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1. The very well-known and extremely useful van der Corput lemma is the
following;:

Van der Corput’s Lemma

Let I C R be an interval and suppose ¢ : I — R satisfies ¢(k) > 1 on
I (where k € N). Then, for A € R,

/e“@s <O
I

provided, in addition when k = 1, that ¢' is monotonic on I.

An extensive discussion of van der Corput’s lemma, its proof and its appli-
cations is given in Stein’s book [S]. Amongst the features of van der Corput’s
lemma emphasised in [S] are

e the sharpness of the decay rate (seen by taking I = [0, 1] and ¢(t) = t¥ /k!).

e the fact that the constants C, are absolute — that is independent of I, A and
¢. This can be useful even if we do not have the sharp decay rate.

e the scaling property of the inequality: knowing the inequality for A = 1 and
arbitrary I automatically gives the inequality for general A; or knowing the
inequality for I = [0, 1] and arbitrary A automatically gives the inequality
for general I. (Note that scaling can only occur because we have the sharp
decay rate.)

For the purpose of this discussion we would like to bring out two further
aspects of van der Corput’s lemma, as seen by examining a proof.
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Proof of van der Corput’s lemma

Fix a parameter ¢ € (0,00) to be chosen later. Write

/ e — / eire 4 / oird
I In{|¢'|<t} In{|¢'|>t}
= A+ B.

> 1 on I, can be estimated

Now |A| < [{|¢'| < t}|, which, since |(%)k_1 ¢

eagsily by induction to be dominated by Dk_ltﬁ, with Dy, depending only on
k. This is a sublevel set estimate. The second term B is handled by the
standard integration by parts argument, working separately on each of the at
most k intervals upon which ¢’ is monotonic, giving a contribution of

k
KW . Optimising in ¢ gives the result.O]

An easy corollary of van der Corput’s lemma is the sublevel set estimate
(under the same hypotheses as for van der Corput’s lemma)

[{s € I| |¢(s)| < t}] < Ct*

(with C}, again absolute); on the other hand the proof above uses the sublevel set
estimate as a principal ingredient. Thus sublevel set estimates and oscillatory
integral estimates should be seen as going hand-in-hand together.

The second aspect of the proof we wish to note here is that when k& > 2
there is a “hidden hypothesis”. The fact that ¢’ has at most k — 2 changes
of monotonicity is an immediate consequence of the hypothesis c;S(k) >1>
0 on I. Thus we obtain “for free” the fact that ¢,¢’,¢", ... 1) all have
O(k) changes in monotonicity and only in the case k = 1 do we need to explicitly
require monotonicity of ¢'.

In this article we wish to try to understand higher-dimensional versions of
van der Corput’s lemma and the associated sublevel set estimates which pre-
serve as many as possible of the three features of the one-dimensional
inequality as highlighted by Stein and listed above. The first task is
to formulate meaningful hypotheses. The analogue of “qb(k) > 17 will be
“D%*y > 1”7 where u : 2 — Ris smooth and « is a multi-index. The best
possible decay estimate in the sublevel set problem will be thal (A variant
of this would be to suppose that D* u > Tj , where o belongs to some pre-
scribed set of multiindices and the 7;’s are given positive numbers. See Section
4 below.) The analogue of the interval “I” is the domain “Q” of u, and most
ambitiously we might hope to be able to let 2 be an arbitrary connected (open)
set in R™. However we can easily see that this is not appropriate even when

n=2anda=(0,1). For j=0,1,..N = 1let ;= [1,1) x (4, 252) , and let



Q= L_J U (0,1) x (0,1). Let ¢ = [0,1] — R be smooth, ¢ > 0, with
7=0

¢ = 0 on [0,5/12] and ¢ = 1 on [7/12,1]. For (z,y) € Q; set u(z,y) =

y — L é(x). Thus for > 5, u(z,y) = y — & when (2,y) € Q; and for

3 <z <&, ulz,y) =y when (z,y) € Q;. Extend u to all of Q by setting

u(z, y) =y for (z,y) € (0,3) x (0,1). Then clearly g—’y‘ = 1 on ) while for

t << %, {(z,y) € Q| |u(z,y)| < t} has measure like N¢. Thus we cannot hope
to work with arbitrary connected open sets and obtain absolute constants for
this type of problem. and we will have to impose some conditions controlling the
number of pieces that any axis parallel line may be cut into by Q. If 2 is such
that any axis parallel line meets (2 in an interval, we say that  is HV-convex.
Note that convex sets, in particular axis parallel rectangles, are HV-convex.

