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ABSTRACT. We show that some singular maximal functions and singular Radon transforms satisfy a weak type
Lloglog L inequality. Examples include the maximal function and Hilbert transform associated to averages
along a parabola. The weak type inequality yields pointwise convergence results for functions which are locally
in Lloglog L.

1.Introduction

Let ¥ be a compact smooth hypersurface of R?, and let ;1 be a compactly supported smooth density
on Y, i.e.

p = xdo
where y € C§°(R?) and do is the surface carried measure on X.
Unless stated otherwise we shall always make the following

Curvature Assumption. The Gaussian curvature does not vanish to infinite order on 3.

We consider a group of dilations on R?, given by t¥ = exp(Plogt), t > 0, and we assume that P is a

d x d matrix whose eigenvalues have positive real part. For k € Z we set d;, = 2¥F and define the measure
pi by
(1.1) {pr, £) = (u, £(0r))-

We shall consider the convolutions u * f and study the behavior of the maximal function
(1.2) M f(z) = sup |px * f(2)]
keZ

and some related singular integrals. By a rescaling we may assume that the measure p is supported in the
unit ball {z : |z| < 1}.

The first complete LP bounds (1 < p < oo) for a class of such operators (Hilbert transforms on curves)
seems to be due to Nagel, Riviere and Wainger [9]. A classical reference is the article by Stein and Wainger
[17] containing many related results; see also the paper by Duoandikoetxea and Rubio de Francia [6] which
contains general results for maximal functions and singular integrals generated by singular measures, with
decay assumptions on the Fourier transform. Concerning the behavior on L' it is presently not known
even for the special classes considered here whether the maximal operator M is of weak type (1,1), i.e.
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whether it maps L! to the Lorentz space LY*°. This question had been raised in [17]. For some ’flat’ cases
counterexamples are in [3], but these do not seem to apply in the case of our curvature assumption.

We shall examine the behavior of the maximal function on spaces “near” L!. Two results in this
direction are known: Christ and Stein [4] showed by an extrapolation argument that if f is supported in
a cube Q and f € Llog L(Q) then the maximal function M f belongs to L1'*> (again under substantially
weaker finite type assumptions). Moreover Christ [2] showed that the lacunary spherical maximal function
maps the standard Hardy space H'(R?) to L'*°, and that maximal functions and Hilbert transforms
associated to a parabola in R? map the appropriate Hardy space with respect to nonisotropic dilations to
L1>°, Weak L' (see also Grafakos [8] and our recent paper [12] for related results). For the two operators
associated to the parabola (t,%2) it is also known ([11]) that they map the smaller product-type Hardy
space H} ;(R x R) to the smaller Lorentz space L.

We recall that for f to belong to a Hardy space H' a rather substantial cancellation condition has to
be satisfied. If locally the cancellation is missing one has a restriction on the size of f; more precisely if
a function f € H! is single signed in an open ball then f belongs to Llog L(K) for all compact subsets
K of this ball. This can be deduced from the maximal function characterization of H' and the fact that
fo € LlogL(qo) if fo is supported on the cube go and the appropriate variant of the Hardy-Littlewood
maximal function of fo belongs to L'(go), see [15, §1.5.2 (c)]. Here we are interested in the behavior in
Orlicz spaces near L' without assuming additional cancellation conditions.

Our main result is that the maximal operator acts well on Lloglog L and the global version satisfies
weak type Lloglog L inequalities. We first give a

Definition. Let ® : Rt — Rt be a conver function and let T' be an operator mapping simple functions on
R? to measurable functions. T is of weak type ®(L) if there is a constant C so that the inequality

(1.3) l{z € R : [Tf(2)| > o} g/@(w)dﬂ:

o

holds for all o > 0.

Abusing the notation slightly we shall say that T is of weak type Lloglog L if there is a constant C so
that the inequality (1.8) holds with ®(t) = tloglog(e? + t).

Theorem 1.1. The mazimal operator M is of weak type Lloglog L.

We also prove a related theorem on singular convolution operators with kernels supported on hyper-
surfaces (assuming our finite type curvature assumption).

