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Abstract. We study the analogues of the problems of averages and maximal

averages over a surface in Rn when the euclidean structure is replaced by that

of a vector space over a finite field, and obtain optimal results in a number of
model cases.

1. Introduction

In this paper we study the analogues of the problems of averages and maximal
averages over a surface in Rn when the euclidean structure is replaced by that
of a vector space over a finite field. This point of view has proved beneficial in
other problems in harmonic analysis where curvature plays a role and where the
underlying question is a local one, such as in the restriction problem for the Fourier
transform and in estimates for the Kakeya maximal function, (see for example [12],
[5] and [1]).

In order to formulate our results we need some notation. Let F be a finite field of
characteristic q > 2. Then Fn is a (locally) compact abelian group and as such has
a Fourier analysis. In particular, Fn has dual group Fn∗ (isomorphic to Fn) which
we endow with normalised counting measure dξ so that for f : Fn∗ → C, and
1 ≤ p < ∞

‖f‖p =

 ∫
ξ∈Fn∗

|f(ξ)|p dξ


1
p

:=

 1
|F|n

∑
ξ∈Fn∗

|f(ξ)|p
 1

p
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(and when p = ∞, ‖f‖∞ = max
ξ∈Fn∗

|f(ξ)|). If σ is a measure on Fn∗ defined via its

action on a function φ by

〈φ, σ〉 =
∫

ξ∈Fn∗

φ(ξ)dσ(ξ)

=
1
|F|n

∑
ξ∈Fn∗

φ(ξ)w(ξ)

we identify σ with the function w. In particular, if p : Fk → Fn∗ parametrises a
“k-dimensional surface in Fn∗”, then the “surface measure” σp associated to p is
given by

〈φ, σp〉 =
1

|F|k
∑
s∈Fk

φ(p(s))

=
1

|F|k
∑

ξ∈Fn∗

φ(ξ) #p−1(ξ).

Thus the measure σp is associated with the function w(ξ) = |F|n−k #p−1(ξ). (Note
that the total mass of σp is 1.)

Convolution of two functions f and g on Fn∗ is given by

f ∗ g(ξ) =
∫

Fn∗

f(ξ − η)g(η)dη

=
1
|F|n

∑
η∈Fn∗

f(ξ − η)g(η).

Our first basic object of study will be the averaging operator associated to a k-
dimensional polynomial surface in Fn∗. Let p : Fk → Fn∗ be a vector-valued
polynomial of degree at most d. (By the degree of a vector-valued polynomial
we mean the maximum of the degrees of its components.) To p we associate the
normalised surface measure σp as above. Then the average of f : Fn∗ → C along
p at ξ is f ∗ σp(ξ) and we are interested in the mapping properties of

f 7→ f ∗ σp

with respect to the Lp-norms on Fn∗ defined above.

For the second object of study we fix d, and have an indexing set A and, for each
α ∈ A, a polynomial pα : Fk → Fn∗ of degree at most d. We consider the maximal
averaging operator

f 7→ sup
α∈A

|f ∗ σpα
| .

Once again we wish to examine the mapping properties of this operator with respect
to the Lp-norms.

As all sets and sums are finite, there is no question of the boundedness a priori of
these operators between any Lp-spaces. What interests us here is the possibility of
bounds which, for example, depend only upon k, n, d and max

ξ∈Fn∗
#p−1(ξ) in the first

case above, and, in any case, are independent of |F|.
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In this we are obviously motivated by the corresponding euclidean problems. In
that setting, σ is a finite measure associated to a compact piece of k-dimensional
surface in Rn; convolution with σ is then a local operation and can be thought of
taking place on chunks of Rn (cubes, balls etc.) of finite volume. So we may as well
be working with measures σ of unit mass supported in the unit cube in Rn of mass
one, and functions similarly supported. This explains the choice of normalisations
that we use. Furthermore, considering Riemann sums for the euclidean convolutions
and Lp-norm evaluations as approximations to the genuine article, one of course
wants estimates independent of the fineness of the mesh involved. In our current
case the “fineness of the mesh” is measured by the quantity |F|−1

, and so we are
consciously seeking estimates which do not explicitly depend on |F| .

In the euclidean case these problems have a rich history (see [9]) but a complete
resolution is seemingly still some way off. Some further partial results are known,
especially when the surface is either 1- or (n− 1)- dimensional. See [3], [7], [8], and
[10]. In the intermediate range of dimensions 2 ≤ k ≤ n− 2 matters seem far from
being fully understood.

The main point of this paper is to exhibit, for each 1 ≤ k ≤ n − 1, nontrivial
k-dimensional surfaces in Fn∗ for which the averaging and maximal averaging prob-
lems admit a complete solution. For 1 ≤ k ≤ n− 1, define pk : Fk → Fn by

pk(t) = (t1, t2, ...., tk, t21 + t22 + ..... + t2k, t31 + ... + t3k, ........., tn−k+1
1 + ...... + tn−k+1

k ).