From the point of view of the sublevel set problem, however, even rectan-
gular boxes do not constitute an adequate class of domains (2. Indeed, if we let
u(z,y) = L(z +y)? on (—R, R) x (—R, R), then ‘1" =1but

{(@,y) € (=R, R) x (~R, R) | |u(z,y)| < t}| ~ Rt?

for large R. This suggests that we restrict ourselves to bounded domains €2, and
that we immediately give up any ideas of scaling. In the context of oscillatory
integrals, this can and has been done:

Proposition Let u: {z € R" | |z| <1} = R be smooth, and suppose that
D%u > 1 on {|z| < 1}. Then | [ e** (@ ¢(z)dz| < C AT for
¢ € C({l= < 1}).

While the rate of decay |A|™ T s sharp, the constant C' here depends on
||| 1ai+1 , as well as the test function ¢, and in particular this inequality exhibits
no scaling properties. See [S].

However, the same example, u(z,y) = +(z + y)?, suggests a remedy for this
difficulty. In the context of the oscillatory integral problem, e?*(*+%) is essentially
the kernel for the Fourier transform operator on R. So we have the inequalities

for 1 < p < 2, by Plancherel’s theorem and the Hausdorfl-Young inequality.
These inequalities are not restricted to bounded subsets of R? and indeed scale.
Admittedly the phase function is very special here, but this line of thought does
suggest that one should consider the multilinear operators (in fact n-linear
operators if we are in R”) whose kernels are X{lu/<t} and e respectively. In
the case n = 2 this points to work of Phong and Stein [PS2] (and the references
therein) and Christ and the present authors [CCW].

In higher dimensions, Phong, Stein and Sturm [PSS] have recently considered
the more general multilinear setting. Thus, for a suitable class of scale invariant



domains 2 in R” and for smooth « : Q@ — R satisfying D%u > 1 on  we are led
to the following problems:

Multilinear sublevel set problem

Determine the values of v and p; such that

Qn{lu|<t}

Multilinear van der Corput problem

Determine the values of v and p; such that

/ei)‘“(””)fl(:cl)....fn(a:n)dxl...dxn <CATT f[l ”fi”p,- (2)

Q

To gain some insight into these problems, let us fix 2 = @ = [0, 1]" for now.
Consideration of u(z) = (z1 + ... + 2,)1?l and f; = 1 shows that v must
be less than or equal to ‘;—| irrespective of the p;’s. Consideration of u(z) =

ot b ) = X(Otﬁ)’ fi =1 ( = 2,....,n) shows that v can be at most

1
alpl1

z% =1- %J' we can hope to take v = ﬁ ; moreover from this special case all
J

other possible inequalities would follow by interpolation with trivial estimates.

. By symmetry, we therefore must have v < min {I%TI’ alT} So when
iPj

However, of these possible inequalities, only certain scale properly and are
thus of current interest to us. Indeed, if for example we know that whenever
D%y > 1 on an arbitrary (isotropic) dilate RQ of the unit cube @) we have

Il fi(wdz| < C [T If

{ul <13NRQ

pi’

changing variables gives, for arbitrary positive ¢,

7 = pi,+....+pi, n
/ l:[lfi(wi)dwi < Ct! l( ! ") .1:[1||fz'||pi :

lul<t}NQ
11t is also easy to establish bounds for the multilinear operators in these cases. For example,
ifu(z) = 91 ....55™, then (1) holds along the line a11p’1 = a;p,z =..= anlpil , (except possibly
for an endpoint), with 7 equal to the common vaue of > .117, .
155



