absolute constant C independent of the above parameters

Q=

SI=| Q=
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so that for any a > 0,

< Cn(nB(n,q+ 1))%

1
(fp )| (A t)"ldt>é a‘5{X{|p(t)|<a} (A —t)"tdt

JA=t)n—td¢ A —t)n—ldt
0

o, .
~

Although the forms of the inequalities in Theorems 3 and 4 make sense only for 0 < r <
g < 00, it is clear how to extend them when r = 0,¢q = 0 and/or r = 00,q¢ = oo. For
instance, when ¢ = 0, the conclusion of Theorem 4 takes the form

X{p(t)|<ay (X — )"t

Ct—

exp — < C.

d 1

JA—=t)n—tde

0

1 (j[log p(t)]()\—t)”ldt> -
fl (A—t)»1dt

To prove Theorems 3 and 4, we may of course assume that » > 0 and ¢ < oo and then
pass to the limit.

§3. Proof of Theorem 3

We begin with the proof of Theorem 3. We first need some preliminary lemmas. The
first is a well-known elementary Remez type inequality. It is also a simple consequence of
the case n = 1 of Theorem 1 or Theorem 3 and as such is already contained in [BG], for
instance. We include a simple proof for the convenience of the reader.

Lemma 1 There is an absolute constant C so that if p : R — C 1is a polynomial of
degree at most d, if 0 <r < q < oo, and if t > u, then

G [ < ot [T

(We have the usual interpretation in the limiting cases 7, ¢ = 0, 00.)

Proof of Lemma 1 We may assume that ¢ = co,7 = 0 and v = 1. So we want to

show
1

1 1
[lp[4]lpeeyy < Ctexp p /log Ip(s)|ds
0
for ¢t > 1. Clearly we may also assume that p(z) = [[(z — ¢;) is monic. Now
1

max |p(s)|4 = max H\S—Cj\d = max H|st—§j|% <t max H|3—Cj/t|%.

0<s<t 0< <t 0<s<1 0<s<1

Moreover ¢t > 1 and |(;| > 2 implies |s — (;/t| < 2|(;| < 4|s — (| for 0 < s < 1; so that we
are left with proving



The term on the left of this inequality is bounded by 3, while the term on the right is
1
bounded below by exp~y where v = | é|n<f [log|s — ¢|ds. The lemma is established with
<29
C=12e"". o

Lemma 2 There is an absolute constant C' so that if 0 < r < 2m,

( / * (1= tymymte i)t > of / "= tfmyn et a

We remark that the term on the right hand side of Lemma 2 is itself bounded below by
1
m[(m+ 1)B(m+ 1,7+ 1)]7.

Proof of Lemma 2

r r r

2 4 4
/ (1 —t/m)™ 1+t 2/ (1—t/m)m—1t’"+1dt2/ e 2"t >
0

T\r+2 _
: : 2t

e 2.
But
/ (1= t/m)™ 2+t < (r + 1) / (1= t/m)™tdt < (r+1) / e~trdt = (r + 1)!
0 0 0

Taking r’th roots establishes the lemma. o

Lemma 3 There is an absolute constant C' so that if p : R — C is a polynomial of
degree at most d, if 0 <r < q < oo and if 5 <t <=z, then

1 thq—i-l z 1 u .
/ g dqu[m+1)B(m+1r+1)]%[/0 (1= u/m) (/0 p )du]

Proof By Lemma 1, we have for t > u

r r u r
i / pl3)e <C tT+E/ p|a
0

Multiplying this inequality by (1 —u/m)™~! and integrating with respect to u from 0 to
t yields

[t ugmy=tad ([ < 0w o wmr= ([l

Lemma 2 and the remark following its statement now imply that

(/Ot pl)

s

C’rtT‘—i-g t . u ;
m'[(m+ 1)B(m+ 1,7+ 1)] J, (1 —u/m) (/0 p|d)du.