Note that pk “interpolates” between the paraboloid when k = n− 1 and the curve
p1(t) = (t, t2, . . . , tn) when k = 1.

Theorem 1. Let 1 ≤ k ≤ n−1, and let F be a finite field of charactersistic greater
than n − k + 1. Let 1 ≤ p, q ≤ ∞. Then there is a constant C independent of |F|
such that

‖f ∗ σpk
‖Lq(Fn∗) ≤ C‖f‖Lp(Fn∗)(1)

if and only if (1/p, 1/q) lies in the convex hull of (0, 0), (1, 1), (0, 1) and ( k
2n−k , n−k

2n−k ).
Furthermore, if (1/p, 1/q) = ( k

2n−k , n−k
2n−k ) we may take the constant C to be 1 +

(n− k)
2k(n−k)
2n−k .

For the next result we need to define a suitable family over which we can take maxi-
mal averages. We first note that inequality (1) is invariant under affine transforma-
tions, so it is reasonable to build a maximal function over a family of affinely equiva-
lent convolutions. Let A be an indexing set with #A = |F|r for some 0 ≤ r ≤ n−k.
For α ∈ A, let Aα be an invertible n × n matrix over F and let bα be a vector in
Fn. Define pk,α to be Aαpk + bα. Thus pk,α is just an affine transform of pk. In
the statement of Theorem 2 below, we suppose (for simplicity) that the images of
the pk,α as α ranges over A are disjoint.

Theorem 2. Let 1 ≤ k ≤ n−1, and let F be a finite field of charactersistic greater
than n− k + 1. Let p ≥ 1. Let r be an integer such that 0 ≤ r ≤ n− k. Then there
exists a constant C independent of |F| such that whenever A is an indexing set of
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cardinality |F|r, whenever {Aα : α ∈ A} is a collection of invertible matrices and
whenever {bα : α ∈ A} is a collection of vectors,

‖ sup
α∈A

|f ∗ σpk,α
| ‖Lp(F∗n) ≤ C‖f‖Lp(F∗n)(2)

if and only if r ≤ k and p ≥ r+k
k . Furthermore, if r ≤ k and p = r+k

k , we may take
the constant C to depend only on n and k.

An example for the reader to bear in mind is p1,a(t) = a(t, t2, . . . , tn) as a varies
over F. The images are disjoint (except at 0) and the conclusion is Lp boundedness
for p ≥ 2.

We shall derive these theorems from more general results; see Sections 2 and 3
below for necessary and sufficient conditions respectively. Some remarks on surfaces
containing affine subspaces of high dimension are made in Section 4.

The main tools we shall use in proving these results are the standard tools of har-
monic analysis (the Fourier transform, Littlewood-Paley theory – in a particularly
primitive form, square function estimates) together with nontrivial estimates of
A. Weil [11] for exponential sums over finite fields. These estimates are a conse-
quence of Weil’s resolution of the Riemann Hypothesis for curves in finite fields. In
the present context they play the role of decay estimates for Fourier transforms of
surface-carried measures that are so crucial in the euclidean case when the Fourier
transform approach is used.

We also examine, in Section 5, a case of an averaging operator over k-dimensional
surfaces in a non-convolution setting. Here the aproach is combinatorial.

We should emphasise that the novelty of our paper is not in the techniques involved,
which are standard; rather in their extreme simplicity in this setting, leading to
what seem to be very sharp results. Of course one must remember that this is only
possible due to the results of Weil [11] which are fundamental in our approach. It
would be of interest to find another approach to Theorems 1 and 2 which does not
rely upon the results of [11].

1.1. Fourier transform and other notation. Let F be a finite field of character-
istic q 6= 2. Let e : F → S1 = {z ∈ C | |z| = 1} be a nonprincipal additive character
of F. (Thus, for example, if F = Zq, e(x) = exp(2πix/q) defines such a character.)
The vector space Fn is a locally compact abelian group with characters eξ indexed
by ξ ∈ Fn∗ (the dual group) and given by

eξ(x) = e(x · ξ) = e(x1ξ1 + .... + xnξn)
= eξ1(x1).....eξn

(xn).

(Note that although we employ the “dot product” notation x · ξ, there is no inner
product structure here.)
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For f : Fn → C its Fourier transform f̂ : Fn∗ → C is defined by

f̂(ξ) =
∑
x∈Fn

f(x)e(−x · ξ)

:=
∫
Fn

f(x)e(−x · ξ)dx .

Thus integration on Fn is with respect to un-normalised counting measure.

The Fourier inversion formula is

f(x) =
1
|F|n

∑
ξ∈Fn∗

f̂(ξ)e(x · ξ)

=
∫

Fn∗

f̂(ξ)e(x · ξ)dξ .

We recall that integration on Fn∗ is with respect to normalised counting measure;
the total mass of Fn∗ is 1.

For a measure σp associated to a polynomial p as in the Introduction, its inverse
Fourier transform is given by

σ∨p (x) = |F|−k
∑
s∈Fk

e(x · p(s)).