Let pr be as in (1.1) and assume that in addition

(1.4) / du =0,
For Schwartz functions f define the singular integral operator (or singular Radon transform) T' by

(1.5) Tf(@) =) p*f.

kEZ

Theorem 1.2. T extends to an operator which is of weak type Lloglog L.



1.3 Remarks and examples.

1.3.1. Theorem 1.1 implies an estimate on the Orlicz space ®(L)(Qq) where Qg is a unit cube and
the norm on ®(L) is given by ||f|le(z) = inf{a > 0: fQo ®(|f(z)|/a)dx < 1}. Consider the local maximal
operator

Miocf(z) = sup |:u'k * [fXQo](x)|;
k<C

then My, maps Lloglog L(Qo) to L'*°. To see this we may assume that |||z 10g10g £.(Qo) = 1. Then the
estimate

|{.’E € Qo : Mlocf > Oé}' S Oé_l

is trivial for o < 1 while for a > 1 it follows from the better estimate (1.3).

We note that conversely the better estimate [{z € R* : Mioof > a}| < [ ®(C|f(z)|/a) can be deduced
from the Lloglog L(Qo) — L*** boundedness by the Orlicz space variant of Stein’s theorem [14]. Then
the global variant of Theorem 1.1 follows by scaling and limiting arguments.

1.3.2. Similarly if we assume the cancellation condition (1.4) then the local singular Radon transform
Yk<c M * [fXQ,](x) maps Lloglog L(Qo) to L.

1.3.3. Suppose that [ du = 1 and suppose that the measurable function f belongs locally to Lloglog L;
Le. [i |f(z)|loglog(e? + |f(x)|)dz < oo for every compact set K. Then limg_, oo px * f(x) = f(2) almost
everywhere.

This follows by a standard argument. Observe that we have [ a!|f(z)|loglog(e®*+a~!|f(z)|)dz < oo,
for every a > 0. Fix a > 0 and let

Qu(f) = {z : limsup py, * f(z) — lkiminfpk * f(z) > a}.
k——o00 —+—0

Given € > 0 we show that |Q4(f)| < €. One can find a bounded function h with compact support so
that [ ®(2C|f — h|/a)dx < € and since py, x h — h almost everywhere we see that Q,/2(h) has measure
zero. Moreover Qo (f)| < [Qq/2(f — h)| +[Q4/2(h)| and by Theorem 1.1 we see that Q,/2(f — h) and thus
Q4 (f) has measure < 2e. Since € was arbitrary we see that Q,(f) has measure zero; thus U, Q- (f) has
measure zero and the result on pointwise convergence follows.

1.3.4. Examples of Theorem 1.1 include the lacunary spherical maximal operator where uy * f is the
average of f over the sphere of radius 2% centered at x (for the early LP results see [1], [5]). The sphere
may be replaced by any smooth compact hypersurface for which the curvature vanishes of finite order only,
and the isotropic dilations may be replaced by nonisotropic ones. We remark that the proof of Theorem
1.1 for isotropic dilations is much less technical, see the expository note [13].

1.3.5. Other examples of Theorem 1.1 concern the averages along a parabola
1 T
Pr-f(z) = ;/ flzy —t, 20 — t¥)dt
0

or higher dimensional versions for paraboloids (#',[t'|’), b # 1. Again if f belongs locally to Lloglog L
then lim,_,o Prf(z) = f(z) almost everywhere.

1.3.6. Similarly Theorem 1.2 can be used to deduce the weak type Lloglog L inequality for the Hilbert
transform

Hi@) =po. [ "t - )%

We give a brief outline of the paper. The main novelty in this paper is a stopping time argument
based on the quantities of thickness ©,, and length A, associated to a density v(z)dz (depending on an
additional parameter n). Basically, the point is that the length A,[v] is used to control the size of an
exceptional set while the thickness ©,[v] is used to control the L? norm of an essential part of the maximal
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function outside of the exceptional set, for suitable choices of v. The quantities of length and thickness
are complementary in some sense; this and other basic properties are discussed in §2. In §3 we include
preliminary and standard arguments from Calderén Zygmund theory. These arguments can be skipped
by the experts; they may be used to reprove the known Llog L estimates. In §4 we describe the stopping
time argument based on length and thickness. The proof of the weak-type Lloglog L inequality for the
maximal operator is given in §5. The bounds for the singular Radon transforms are discussed in §6.