Hence a necessary condition for scaling to occur is

1 1 1 ) 1 1
— |+t )<ming—,— .
lal \p1 Ph la|” a;p;

Thus ) ﬁ <1 and, setting 6; = pl,lej also Y 6;a; <min{f;(a1 +.... + o)},
j=1"%3 J j=1

which can only happen if all the 6,’s are equal i.e. if allp, = a;p, =
1 2

ﬁ . Thus scaling can occur precisely for (pil, . pl—n) lying on the line segment

joining (1 — %1‘, ey 1L — %) to (1,1,....1) with the correspondingly interpolated
1

a;p; *

estimates (1) and (2) in these circumstances which interests us.

value of v being the common value of So it is the possible validity of

2. We now present some results in the higher-dimensional context which preserve
at least one of Stein’s features.

Theorem 1 Let Q = [0,1]" and let a be a multiindex in Z. Let py,...pn >
1. Then there exists a C > 0 and an € > 0 depending only on a,n and
P1,---Pn sSuch that if D*u > 1 on Q, then

l:[lfz'(%z')d%z' <Ot ,l:Illlfz'Hp,. :

{ul<t} *

Theorem 1 was not actually stated in [CCW], which concerned itself with
bilinear operators, but the proof is the same as that of Theorem 3.16 of [CCW].
In general we do not have the sharp € and so there is no scaling in Theorem 1.
In some cases, however, we do get the correct scale invariant result:

Theorem 2 Let n = 2, and let Q be an HV-conver domain in R%. Let o be a
multiindex in Zi and suppose D%u > 1 on (.

(a) fa=(1,1) and 1 < p < 2 there exists an absolute constant C), depending
only on p such that

fi(@1) fo(@n)dardas| < Cot# (|1l 1ol -

{lul<t}

(b) If & = (1,1), there exists a constant C' depending only on € such that

flen) alaa)dasdsa) < CtF (tog )l el

{lu[<t}



. . i(k41)— .
() fa = (5,k), k>37>1, p% = 5, p% = J(j(:i)l)k , there exists an

absolute constant C' depending only on « such that

fi(@) fo(@)dzrdas| < CETTF |||, (Ifall, -
{|ul<t}

d) ¥a=(1k), - = = - = 41 and (q%’q%) is on the line segment

joining (1)1_17 p%) to (1,1), there exists an absolute constant C' depending

only on k,q; and g2 such that if (g1, ¢2) # (p1,p2)

fi(@1) fa(@a)dmydas| < Ctor || full,, 11 £ell,,
{lu| <t}

and

1 1) 7
[ 10 ndnde < st (067) 7 1A, 11,

where C} depends only on k and 2.

Parts (a), (c) and (d) ((¢1,492) # (p1,p2)) are sharp scale invariant estimates.
Part (b) measures what we are currently know about the endpoint p; = ps = 2
in (a), and was explicitly proved in [CCW] where Q = [0, 1]%. Parts (c) and (d)
((g1,42) = (p1,p2)) were also proved in [CCW] in the setting @ = [0,1]? but
the proof there extends to the general HV-convex case. Parts (a) and (d)
((g1,92) # (p1,p2)) have not perhaps been noted explicitly before, so we in-
clude a proof of part (a). The proof of part (d) will be similar, following the
lines of Theorem 3.9 in [CCW].

Proof of Theorem (2a).
We write (z,y) for (z1,22) and (f, g) for (f1, f2). We may assume p > 1. Let
{
2

E = {(z,y) € Q| |u(z,y)] <t} and E(y) = {z € R | (z,y) € E} be the

slice of E at height y € R As in [CCW], ('?am—gy > 1 on § implies that if

(z,9), (@', 9),(z,y'), (2',y") are all in E, then |z —z'||y —y'| < 4t. In partic-

ular, |[E(y) N E(y")| < ‘yf—ty,l . Then

1£11,

pl

H (/ XE(w,y)g(y)dy> 2

//f(x)g(y)dwdy < “/XE(w,y)g(y)dy

1
2

/11,

p'/2




= H//XE(:E,y)XE(w,y’)g(y)g(y’)dydy’ / I£1,
p'/2

< ( [ 16w9l st y)m(my)||Lp,2(dz)dydy)2||f||,,
= (f[ wewi1Ew) 0 P dydy'>2||f||p

4\ :

dydy'

< (/ 9) ( '|> y y) I,
= 4TIl Lot (witht =9 = )
<t 11, lgll, »

by the Hardy-Littlewood-Sobolev theorem of fractional integration.