Q3

<
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Lemma 3 now follows upon taking £’th roots. o

Proof of Theorem 3 We may assume that 0 < r < ¢ < oco. For ease of notation

we write m for n — 1, and denote [(m + 1)B(m + 1,q + 1)]% by A, (for m fixed). We
assume m > 2 (otherwise the proof simplifies), and changing variables we see that we have
to show, for each A > 1 and all polynomials p of degree at most d

(

Casel: m < A
Notice that if 0 <t < 1,e72 < (1 —t/m)™ < 1 for m > 2. Moreover,

O3

PO - t/m>mdt> E, (gpu)m - t/m>mdt) :

(1 — t/m)mdt ?(1 — t/m)mdt

O3

(o [ pwEat <o [ poEa)?

for 0 < g, < oo by Lemma 1. Finally, since A, is an increasing function of ¢ this case is
complete.

Case2: m > A\

Let z = 3 then 1 <z <masA>1 For1 <z <m, [j(1—t/m)™dtis bounded
above and below by absolute constants. So we wish to see that for 1 < x < m and
0<r<aqg,

1
r

(/ 31— t/m)md) ¥ < / I3 (1= t/m)mde) . 1)

Now

/Ox |p|%(1—t/m)mdt:/ox(1—t/m)m—1(/0t p|®)dt + (1_w/m)m/0m s,

We shall concentrate on the first term, the arguments for the second being similar but
easier. We distinguish two subcases of (1):

Subcase (i) : r/2 < z.
In this subcase, r < 2m and

/Ow(l—t/m)m‘l(/ot p|@)dt = /%w(l—t/m)m‘l(/ot |p|%)dt+/f(1—t/m)m—1(/0t pl#)dt

The estimate for the second term here is a special case (z = r/2) of subcase (ii) below, so
it suffices to deal with the first term. Using Lemma 3 we have

/_ ) 1f|p| _quq[/j(l—%)m—ltwdﬂ[/Owa_%)m 1(/ pl5)du]

2

3
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Cq(q+1 mq+1Aq N
mIAl(m + 1) /'p‘ 1__ )’

Taking ¢’th roots establishes subcase (i).
Subcase (ii) : 1 <z <r1/2.

[ ot wta= [ amvmr ([t [Ca-gmm ([ b

(2)

The first term is easy to deal with since by Lemma 1

1 t 1 1 ‘
[a=vmr= [Cwdars [t <oo([ win)? s on([ i - gmy-tay®
0 0 0 0

For the second term, Lemma 1 implies that for ¢t > u

t r r w r
vf“(/o p4)F <ot / "

Multiplying this inequality by (1 —u/m)™~! and integrating with respect to u from 0 to
t yields

=m0 < o [ bl =i

t x
<CTt"Ta / p|a (1 —u/m)™du < CTt"+a / p|@ (1 — w/m)™du
0 0
provided ¢t < x. But
t
/ w1 — u/m)™ tdu > e_t/ uHdu = 72+ 2)
0 0

Thus for 1 <t <z < 7,

ﬁ|hQ

/ plt < cret o2 [l wmmad? < ot [ lia - u/mmad

Now multiplying both sides of this inequality by (1 —%/m)™~1

to t from 1 to x gives

and integrating with respect

3

[ a—myf oid)ar < 0o [0 agmy=tar) [ - wpmya
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a
r

<crl [ lE - wmymadl

0
(as (1 —t/m)™ ! <1 and z <% < q). Taking ¢’th roots finishes subcase (ii) of (2), and
hence (1), proving Theorem 3. o

§4. Proof of Theorem 4
The first step in proving Theorem 4 is the special case n = 1,q = oo:

Lemma 4 There is an absolute constant C so that for all polynomials p : R — C of
degree at most d and all intervals I,

L _1
Pl o #{z el |pw)| <o}l < ClI.