2. Length and thickness

In this section let v be an integrable nonnegative function which vanishes in the complement of a
dyadic cube ¢g. Dyadic cubes are supposed to be ‘half-open’, i.e. of the form H?Zl[nﬂm, (n; +1)2™) where
n;,m € 7.

We define a dyadic version of a one-dimensional Hausdorff content or simply length A(E) to be

(2.1) AB) := inf > UQ)

QeEQ

where Q ranges over all finite collections Q of dyadic cubes with E C [Ugeo @, and I(Q) denotes the
sidelength of (). Note that this definition differs from the usual definition of a one-dimensional Hausdorff
measure as A(E) <1(Q) if E is contained in the dyadic cube Q.

Given n € Z we denote by E,[v] the conditional expectation of v, for the o-algebra generated by dyadic
cubes of sidelength 27"; thus

Ealel(e) = Y- xo@)Ql™" [ ow)dy
Q Q
where of course the sum runs over all dyadic cubes of sidelength 2=". We also define
(2.2) S, (v) = {z : E,[v](x) # 0}
Notice that v(x) = 0 for almost every z € R? \ &,,[v] since v is nonnegative. Now define
(2.3) Anfo] = A(Sn(v)).
Note that &,(v) is a union of dyadic cubes of length 27" and therefore the infimum in the definition

of A\ becomes a minimum; i.e. there is a collection Q of dyadic cubes covering the set &, (v) so that
An[v] = 320co UQ). Here the cubes in Q have to be chosen to be of sidelength at least 27".

Next we define the thickness of v to be the quantity
(2.4) O,[v] := sup ! / v(z)dz
' TTNQ) Jg

where @ ranges over all dyadic cubes of sidelength [(Q) > 27". Clearly, if v vanishes off a dyadic cube ¢
it is sufficient to only consider dyadic subcubes of ¢ in (2.4).

We note that the restriction to dyadic cubes in the definition of length and thickness is convenient
but not essential. Since every cube of sidelength 27 (L € Z) is contained in a union of 2 dyadic cubes of
sidelength 27 we observe that

(2.5)



The quantities of length and thickness are complementary. Namely, it is immediate from the definitions
of A,, and ©,, that

(2.6) / o(@)dz < An[0]On[0].

The bound (2.6) can be attained, for instance if v is the characteristic function of a dyadic box. It would
be desirable to have a converse to (2.6), with bounded constants, but this generally does not hold as the
following example shows. Let E, be the union of n + 1 rectangles R, , parallel to the coordinate axes,
with dimensions (27%,1) so that the left lower endpoint of R, has coordinates (v,0), v = 0,...,n. Let
Un = XE,- Then Apfv,] = n+1, [v,(2)dz < 2 and O,[v,] = 1; thus the converse of (2.3) fails with a
uniform constant.

However we shall show that v can be efficiently decomposed into a sum of functions for which a converse
of (2.6) does hold. The main result needed to achieve this is

Proposition 2.1. Let q be a dyadic cube with I(q) > 2~™. Suppose that v is a bounded nonnegative
measurable function supported in q. Then there exists a decomposition

v=g+h

with nonnegative functions g and h and g, h vanish in the complement of the set &,,(v) C g; moreover the
inequalities

2.7) A < %An[v]

and

(2.8) Afolenl) <8 [ gla)do
hold.

In particular we see from (2.7/8) that the function g satisfies

An[g]Onlg] < 8 / 9()dz,

thus a converse to (2.6).

We shall first prove a technical result which states that for each dyadic cube one may construct a
function vy from v so that vy has ‘controlled’ thickness and ‘large’ integral.