We have the following standard results for f and g defined on Fn∗:

•
∫

Fn∗
f̂ ¯̂g =

∫
Fn

fḡ

• ‖f̂‖L∞(Fn∗) ≤ ‖f‖L1(Fn)

• (f ∗ g)∧ = f̂ ĝ

• (fg)∧ = f̂ ∗ ĝ

We shall use these results without further comment. We also note that∑
x∈F

e(x) = 0.(3)

Finally, we caution that ‘p’ denotes a polynomial and ‘p’ an Lp -index. Occasionally
‘q’ will denote the characteristic of a field F, but more often an Lq-index. The
context will make clear which meaning is implied at each occurence. We use both
notations | · | and # to denote the cardinality of a set.

2. Necessary conditions
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2.1. The averaging problem. Let p : Fk → Fn∗ be a polynomial of degree d. Let
σ = σp be the measure associated to p as in the Introduction. We wish to determine
for which 1 ≤ p, q ≤ ∞ we have

‖f ∗ σ‖Lq(Fn∗) ≤ C ‖f‖Lp(Fn∗)(4)

with the constant C depending possibly on k, n, d and max
ξ∈Fn∗

#p−1(ξ), but not upon

|F| in any explicit way.

Since σ has total mass 1, (4) always holds if p = q by Young’s inequality, with
C = 1. Since Fn∗ has total mass 1 it continues to hold with C = 1 when 1 ≤ q ≤
p ≤ ∞. So the main interest is what happens when 1 ≤ p < q ≤ ∞. Let

f(ξ) =
{

1 ξ = 0
0 ξ 6= 0

= |F|−n
δ0(ξ)

(where δ0 is understood to have mass 1). Then

‖f‖Lp(Fn∗) = |F|−n/p
.

On the other hand,

f ∗ σ(ξ) = |F|−n
σ(ξ) = |F|−k #p−1(ξ),

so that

‖f ∗ σ‖Lq(Fn∗) = |F|−k

 1
|F|n

∑
ξ

#p−1(ξ)q

 1
q

≥ |F|−k |F|
k−n

q (as q ≥ 1).

So in order for (4) to hold we must have

|F|−k+ k−n
q ≤ C |F|−

n
p .

Thus (4) can hold with C independent of |F| only when

n

p
≤ k +

n− k

q
.(5)

By duality we obtain that if (4) holds with C independent of |F| , then
(

1
p , 1

q

)
must

lie in the convex hull of the points (0, 1), (1, 1), (0, 0) and
(

n
2n−k , n−k

2n−k

)
. The last

of these points is where the interest lies.

In the case that the image of p contains an s-dimensional affine subspace of Fn∗, it
makes sense to test (4) on the characteristic function of that s-plane, yielding the
necessary condition 1

q ≥ 1
p −

k−s
n−s . (We leave the details of this calculation to the

interested reader.) This provides a further necessary condition when s > k/2.
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2.2. The maximal averaging problem. Let, for α ∈ A, pα : Fk → Fn∗ be a
polynomial of degree at most d. Let σα be associated to pα as in the Introduction.
We wish to determine those exponents p for which we have∥∥∥∥sup

α∈A
|f ∗ σα|

∥∥∥∥
p

≤ C ‖f‖p(6)

with C depending on k, n, d and max
α∈A

max
ξ

#p−1
α (ξ), as well as on the sizes of the

indexing set A and of
⋃

α∈A
im pα.

Define the number r by #
( ⋃

α∈A
im pα

)
= |F|k+r. Note that |F|r ≤ #A, and

that r ≤ n − k. Take f = |F|−n
δ0 as in the previous subsection. As before,

‖f‖p = |F|−n/p
, while f ∗σα(ξ) ≥ |F|−k on im pα, so that sup

α
|f ∗ σα(ξ)| ≥ |F|−k on⋃

α∈A
im pα. Thus

∥∥∥∥sup
α
|f ∗ σα|

∥∥∥∥
p

≥ |F|−k

(
#

( ⋃
α∈A

im pα

)
|F|−n

) 1
p

= |F|−n/p |F|−k+ k+r
p .

Consequently if (6) is to hold with C independent of |F| we must have p ≥
k+r

k . Obviously, when p = ∞ , (6) holds, so the main interest is what happens at
p = k+r

k .

One may think of the index ‘r’ as measuring the “number of parameters” in the
family of maximal averages: if # im pα = |F|k for each α and the distinct im pα are
disjoint, then #

⋃
α∈A

im pα = |F|k #A. Our assumption then corresponds to #A =

|F|r . So r = 0 corresponds to a simple convolution operator while r = 1 corresponds
to the one-parameter averages as employed for example in the Hardy–Littlewood
and spherical maximal functions. Higher values of r correspond to multiparameter
averages. (In our later discussion on sufficient conditions, we shall always assume
that each pα is injective, so that r will always be nonnegative.)

Now we discuss the other necessary condition r ≤ k from Theorem 2.