The reader will notice the similarity between this proof and the Fefferman-
Stein argument [F] for the sharp restriction estimate for the Fourier transform
in two dimensions. Even in the case fi = f» = 1 in part (b) of Theorem 2 on
[0,1]? we do not currently know whether the logarithmic term is present. This
is related to the following combinatorial problem, a positive solution of which
would also resolve this case fi = fa =1:

Problem Does there exist a C > 0 such that if E is a nonempty measurable
subset of [0,1]2, then there exist / points in E arranged as the vertices of an
axis parallel rectangle R with area (R) > C{area(E)}??

We now turn to the oscillatory integral version of Theorem 1.

Theorem 3 Let Q = [0,1]" and let a be a multiindex in Z7 with at least
two nonzero components and at least one entry with value at least 2. Let
P1,---Pn > 1. Then there exists a C > 0 and an € > 0 depending only on
a,n and pi, ..., pn such that if D*u > 1 on @, then

‘/ ) H filas)da;| < C [N~ H 1£ill,

Once again, Theorem 3 was not actually stated in [CCW], but the argument
is the same at that of Theorem 4.13 of [CCW]. In no case do we get the sharp
scale invariant result, although when n = 2, a = (1,k), k¥ > 2 and p; =
p2 = 2 we do obtain the best value ¢ = . See Theorem 4.8 of [CCW]. The
requirement that « have at least one entry at least 2 is needed for the same
reason that the classical van der Corput lemma fails in the case k = 1 without
the supplementary monotonicity hypothesis. See [CCW]. The requirement that



a have at least two nonzero entries is clear as if a were (2,0), say, we could
incorporate €A1 into f1- (In the special case that f; = 1 this requirement is
not needed.)

3. Up till now we have been trying to establish analogues of van der Corput es-
timates and sublevel set estimates under the sole hypothesis D%u > 1 on u. But
how natural is this? After all, even in the one-dimensional case one genuinely
needs to impose monotonicity of ¢’ in the case k = 1 of van der Corput’s lemma
(but not the sublevel set estimate) because the mere fact that ¢’ > 1 does not
imply that the sublevel sets of ¢' possess any regular structure. As we saw above,
the same phenomenon persists in the higher dimensional multilinear oscillatory
integral scenario. In a similar vein, assuming only that a[fgy > 1on [0,1]? does
not seem enough to conclude that the sublevel sets of v have any “manageable
structure” and they may in principle be “infinitely wiggly”. Added to this is
the fact that under the hypothesis ¢*) > 1 on I (k > 2) we automatically have
very good control of monotonicity properties of ¢', ¢, ...* V) for free. Thus it
seems to make sense to augment the basic condition D%u > 1 on 2 with some
“qualitative regularity conditions” on sublevel sets of D”u, for certain || < |a.
As a first result in this direction we have, from [CCW]:

Theorem 4 Letn =2, and let o € Zi be a multiindex. Suppose D*u >1 on
[0,1]? and that each vertical line is cut into at most N pieces by any sublevel set
{|u] < s} of u. Then

fi(@1) fa(z2)dmidms | < CT || fil,, [1f2ll,,
{lul<t}

where C' depends on a and N, and % =1- W

The proof of this result is fairly complicated and uses Carleson measures,
see Theorem 3.13 of [CCW]. Although the theorem was stated and proved for
the unit square [0, 1], it seems likely that it remains valid for any HV-convex
domain Q C R2.