This lemma is an old result and in fact the best constant C' is known to be 4. This is due
to Dudley and Randol, [DR]. However this result for some absolute constant C is an easy
consequence of a classical inequality of H. Cartan [C] which we now state:

Cartan’s lemma Let wq,ws,...,wyg be d points in the complexr plane C and let
h > 0. Then the set of points z € C such that the inequality

d
[[1z—wsl < n
j=1

holds can be covered by at most d circles, the sum of whose radii is 2eh.

Note, in particular, Cartan’s lemma implies the corresponding statement of Lemma 4
for monic (as opposed to L - normalised) polynomials. We provide a proof of Lemma 4
for completeness.

Proof of Lemma 4

We may assume that I = [0, 1] by translating and dilating the polynomial p. Observe
that the statement of the lemma is invariant under multiplication of p by any nonzero
constant, and (up to changing the value of C) under multiplication of p by a function, whose
d’th root is bounded above and below by absolute constants. So if p(z) = A[[(z — (;),
we may multiply p by [[ [¢;](z — ¢;)~! and then by (A [] |¢;|)~! without changing

1€i1>2 I€i1>2
matters. Thus we may assume that p(z) = [[ (z—¢;). This modified p(z) is now monic,
I¢i1<2
1

has degree k < d say, and when restricted to the unit interval [0, 1] satisfies ||p||% < 3. We
may therefore assume o < 1 and Cartan’s inequality tells us that

{z€[0,1] : |p(z)| < a}| < Cat < Cad,

completing the proof of the lemma. o

Note the case ¢ = oo of Theorem 4 and thus Theorem 2 is now an immediate
consequence: we merely have to observe that for 0 < ¢t < 1 and A > 1, we have

A=)t <n [(A—s)""ds.



Proof of Theorem 4 Again we may assume that 0 < g < co. For ease of notation
we again write m for n — 1 and assume m > 2 (the cases m = 0 and m = 1 are easier). Let

s.l»-‘

f Ip(t | (A —t)™dt a”
19 = and I =
f(A —t)mdt
0

1
{X{|p|<a} —t)mdt

(A — t)mdt

Ot

We wish to show that I-II < C(m+1)[(m+1)B(m+1,q+ 1)]%. We immediately make
the change of variables ¢t — %t in all integrals, so that

2 . z
[ lp@)|2(1 = Z)mdt o [ X{pizap(1 = )" dt
=2 and II =  _
BN BN
[ = Lymdg [ = Lymae
0 0

(for a possibly different polynomial p). Note that if D := fo% (1—L)™dt, then for m < A,

we have D > [X(1—1/m)™dt > 2L while for m > X, D > [}(1 — t/m)™dt >

1
{(1 —1/m)™dt > X
Casel: m <\

In this case we have

%
2e\ q 2e\
— a(l—t mdt < — t)|2dt
< m/ pa-tmma < 22 [ po)jia,
0 0
while m
2e\ 1 2eA 1
IT < ﬁ d/X{|p|<a} —t/m)"dt < W d/X{Iplsa}dt
0 0
so that
e ¢ \i e
. < 141 o = a -5 < 1+
11T < (20 (2 /O (o))" a2 /0 Xiipi<aydé < C(2¢)

by Lemma 4. Thus I - I1 is bounded above by an absolute constant in this case.

Case2: m > ).
In this case, since D is uniformly bounded below and the numerators of I and I1 are
decreasing with A, we may take A = 1 and reduce matters to showing that