Lemma 2.2. Let v > 0. For any dyadic cube I of sidelength > 27", there exists a (possibly empty)
collection Q[I] of disjoint dyadic cubes of sidelength > 2=™ contained in I, and a measurable function vr
such that

(2.9) 0 < wr(z) < vxir(e)

for all z € R?,

(2.10) Onlvr] <2y

and

(2.11) 2 [ vi(z)dz > 2~ Q)+ v(z)dz.
/ QGZQ:[I] /I\ Ugeoin @
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Proof. We prove this by induction on the sidelength of I. We first assume that [(I) = 27". Notice that
in this case we have

Onlvxr] = 6 /Iv(:c)d:c.

We distinguish two cases. First if @,uxr] < 2y we choose v = vxr and take for Q[I] the empty
collection. Clearly (2.9), (2.10), (2.11) are satisfied.

Next if O,vxr] > 2y we may choose a measurable function vy which vanishes outside I such that
0 < vr(z) < vxr(z) for all z € R? and

1
(2.12) v < 6) /Ivf(x)dm < 2.

Clearly ©,[vr] < 2v. For Q[I] we take the singleton collection {I} and (2.11) is satisfied because of the
first inequality in (2.12).
Now fix a dyadic cube I with I(I) > 27" and suppose that the lemma has been proven for all proper

dyadic subcubes I’ of sidelength at least 2~". Partition I into 2¢ subcubes Ii,..., I, of sidelength
$1(I). By the induction hypothesis, we may construct collections Q[I;] and measurable functions vy, for
j =1,...,2¢ satisfying the properties of the lemma relative to I;.

To prove the assertion for I we again distinguish two cases. First suppose that
2d
(2.13) Z/vlj (z)dz < 24I(I).
=1

In this case we simply define vr(z) := Efil vr;(z) and Q[I] := Uf; Q[I;]. Then by the induction
hypothesis

2¢ 2¢
Z/vf(w)dx = ZQ/va (z)dz > Z [27 Z Q) —|—/ v(z)dz
j=1 j=1 QeQ[Iy] Ij\Ugeerr;1@

which is equal to the right hand side of (2.11). From (2.13) it follows that

% /’UI(SU)dx <2y

and if @) is a proper dyadic subcube of I then @) C I; for some j and

@/Q’UI(-Z')d.T = @‘/QUIJ, (x)dm < 2y

by the induction hypothesis. Altogether (2.10) follows in case (2.13).
Now suppose that

(2.14) > / v, (z)dz > 291(I).
j=1

d
In this case we can find a function vy so that vy(z) < Ele vy, (z) and

(2.15) ~I(I) < /vId:U < 27I(D).
6



We then take for Q[I] the singleton set {I}. Then (2.11) is immediate by (2.15). Clearly also by (2.15)
l( D) Jur(z)dz < 27y. As above we can use the induction hypothes1s to see that if @) is a proper dyadic

subcube, thus contained in an I;, we have @ fQ vr(z)dz < Q) fQ v, (z)dz < 2v, thus altogether (2.10)
also holds in this case. O

Proof of Proposition 2.1. We define the critical thickness 9,(v) to be the largest non-negative number
7 such that the inequality

2.16 A, 2 l d
(2.16) YAnlu] < ”Qgg (Q)+/q\UQEQQv(w)w

holds for all finite collections Q of dyadic cubes of sidelength 27" (here the empty collection is admitted).
Equivalently, one can define 9,,(v) by

J\Ugeo @ V@)dz
Q (An[v] — 2ZQte(Q))+

Observe that since v vanishes in the complement of ¢ and since all cubes have sidelength at least 27" we
are in effect taking the infimum over a finite set of collections, each consisting of a finite number of cubes,
so that this infimum becomes a minimum, and (2.16) holds with v = ¢, (v).

Clearly 9,(v) < Ap[v]™! [v(z)dz. Observe also that 9,(v) > 0 since fq\ Ue QQv(x)d;v is positive
€
whenever "5 o 1(Q) < Ap[v]/2.
We can now find a finite collection Q; of dyadic cubes in g, of sidelength at least 27", so that

(2.17) 9 (v) := inf

(2.18) (V) Apv] = 20,( HQ v(z)dz
Qele L*
where
(2.19) E.:=q\ J @
QEQ:

We claim that
(2.20) Onlvxe,] < 29,(v).