A class of functions exhibiting “well-controlled wigglyness” is the class of
polynomials of fixed degree. Phong, Stein and Sturm [PSS] have recently studied
multilinear operators associated to polynomials and proved in particular the
following result:

Theorem ([PSS]) Let @ = [0,1]" and let v : Q@ — R be a polynomial of degree
at most d. Then

7 I TP & A
[1 fi(z:)des| < Craat™ log™ > (<) 1 1 fill .,
=1 t) i=1

Qn{lul<t}n{|Daul>1}



1 _ 1 — &
where > -

Even when n = 2, Phong, Stein and Sturm use considerations related to
algebraic geometry (Bézout’s theorem) rather than Carleson measures. This
allows them to reduce the case n = 2 of their theorem to the corresponding
result on an HV domain 2 C @ C R? upon which both |u| < t and |D%u| > 1.
They then notice that for any such domain 2 containing 0, Q is forced to be
contained in {|z1|*" |z2|** < t}. (This step does not require the polynomial
character of u). Comparison with the known result for u(z1,22) = z7*z3* on
[0,1]? finishes this case n = 2, and the higher dimensional case proceeds by an
inductive argument.

In view of the preceeding discussion, and in view of the example given above
to explain why connectedness of €2 is not the correct notion in higher dimensions,
the following definition seems natural:

Definition Let Q C R™ be open, and u : Q — R be smooth. Then u is of type
M if for any multiindez v with |y| < M, any azis parallel line is cut into at
most N pieces by any sublevel set {x € Q | |[D7u| < s}, s € R. (We call the
least such N the “type M constant of uw”, denoted tpr(u)).

Note that if u : R® — R is a polynomial of degree at most d, then tps(u) is
finite for each M and depends on M,n and d but not upon the coefficients of
u. Note also that if u is of type M then it is also of type M’ for any M' < M.

Theorem 5 Suppose u : Q@ — R is of type M and let o be a multiindex with
|| SM.Letizl—ﬂ Then

laf *

(@ [ Hfodn) <o TR,

Qn{lul<t}n{|Daul>1} |

and

(b) / I fiwi)des < CH log (1) ilfllnfi

@n{lul<t}n{|D=u/>1} '

pi

where C depends upon n,a, M, ty(u), and in case (b) only, the diameter of Q.

Part (a) of Theorem 5 provides the correct optimal scale invariant estimate
for type M domains, with the caveat that the usual LP spaces are replaced by
the Lorentz spaces LP'. If one insists upon the usual LP spaces, then one obtains
the desired result at the expense of a single power of log (%) . An investigation
of whether this logaritmic term can be removed is being undertaken by Gibson,
[G]. Part (b) is proved using a many point multilinear interpolation technique
similar to the one in [CHS]. Part (a) of Theorem 5 was anticipated in a bilinear
setting in [CCW]. See the remark at the end of Section 3 of [CCW].



Sketch of Proof of Theorem 5(a)

The proof is by induction on |a| and is essentially a reworking of the one-
dimensional sublevel set argument.

Case a = (1,0, ....0)

This is just the case k = 1,n = 1 of the sublevel set estimate when unravelled
and follows from the mean-value theorem.

Note that symmetry in the hypothesis now gives the result for any a =
(0,0,...0,1,0...0).

Case a + Case f = Case a+ f3

Note that

{lu| <t} n{|D**Fu| > 1} C {|u| <t,|D%| > s} U{| D] < 5, |D*TPu| > 1}.

With f; = xg,, then,

[Ixg, (zi)de; < [1xg, (@:)dz;
Qn{ju|<t}n{|D>+Bu|>1} ' Qn{lu|<t}n{|D>u|>s} '
+ / HXEi(wi)dxi
Qn{|Deu|<s}N{|Da+Au/>1}
1
Tl o .
: C<£) 1B~ +Cs™ [ |E|' "7
i i
a;+B8;
< atp]

Ctrevan [T B! Tovat
i

by the a-result applied to u and the f-result applied to D®u, and optimising in
s. O

Full details of Theorem 5 will appear in [CW].