Let p : Fk → Fn∗ be an arbitrary polynomial of degree d. We will let pα be
suitable translates of p (i.e. we take Aα = 0 for all α). Indeed, for s ∈ Fm∗ we
define ps = p + (s, 0) and E =

⋃
s′∈F(n−m)∗{(0, s′) − im p}. Then |E| ≤ |F|n−m+k,

and so ‖χE‖p ≤ |F|
k−m

p . On the other hand, if for y ∈ Fn∗ we set y = (s, s′) ∈
Fm∗ × F(n−m)∗, then sups χE ∗ σs(y) = 1. (We have χE ∗ σs(y) ≤ 1 always, and
with equality iff χE = 1 on y − im ps = (s, s′) − (im p + (s, 0)) = (0, s′) − im p.
But E is the union of these, so that sups χE ∗ σs(y) = 1 for all y ∈ Fn∗.) Therefore
‖ sups χE ∗ σs‖p = 1. Hence if (6) is to hold for this particular family of affine
images of p with C independent of |F| we must have m ≤ k.

In the situation of Theorem 2, we are assuming that the images of the pα are
disjoint, and so the role of m in the previous paragraph is taken by r.



8 ANTHONY CARBERY, BRENDAN STONES AND JAMES WRIGHT

It is to be noted that a similar phenomenon occurs in the euclidean case when we
use translations. We do not know whether it is necessary that r ≤ k when we use
only linear rather than affine images of a given fixed p.

3. Sufficient conditions

We first discuss the main analytical arguments for the averaging and maximal
averaging problems respectively, and then discuss the contribution made by Weil’s
estimates [11].

3.1. Averages. We begin with the main argument for Theorem 1.

Theorem 3. Let 1 ≤ k < n and let p : Fk → Fn∗ be a polynomial (of degree d)
such that for x 6= 0,

|σ∨p (x)| ≤ (d− 1)k|F|−k/2.(7)

Then

‖f ∗ σp‖
L

2n−k
n−k (Fn∗)

≤ A ‖f‖
L

2n−k
n (Fn∗)

where A = 1 + (d− 1)k 2n−2k
2n−k

[
max

ξ
#p−1(ξ)

] k
2n−k

.

Remarks

1. The key issue in applying this theorem is the verification of (7), in particular in
the setting of Theorem 1. It is here that the analysis of Weil [11] enters and plays
a decisive role. It is for this reason that the constant in (7) is written in the way it
is. We discuss this in detail below.

2. Interpolation with trivial results gives the full range of exponents for which
convolution with σp is bounded with a constant independent of |F|.

3. The second term appearing in A is merely a convex combination of (d− 1)k and
maxξ #p−1(ξ).

Proof. We write σp as σ for simplicity. We decompose σ∨ as

σ∨ = σ∨χx6=0 + δ0

(recalling that σ∨(0) = mass of σ = 1). This is the Littlewood–Paley decomposition
in the setting of vector spaces over finite fields.

Correspondingly we have
σ = K̂ + 1

where K(x) = σ∨(x)χx6=0 satisfies ‖K‖∞ ≤ (d − 1)k |F|−k/2 by assumption (7).
Now

‖f ∗ 1‖q ≤ ‖f‖p (1 ≤ p, q ≤ ∞),

so it suffices to consider the contribution of convolution with K̂.
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For this we do an L1 − L∞ and an L2 − L2 estimate. For the former we have

‖f ∗ K̂‖∞ ≤ ‖K̂‖∞‖f‖1 = ‖σ − 1‖∞‖f‖1 ≤ |F|n−k max
ξ

#p−1(ξ) ‖f‖1 ;

while for the latter we have, by virtue of (7),

‖f ∗ K̂‖2 = ‖f∨K‖2 ≤ ‖K‖∞ ‖f∨‖2 ≤ (d− 1)k |F|−k/2 ‖f‖2 .

Interpolation between these two estimates finishes the proof. �

Further results on convolution averages of the type discussed here are to be found
in [6].

3.2. Maximal averages. We now give the main argument for Theorem 2. Once
again the main issue will be verification of (7) in that setting.

Theorem 4. Let 1 ≤ k < n. Let A be an indexing set satisfying #A ≤ D |F|r . For
α ∈ A suppose pα : Fk → Fn∗ is a polynomial such that (7) holds when x 6= 0 for
all α, and such that #

⋃
α∈A

im pα ≤ D |F|k+r̃ for some r̃ ≤ r. If r ≤ k, then∥∥∥∥sup
α∈A

|f ∗ σα|
∥∥∥∥

L
2r̃−r+k
r̃−r+k (Fn∗)

≤ B ‖f‖
L

2r̃−r+k
r̃−r+k (Fn∗)

where B depends only upon d, k, D and max
α

max
ξ

#p−1
α (ξ).

Remarks

1. This is the sharp estimate when r̃ = r as the remarks of Section 2 indicate.

2. Once again, the constant B depends neither on |F| nor the dimension n, and in
this case the Lp exponent is also independent of n.