T-T1 < Clm+1)[(m+1)B(m+1,q+1)]7
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where
I =/ p)|4 (1 —t/m)™dt and II = Ofé/ X{|p|<a} (1 = t/m)™dt.
0 0
Now

o= [ e [potasta= [ mm{ [t

which in turn is less than f01 Hdt + CH [["(1—t/m)™ "7+ dt where H = fol Ip(s)|dds,
by Lemma 1. Hence

m 1
"< H[1+ C‘I/ (1- t/m)m_ltq"'ldt] <H [1 + Cqmq+2/ (1- s)m_lsq"'lds}
1 0

= H [1 + CImT (g +1)B(m+ 1,9+ 1)}

Therefore I < CH31 (m+1)[(m+1)B(m+1,q¢+ 1)]% On the other hand,

m m t
II=qa" 4 /(; X{|p|§a}(1 —t/m)"dt =a”d /0 (1- t/m)m_l/o X{|p(s)|§a}ds dt

t
3 / / X{lp(s)|<a}dsdt + / (1—t/m)m" / X{|p<s)|3a}d$dt}

C
< — — o m— 1 < _ —t/2 < —
< F.’ + / (L—t/m)™  tdt / tdt

by Lemma 4, where K = |Hp‘a||Loo[O71]. Thus

[

I-1T < C[M (m+1)[(m+1)B(m+1,q+1)]a

Ilpla | zoego,1

which in turn is less than C(m + 1)[(m+ 1)B(m +1,q¢+ 1)]% as required, completing the
proof of Theorem 4. (Note that we have used in passing that n[nB(n,q+ 1)]% is bounded
below uniformly in n and ¢.) o
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§5. The vector-valued case

To extend Theorems 1 and 2 to the vector-valued setting, we first observe that our
arguments extend to a wider class of functions than polynomials of degree at most d.
Following a preliminary version of [NSV], we say that a function v : R®™ — R is of
class £ if it is the restriction to R™ of a plurisubharmonic function u : C" - R such
that limsup “2. < 1. When n = 1, u(z) = Zlog |p(z)| is of class L if p : R — C

log | 2|
|z] =00

is a polynomial of degree d. We can write such a p as p(z) = AH?Zl(x — (), so that
Zloglp(z)| = Llog|A| + 52?21 log | — (|, and the distinguishing feature of a function
of class £ (when n = 1) is that it can be written as u(z) = constant + [ log|z — ¢|du(()
where p is a positive measure of mass at most one in the plane. This is the well-known
Riesz representation for subharmonic functions, see for example Hayman’s book [H]. In
particular, it is not difficult to see that the key lemmas, Lemma 1 and Lemma 4, remain
valid if one replaces |p(z)|4 with expu(z), where u is a general function of class £ in
one dimension. With these remarks in mind the reader will have no trouble extending
Theorems 1 and 2 to functions of class £ to obtain the following:

Theorem 5 Let u: R™ — R be a function of class L, 0 < r < g < oo and K be a
conver body in R™ of volume 1. Then there exists an absolute constant C independent of
r,q,K,n and u so that

[nB(n,q+ 1)
[nB(n,r +1)

le“l[za(xy < C e[| zr(x)-

Sl Qe

—_

Theorem 6 Let u: R™ — R be a function of class L, 0 < ¢ < oo and K be a convex
body in R™ of volume 1. Then there exists an absolute constant C independent of q, K, n
and u so that

1
le®lzaczey lle™ [ Lroe () < Cn[nB(n, g +1)]s.

To obtain the vector-valued extension of Theorems 1 and 2, we simply observe that

whenever p : R" — X is a polynomial of degree at most d with values in a Banach space
u(z)

X, u(z) = Llog||p(x)|| is a function of class £. In fact, the estimate lim sup ogle] < 118
|z] =00
straightforward, and using the fact |w||=  sup  |¢(w)| for any w € X, one easily sees

LeX=,||fI<1
that u(z) is plurisubharmonic.

§6. Further remarks

1. If we let m — oo in inequality (1), we have, since (1 —t/m)™ < e~* for m > 0 and
0<t<m,

(/Ow p(t)[Fetdt) T < Cw(/j p(t)|e~tdt) "

max(r, 1)

12



by the dominated convergence theorem, where C'is absolute: combining this with Lemmas
1 and 4 yields the following results.