We now examine whether a similar argument can be made to work for multi-
linear oscillatory integral operators. As in the proof of van der Corput’s lemma,
and as in Theorem 5’s proof, the multilinear restricted-type sublevel set estimate
for index a plus the multilinear restricted-type oscillatory integral estimate for
index 3 give the multilinear restricted-type oscillatory integral estimate for in-
dex a + (. As the sublevel set estimates are under control we only need to
start the induction with a suitable oscillatory integral estimate. The index
(1,0,...0) does not work for oscillatory integrals (as pointed out in Section 2
above) and so the place to begin is (1,1,0....0), or, what is effectively the same
thing, (1,1) in the two-dimensional setting. (Recall that a supplementary qual-
itative condition is necessary in this case to obtain a result.)

10



Proposition Let u : O — R be of type 3, with Q C R? bounded. Then for
Al >> 1,

1
@ f1(21) f2 (z2) dardas| < C(log l/\D

82
{Ba:lduzg 21}

where C depends on the diameter of Q and t3(u).

1£1lly 17211,

The proof of this proposition is obtained by examining and reworking a
similar result of Phong and Stein [PS1]. Hence we obtain:

Theorem 6 Let a be a multiindex in Z7 with at least two nonzero entries. Let
uw:Q — R be of type max{|a|,3} with Q@ C R"™ bounded. Then for |\| >> 1 and
Py

1 1 - o
Pi la] 2

(a) / el ljl fi(zi)dz;| < C(logw)i ﬁ £l 1

{ID>u|>1}

and

; n log|A|)2 =
o [ e s <c BB T,
{ Dul>1} = -
where C' depends on a,n, Q and tyaxi|al,3) (W)
Phong, Stein and Sturm in [PSS] have obtained a similar result to part
(b) above, in the polynomial setting, with a logarithmic factor (log|A|)™ 2

instead of our (log |A|) . However, they have also shown that one may remove the
logarithmic factor in the above proposition at the expense of inserting a smooth

cut-off function supported in { > 1} , provided one is in the polynomial

oz dm
setting. (The constant will now depend also on the cut off and the total degree
of u.) A corresponding improvement is then possible in Theorem 6. We refer to
[CW] for further details.

4. Restricted-type estimates as in Theorems 5 and 6, parts (a), are ideal if

one has more data. Suppose u : Q@ — R is of type M, and that o!,...a¥ are

multiindices with ‘Do‘ju‘ > 7; for each 1 < j < K. What can we say about

the multilinear operators? (We shall restrict ourselves here to the sublevel set
operators, but similar remarks apply to the oscillatory integral operators.) By
Theorem 5(a) we have

.:,

—

t \
Xg,; (xi)dx; < C <T—) H |E; | ol
j

i=1

N {Ju| <N {| D> u|>7;}

11



K .

for each j = 1,.....,K. Suppose a = ) Ajo! is a convex combination of
j=1

{a?,...a®}. Then by taking convex combinations of these estimates we obtain

—xj
la]

n 1on 1 @i K
/ {1 s (ai)das < ot [l 1, 1T 7,
1= Jj=

i=1

K
on{u/<t}n [ {| D=7 u|>7;}
=1

After a suitable interpolation argument whose details are in [CW] one obtains:

Theorem 7 Letu : Q — R be of type M, and o', ...a™ multiindices with |aj| <
M. If a is in the conver hull A of {a,...a®} but is not an extreme point of
A,thenforp%:l—ﬂ

lef 2

K
n{jul<t}n [ {|D=7u|>1}
i=1

where C depends on n,a, M and tpr(u).

1

n
Thus, given p; with > 1% = 1, the best decay rate tT=T is obtained for the
i=1 "
value of |a| where the line (in a-space) ai1p| = ..... = appl, meets A.

Similarly, if one wishes to obtain the best estimate (irrespective of the p;’s)
of the form ¢°, then 6~ is given by the £'-distance of 0 to the convex hull of
{a',...aX}, that is, ' =inf{|a| : @ € A}.
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