3. Note that (7) is invariant under affine transformations, so that any family of
affine images of a single p satisfying (7) will also satisfy it.

4. The theorem does not cover the maximal operator corresponding to pa,b(t) =
(at, bt2) as a, b vary over F.

Proof. As in Theorem 3 we write σ∨α = σ∨αχx6=0 + δ0 and σα = K̂α +1. Once again
we have ‖f ∗ 1‖p ≤ ‖f‖p for all p, so it is enough to show∥∥∥∥sup

α∈A

∣∣∣f ∗ K̂α

∣∣∣∥∥∥∥
2r̃−r+k
r̃−r+k

≤ B ‖f‖ 2r̃−r+k
r̃−r+k

.

When r ≤ k, 1 ≤ 2r̃−r+k
r̃−r+k ≤ 2, and we obtain the desired estimate by interpolation

between p = 1 and p = 2.
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For the p = 1 estimate, we have for each α and ξ,

|K̂α(ξ)| = |σα(ξ)− 1|
≤ |F|n−k #p−1

α (ξ) + 1

≤ M |F|n−k
χ∪αim pα

(ξ) + 1

where M = sup
α

sup
ξ

#p−1
α (ξ), so that∫

Fn∗

sup
α

∣∣∣K̂α(ξ)
∣∣∣ dξ ≤ 1 + M |F|−k #

⋃
α

im pα .

Thus,

‖ sup
α
|f ∗ K̂α| ‖1 ≤ ‖ |f | ∗ sup

α
|K̂α|‖1

≤

[
1 + M |F|−k #

( ⋃
α∈A

im pα

)]
‖f‖1

≤ [1 + MD |F|r̃] ‖f‖1 .

Now we turn to the p = 2 estimate. We have

‖ sup
α
|f ∗ K̂α| ‖2 ≤ ‖(

∑
α

|f ∗ K̂α|2)
1
2 ‖2

=

(∑
α

‖f ∗ K̂α‖2
2

) 1
2

≤

(∑
α

‖f̂‖2
2‖Kα‖2

∞

) 1
2

≤ (d− 1)k |F|−k/2 (#A)
1
2 ‖f‖2

≤ (d− 1)kD
1
2 |F|

r−k
2 ‖f‖2 .

Interpolation now shows that the bound on L
2r̃−r+k
r̃−r+k is essentially a convex combi-

nation of DM and (d− 1)kD
1
2 . �

Remark

If, in the notation of Theorem 4, #A = |F|r and #
⋃

im pα = |F|k+r̃ with r̃ < r ≤
k, the Lp exponent (2r̃ − r + k)/(r̃ − r + k) is worse than (r̃ + k)/k which is what
the analysis of the previous section suggests we should have. This is perhaps due
to the inefficiency of estimating an `∞ norm by an `2 one in the p = 2 estimate.

Further results on maximal functions associated to quadric surfaces are to be found
in [6].

3.3. Exponential sums and decay estimates. We shall obtain the estmates (7)
needed above by using Weil’s remarkable estimates, see [11]. We use the notation
(·, ·) to denote greatest common divisor.
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Theorem 5. Let F be a finite field and let e : F → S1 be a nonprincipal additive
character. If p : F → F is a polynomial of degree d with (char F, d) = 1, then

|
∑
s∈F

e(p(s))| ≤ (d− 1) |F|
1
2 .

Note that when p is quadratic this is simply a gauss sum estimate. Also when
F is the field of integers modulo a prime, the estimate holds for any nonconstant
polynomial p.

Corollary 6. Let p : F → Fn∗ be a polynomial curve of degree d ≥ 2 such that im p
lies in no proper affine subspace of Fn∗. If char F > d, and x 6= 0, then∣∣σ∨p (x)

∣∣ ≤ (d− 1) |F|−
1
2 .

We can combine this corollary with Theorem 3 to obtain:

Corollary 7. Let p : F → Fn∗ be an injective polynomial curve of degree d ≥ 2
such that im p lies in no proper affine subspace of Fn∗. If char F > d, then

‖f ∗ σp‖
L

2n−1
n−1 (Fn∗)

≤ A ‖f‖
L

2n−1
n (Fn∗)

where A depends only on n and d.

A similar remark applies in the context of maximal functions.

When k ≥ 2, for reasons allied to Remark 3 below, we are not in a position to
make such a general statement, and instead work with a more restricted class of
polynomial surfaces.

We define p : Fk → Fn∗ as follows. Let qi
j : F → F be a polynomial, where 1 ≤ i ≤

n− k + 1 and 1 ≤ j ≤ k, and where deg qi
j > deg qi−1

j ≥ 2. For t = (t1, t2, ....., tk) ∈
Fk let

p(t) = (t1, ..., tk, q1
1(t1) + .... + q1

k(tk), ...., qn−k+1
1 (t1) + .... + qn−k+1

k (tn)).

In Theorems 1 and 2 we consider the ‘typical’ case

pk(t) = (t1, ..., tk, t21 + ... + t2k, ..., tn−k+1
1 + ... + tn−k+1

k ).