Proposition 1 There exists an absolute constant C' such that if p is a polynomial of
degree at most d, N > 0, and 0 < r < g < o0,

(f |p dt) S o max(q, 1) ( ‘p]it)ﬁe— dt)i
f et max(r, 1) f e—tdt

0

Q=

Proposition 2 There exists an absolute constant C such that if p is a polynomial of
degree at most d, N > 0, and 0 < g < o0,

X{lp(t)|<aye ‘dt

(f p(t)| tdt) a”
e~tdt f e~tdt

Propositions 1 and 2 are also true if one replaces \p(t)ﬁ with expu, where u is any
function of class £. Using another theorem of Kannan, Lovasz and Simonovits [KLS]
(which is similar to their theorem stated in the introduction except that the measures p
are replaced by measures with exponential densities) we then obtain

m.l»—‘
0%2

< Cmax(g,1).

OEZ

Theorem 7 Let X be a Banach space and let p : R™ — X be a polynomial of degree
at most d. Suppose 0 < r < q¢ < 0o and i is a log-concave probability measure on
R"™. Then there is an absolute constant C such that

@) du() < ™D @)
q male

and for the sublevel set estimate:

Theorem 8 There exists an absolute constant C' such that if p : R* — X is a
polynomaal of degree at most d, 0 < q < 0o, and p is alog-concave probability measure
on R", then

Q=

(/ b@ltdut=))" - o ufo e R @) < a} < Co

A measure is said to be log-concave if it is supported by an affine subspace L of R", and

with respect to Lebesgue measure on L has a density of the form e~ 9(*) where the set
K = {z:g(z) < oo} and g|x are convex. In addition to characteristic functions of convex
bodies, these measures include gaussians e~1el’dz. Of course we can let gorr — 0in
Theorems 7 and 8 to obtain estimates in the exp — log class L°.
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2. To see why Theorem 2 implies the case r < 1 and general g of Theorem 1, we first
observe that Theorem 2 has a trivial reverse inequality. Considering the sublevel set for
. a q 1 _1
Ip(2)|| with ad = 2 [i [|p]| 2, we have 1/4 < [[|[pl|4 || a(x) supa”if{z € K [|p(z)]| < o}
a>

uniformly for ¢ > 0. Hence, by Theorem 2

1 _1 1
/4 < el oo - supe™#{z € K lp(z)ll < a}] < Cn(nB(n, g+ 1))
«

In particular, using these inequalities with ¢ < 1, we see that the “norms” ||||p||4|| La(K)
for ¢ < 1 and [sup,.q a"il{z € K : |jp(z)] < a}|] = ||||p||_1/d||211,oo(K) are uniformly
equivalent. Therefore for any g > r, we have

=

(/Ilp(aﬁ)ll%dw>q < Cn(nB(n,q+1))7 (/Hp IIdd$>

3. It is easy to see that the conclusion of Theorem 2 has the following equivalent
formulation for general finite-volume convex bodies K:

1 ‘ | |
(|K| / ”p”d) CTL(TL (n q 1)) |E| ||||p|| ”L (E)

uniformly over all closed subsets E of K (with the same constant C). Somewhat sur-
prisingly, one can replace the L°° norm on the right side with the smaller L"™ norm,
(ﬁ I ||p||§)%, incurring only an extra factor of 2 in the estimate. This was observed
in [BG] for the case ¢ = oo and follows by considering the non-decreasing rearrangement
of ||p|]| over E, p.(7) (i-e., ps is the inverse of the measure of the sublevel sets of ||p||
restricted to F). The estimate in Theorem 2 implies a lower bound for p,, namely

Q-

L eliF) 2 < CnBn, g+ 1)4 p(r)]
K| Jx K

for 0 < 7 < |E|. Raising this to the r’th power, integrating in 7 and then taking the r’th
root gives the desired bound.