Note that by construction, im p lies in no proper affine subspace of Fn∗.

Proposition 8. Let the polynomial p be as above. Suppose char(F) >deg p =
d. Then, for x 6= 0, ∣∣σ∨p (x)

∣∣ ≤ (d− 1)k|F|−k/2.

Remark In order for (7) to hold it is necessary that im p lie in no proper affine
subspace of Fn∗, since if x is such that x · p(t) = β for all t we have σ∨p (x) = e(β).

Proof. We have

x · p(t) = x1t1 + xk+1q
1
1(t1) + ... + xnqn−k+1

1 (t1)
+ x2t2 + xk+1q

1
2(t2) + ... + xnqn−k+1

2 (t2)
...
+ xktk + xk+1q

1
k(tk) + ... + xnqn−k+1

k (tk)
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so that
∑

t∈Fk

e(x · p(t)) factorises as the product

k∏
j=1

∑
s∈F

e(xjs + xk+1q
1
j (s) + ... + xnqn−k+1

j (s)).

If now x 6= 0 but xk+1, xk+2, ..., xn are all zero, at least one of the factors is a non-
principal character sum and hence is zero by (3). If some x` 6= 0, k + 1 ≤ ` ≤ n we
can apply Weil’s Theorem 5 to each factor to conclude that its absolute value is
less than or equal to (deg qn−k+1

j − 1) |F|
1
2 ≤ (d− 1) |F|

1
2 . Hence for x 6= 0,

|
∑
t∈Fk

e(x · p(t))| ≤ (d− 1)k |F|k/2
,

from which (3) follows upon dividing by |F|k .

�

Remarks

1. Combining Theorems 3 and 4 with Proposition 8 we conclude the proofs of
Theorems 1 and 2 respectively.

2. That the power of |F| in Proposition 8 is sharp can be seen (in special cases) by
applying the necessary conditions of Section 2. More generally, a direct L2 argument
is available. Indeed, assume that |σ∨(x)| ≤ A |F|−α/2 when x 6= 0. Then ‖σ∨‖2

2 ≤
A2 |F|−α (|F|n − 1) + 1 ≈ |F|n−α

, while ‖σ‖2
2 = 1

|F|n
∑

ξ∈Fn∗
|F|2(n−k) #p−1(ξ)2 ≥

|F|n (#im p)−1 (by Cauchy-Schwarz). So |F|n−α ≥ C |F|n (#im p)−1. Hence if
p : Fk → Fn∗, we have |F|α ≤ C#im p ≤ C |F|k . So the best α in this case is k.

3. Deligne [4] has proved a far reaching k-dimensional generalisation of Weil’s the-
orem, but it seems not so straightforward in practice to work directly with it in our
context. However when k = n− 1 and p is of the form (t1, ..., tn−1, q(t1, ..., tn−1)),
with q a quadratic form of full rank, direct calculation shows that (7) holds provided
that char F > 2. (Just complete the square and find a product of gauss sums.)

4. Averages over surfaces with affine subspaces of large dimension

Let p : Fk → Fn∗ be a polynomial surface. Suppose im p contains an affine sub-
space of dimension s. As we have seen in Section 2 above, when s > k/2 this
introduces the new necessary condition 1

q ≥
1
p −

k−s
n−s for the Lp−Lq mapping prob-

lem. (This is in addition to the standard necessary conditions 1
q ≥ 1

p −
n−k

n and
1
q ≥

1
n−k

(
n
p − k

)
.) One will therefore not have the optimal decay rate

∣∣σ∨p (x)
∣∣ ≤

C |F|−k/2 (x 6= 0) in such cases. Indeed, the proof of Theorem 3 together with the
necessary condition 1

q ≥
1
p −

k−s
r−s yields:

Proposition 9. If p : Fk → Fn∗ is a polynomial surface such that
∣∣σ∨p (x)

∣∣ ≤
C |F|−r for x 6= 0 and if the image of p contains an affine s-dimensional subspace,
then r ≤ k − s.
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One might therefore ask whether, for each n, k and s with 0 ≤ s ≤ k < n, there exist
polynomial surfaces p : Fk → Fn∗ which contain an affine subspace of dimension
s and which satisfy ∣∣σ∨p (x)

∣∣ ≤ C

{
|F|−k/2

s ≤ k/2
|F|−(k−s)

s ≥ k/2

for x 6= 0. If so, one may further ask what are the Lp − Lq mapping properties of
convolution with σp when s > k/2.

To partially answer the first question when s ≥ k/2, take ` even, ` ≤ k and consider
the polynomial

(t1, ..., tk, t21−t22+t23−t24+...+t2`−1−t2` , ......., t
n−k+1
1 −tn−k+1

2 +....+tn−k+1
`−1 −tn−k+1

` ).

The image of this map contains the subspace

(α1,−α1, α2,−α2, ...., α`/2,−α`/2, α`+1, ...αk, 0, ...0)

of dimension `/2+(k−`) = k−`/2, while by the results of Section 3, the correspond-
ing σp satisfies

∣∣σ∨p (x)
∣∣ ≤ (n − k)k |F|−`/2 when x 6= 0. Setting s = k − `/2 gives

the desired estimate.

To partially answer the second question, once again tracing the proof of Theorem
3 we obtain that

‖f ∗ σp‖q ≤ C ‖f‖p

for
(

1
p , 1

q

)
=
(

n−k
2(n−s) ,

n−2s+k
2(n−s)

)
(which is the intersection of 1

q = 1
p −

k−s
n−s with

1
p + 1

q = 1.) To obtain a further partial result, we introduce the concept of Sobolev
spaces over vector spaces over finite fields. For 1 ≤ p ≤ ∞ and α ≥ 0 we define the
Lp

α norm of f on Fn∗ by

‖f‖Lp
α

= ‖f‖p + |F|α
∥∥∥∥∥∥f −

∫
Fn∗

f

∥∥∥∥∥∥
p

.

Analogues of the usual Sobolev embedding and interpolation theorems hold, and
are left as an exercise for the interested reader. The size estimate for σ∨p gives

‖f ∗ σp‖L2
k−s

≤ C ‖f‖2

and we trivially have
‖f ∗ σp‖∞ ≤ ‖f‖∞ ,

so that for 0 ≤ 1
p ≤

1
2

‖f ∗ σp‖Lp
2(k−s)

p

≤ C ‖f‖p .

By Sobolev embedding,

‖f ∗ σp‖q ≤ C ‖f ∗ σp‖Lp
2(k−s)

p

≤ C ‖f‖p

provided
1
q

=
1
p
− 2(k − s)

pn
=

n− 2k + 2s

pn
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and 0 ≤ 1
p ≤

1
2 . This represents an improvement over what we obtain by trivially

interpolating the points (0, 0),
(

n−k
2(n−s) ,

n−2s+k
2(n−s)

)
, but does not give any information

on the line 1
q = 1

p
n−k

n , (where the examples lead us to believe that we should have
estimates for sufficiently small 1/p.)

5. Radon transforms

For 1 ≤ k ≤ n − 1, let Gn,k be the class of all k-planes in Fn∗. For f defined on
Fn∗ and ω ∈ Gn,k let

Rf(ω) =
1
|F|k

∑
ξ∈ω

f(ξ) .

We consider this as a map from Lp(Fn∗) to Lq(Gn,k) endowed with normalised
counting measure. The following result is a finite field analogue of one of Christ’s
result in [2]

Theorem 10. If

‖Rf‖Lq(Gn,k) ≤ C ‖f‖Lp(Fn∗)(8)

holds with C independent of |F|, then
(

1
p , 1

q

)
lies in the convex hull H of

(
k+1
n+1 , 1

n+1

)
,

(0, 0), (1, 1) and (0, 1). Conversely, if
(

1
p , 1

q

)
lies in H\

(
k+1
n+1 , 1

n+1

)
, then (8) holds

with C independent of |F|. Finally, if
(

1
p , 1

q

)
=
(

k+1
n+1 , 1

n+1

)
, then the restricted

type inequality

‖Rf‖Ln+1(Gn,k) ≤ C ‖f‖
L

n+1
k+1 ,1

(Fn∗)
(9)

holds with C independent of |F|.

It will be useful to note that the dual operator R∗ to R is the map taking functions
g defined on Gn,k to functions defined on Fn∗ given by

R∗g(ξ) =
1

Pn,k

∑
{ω: ξ∈ω}

g(ω)

where Pn,k denotes the number of k-planes containing a given point, and that there
is a corresponding dual inequality

‖R∗g‖Lp′ (Fn∗) ≤ C ‖g‖Lq′ (Gn,k)(10)

to (8) and dual statement to Theorem 10. This remark suggests also the general
problem of Radon transforms mapping Lp(Gn,`) to Lq(Gn,k) for various 0 ≤ k, ` ≤
n− 1; some results in this setting are to be found in [6].

Before we begin the proof we first note that |Gn,k| is bounded above and below
by an absolute constant times |F|(n−k)(k+1), and that the number Pn,k of k-planes
containing any given point is bounded above and below by an absolute constant
times |F|k(n−k). Moreover the number of k-planes containing a given s-plane (with
s ≤ k) is bounded above and below by |F|(n−k)(k−s).
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Proof. We begin with the necessary conditions.

Taking f to be the characteristic function of 0, we have ‖f‖p = |F|−n/p. Now
Rf(ω) = |F|−k if 0 ∈ ω and is zero otherwise. So

‖Rf‖q = |F|−k (#{k-planes containing 0}/|Gn,k|)1/q

which is bounded above and below by |F|−(k+(n−k)/q). So a necessary condition is
k + (n− k)/q ≥ n/p.