4. The convexity of the set K is crucial in obtaining the form of the constant in
Theorem 1. If instead one asks for the form of the constant B in the inequality

(fient)" < ([ 1w1#)"

where F'is now an arbitrary (unit-volume) compact set in R™ and 0 < r < ¢ < oo, one
may see that not only must B contain a factor of |cvzF|'~« (where cvzF denotes the
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convex hull of F) but also a factor nl~7. To see this, consider the example p(z) = z¢ as

before and F = {(z1,2') € R™ : 21 € (0,1/n) U (1 — €, 1),|z'| < 1 — z1} for suitable €
much smaller than 1/n. The proof of the resulting inequality

1 1
([ 1) < cnt=Seoar =5 ([ ol?)
F F

is due to Brudnyi and Ganzburg [BG] (at least in the case ¢ = 00). To see this, we first
observe

L@ < [ 1@ < [ 1p@IE NP1 1L

r 1 1
< x)l||d N L (cv q-r
< /F I Gl e}

where the last inequality follows from the case ¢ = oo and general r of Theorem 1. Next,
using the following equivalent formulation of Theorem 2 (which we derived in Remark 3

above)
! a % n(nB(n a 1Il 1¥] E
(W /1w ) < OnnBlma+ 1) ol 2o (|E| [ el ) 3)

when ¢ = r, E = F and K = cvzF, we obtain the result. Interestingly, (3) can be
thought of as a way to formulate the analogue of Lemma 1 in the higher-dimensional
context, and it is natural to enquire as to whether the constant n(nB(n,q + 1))% can be
improved upon if we restrict E to range over conver subsets of K. This however is not
the case. To see this, take K = {(z1,2') € R" : 0 < 21 < n — 1,|2/| < 1 — L5z},
E={(z1,2) e R": 0 < w1 < 1,|2/| <1— 521}, and p(z) = z¢. (Of course, X = R
here).

5. If p: R™ — C is a polynomial of degree at most d, it is well known that w = [p|
is an A, weight when ¢ > d + 1 with A, bounds independent of the coefficients of p ; see
[RS]. Theorem 2, when ¢ = d, can be viewed as a sharp endpoint result of this nature.
Recall that a weight w is in A, if

|—113|B/w(a:)dac .

for all balls B in R™. The smallest constant A for which the above holds is called the
A4 bound, Ag4(w), for w. Using Theorem 2 with ¢ = d, we see that there is an absolute
constant C' such that if p : R® — X is a polynomial of degree at most d with values in a
Banach space X and ¢ > d+1,

1 a/d
Bl /w(x)_q’/qu] <A<
B

Aol < 0 [ o]
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We remark that this estimate remains valid when we allow the A, bound to also vary over
all convex bodies K in R™, not just Euclidean balls B. See also [NSV].

6. The theorem of Kannan, Lovasz and Simonovits which we used relies heavily
on the non-negativity of the functions involved. However there are phenomena, closely
related to sublevel set problems for polynomials, which are highly oscillatory in nature;
most notably estimates for oscillatory integrals. For example, it follows from Theorem 7.2
of [CCW] that if @ = [0,1]", p : @ — R is a polynomial of degree at most d so that
Jop=0and |[p|lr=() =1, then for A large and real,

‘/ ei)‘p("’)dx‘ < CL’?. (4)
Q A4

Can we expect improvement to this along the lines enjoyed by sublevel sets? In particular
if pr = 0 and ||p||z1(@) = 1, can we take Cy, in (4) to be C'min(d,n)? On average
the answer is yes, because a direct consequence Theorem 2 is that for ||p|| (k) =1, K a
convex body of volume 1, ¢ € S(R) with 0 < b < X[—1,1]

=

‘i / { /K e dg Lp(A/pw)dA| < Cmin(d,n)

with C absolute. To see this, note that the left side is equal to [, é(up(z))dz which is in
turn equivalent to |[{z € K : |p(z)| < p~'}|. This well-known argument also demonstrates
the fact that oscillatory integral estimates imply sublevel set estimates.
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