For a second necessary condition we take g to be the characteristic function of a
single k-plane V in the dual inequality (10). Now ‖g‖q′ = |Gn,k|−1/q′ , which is
bounded above and below by |F|−(n−k)(k+1)/q′ . Now R∗g(ξ) = P−1

n,k if ξ ∈ V and is
zero otherwise. So

‖R∗g‖p′ = P−1
n,k|F|

−(n−k)/p′

which is bounded above and below by |F|−(n−k)k|F|−(n−k)/p′ = |F|−(n−k)(k+1/p′).
So a second necessary condition is (k + 1/p′) ≥ (k + 1)/q′, i.e. 1/q ≥ 1/(k + 1)p.

Noting that the lines 1/q = 1/(k + 1)p and k + (n− k)/q = n/p meet at
(

1
p , 1

q

)
=(

k+1
n+1 , 1

n+1

)
we see the necessity of

(
1
p , 1

q

)
lying in H.

Now we turn to the sufficient conditions. Since inequality (8) is easily seen to hold
for
(

1
p , 1

q

)
= (0, 0), (1, 1) and (0, 1), it suffices by interpolation to prove (9), which

is (8) applied to f of the form χE , and amounts to showing

∑
ω∈Gn,k

RχE(ω)n+1 ≤ C

(
|E|
|F|n

)k+1

|Gn,k|.

Upon multiplying out the left hand side and using |Gn,k| ∼ |F|(n−k)(k+1) this be-
comes ∑

ξ1,...,ξn+1∈E

#k-planes containing ξ1, . . . , ξn+1 ≤ C|E|k+1|F|k(n−k).(11)

For 0 ≤ s ≤ k, let ∆s consist of the (n + 1)-tuples of points (ξ1, . . . , ξn+1) ∈ En+1

such that their affine span V (ξ1, . . . , ξn+1) is of dimension s. Then,∑
ξ1,...,ξn+1∈E

#k-planes containing ξ1, . . . , ξn+1

=
k∑

s=0

∑
(ξ1,...,ξn+1)∈∆s

#k-planes containing ξ1, . . . , ξn+1

=
k∑

s=0

∑
V

∑
(ξ1,...,ξn+1)∈∆s:V (ξ1,...,ξn+1)=V

#k-planes containing V

≤C|F|(n−k)(k−s)
k∑

s=0

∑
V

#{(ξ1, . . . , ξn+1) ∈ ∆s : V (ξ1, . . . , ξn+1) = V },
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so in order to show (11) it suffices to show, for each 0 ≤ s ≤ k,∑
V

#{(ξ1, . . . , ξn+1) ∈ ∆s : V (ξ1, . . . , ξn+1) = V } ≤ C|E|k+1|F|(n−k)s,

that is,

#∆s ≤ C|E|k+1|F|(n−k)s.(12)

Now the left hand side of (12) does not see the parameter k, and the right hand
side has lower bounds (when k ∈ {s, . . . , n−1}) of |E|s+1|F|s(n−s) when |E| ≥ |F |s,
and |E|n|F|s ≥ |E|n+1 when |E| ≤ |F |s respectively. In the latter case |E| ≤ |F |s
we are finished and so we are left with showing

#∆s ≤ C|E|s+1|F|s(n−s)(13)

when |E| ≥ |F |s.

Now #∆s ≤
(
n+1
s+1

)
#∆̃s, where ∆̃s consists of those members (ξ1, . . . , ξn+1) of ∆s

such that the affine span of ξ1, ξ2 . . . , ξs+1 is of dimension s. Thus for each of the
first s + 1 coordinates of a member of ∆̃s we choose from amongst at most |E|
possibilities, leading to a factor of |E|s+1, while for s + 2 ≤ j ≤ n + 1 we are
constrained to choose ξj from the s-dimensional affine plane already determined by
the first s + 1 choices. That is, for s + 2 ≤ j ≤ n + 1 there are at most |F|s choices
for ξj , leading to a factor of |F|s(n−s). Altogether, #∆̃s ≤ |E|s+1|F|s(n−s), so we
arrive at (13) and this finishes the proof.

�

6. Further remarks

Results such as Theorem 10 and Proposition 8 in the current paper have applications
to the theory of restriction of the Fourier transform in the setting of vector spaces
over finite fields, the main topic of [5]. For example, Proposition 8 together with
the methods of [5] yields:

Proposition 11. With p : Fk → Fn∗ satisfying (7), and with

(gdσ)∨(x) =
1

|F|k
∑
t∈Fk

g(t)e(x · p(t)),

then
‖(gdσ)∨‖

L
2(2n−k)

k (Fn)
≤ C ‖g‖L2(Fk∗)

with C independent of |F| .

A Radon transform argument allows one to improve the restricted type L8/5,1 extension
theorem for paraboloids in F3∗ from [5] to the corresponding strong type result. De-
tails will appear elsewhere.

Finally, two questions which we do not pursue here: which are the Lp − Lq and
Sobolev estimates for the maximal function of Theorem 2? And what is the effect
of affine subspaces of large dimension on the maximal function of Theorem 2?
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