Indeed, suppose for contradiction that there existed a dyadic cube Q' such that
(2.21) / v(@)dz > 20m(0)I(Q").
E.nQ

By (2.21) and ¥,(v) > 0 we have |E, N Q'| > 0 which implies that Q' ¢ Q;. If we apply (2.16) to the
collection Q1 U {Q'} we obtain

D (0)An[v] < 20, (v) (l(Q’)+ 3y l(Q)) + /E . v(z)dz,

QEQ;

but by (2.18) this implies



contradicting (2.21). This proves (2.20).

We shall now invoke Lemma 2.2 with v = ¢, (v) and I = ¢, thus finding a function v, and a collection
Qlg] obeying the properties in the lemma. We define

9(z) = v(@)xE. () + ve(2)Xq\E. (%)

and
h(z) = (v(z) — vy(2)) Xg\E. (2)-

Observe that g and h are nonnegative functions. To show (2.7) we use that A,[h] < Mg\ E.) since the
latter set is a union of dyadic cubes of sidelength 2—". Thus we observe

A< Y UQ) <

QEQ:

Ay 0],

DN | =

by (2.18). This gives (2.7).
To show (2.8) we use that v, < v and observe that by (2.11)

[o@ie > [o@ar> 5 (20.0) 3 1@+ [

QEQ[q] Q\UQGQ[q]Q

v(:c)dx) ,
since now v = ¥, (v). By (2.16) we thus see that

/g(m)d:c > %An[v]ﬁn(v).
By (2.20) and (2.10)
Onlg] < Onlvxe,] + G)n[vq] < 205, (v) + 29, (v) = 49, (v),

we see that ©,[g] < 8A,[v]™" [ g(z)dz which is (2.8). O

Remark. There are analogues of Proposition 2.1 where for 0 < 8 < d the length A\(E) is replaced by the
B-dimensional Hausdorff content

As(E) = inf 3 1Q)°

QeQ

where again Q ranges over all finite collections Q of dyadic cubes with £ C Ugeg@. Then if we define
A n(v) = A3(6,(v)) and the S-thickness by

1
Opnlv] = sgpw /Qv(x)da:

then an assertion analogous to Proposition 2.1 holds true. The proof requires only notational changes.

In what follows it will be convenient to extend the definition of length and thickness to not necessarily
nonnegative functions, and we simply put

Anlf] = An[lFNl; - ©nlf] := O f]]-

Proposition 2.1 can be applied iteratively. This leads to
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Proposition 2.3. Suppose that f is integrable and vanishes in the complement of dyadic cube of length 1.
Set ho(x) = f(x). For m > 1 we may decompose

f= hm+zgu
v=1

almost everywhere, so that the following properties hold.

(i) hi(z) and the g,(z) are nonnegative if and only if f is nonnegative, and h,,(z) and the g,(x) are
nonpositive if and only if f is nonpositive.

(i) Onlgy]Anlhy 1] < 8 [ |gy(z)|dz.
(iii) Anlhm] < 27 Au[f].
(i) If m > n then gm+1 = hm, hme1 = 0.

Proof. We first extend the statement of Proposition 2.1 to not necessarily nonnegative functions, in the
obvious way. We simply decompose | f| = §+h as in Proposition 2.1, and then define g(z) = g(z)sign (f(x)),
and h(z) = h(z)sign (f(zx)). We can then iterate this procedure (decomposing in the second step the
function |h| = g, + hg etc.) and obtain the above decomposition so that statements (i), (ii), (iii) hold.

Also observe that if Ap[|h|] < 27" then &,[h] is contained in a dyadic cube of sidelength 27" and we
thus know that ©,[|h|]A,[|R]] = [ |h(z)|dz. This implies statement (iv). O

We now describe how the quantities of length and thickness are used in certain convolution estimates
involving the measure p and appropriate localizations u™. To define the localization we choose a C'*
function ¢ with compact support in {z : || < 1/2} such that [ ¢(z)dz =1 and such that

[ $@P@ - @)z =0
for all polynomials of degree < d. Set ¢, (z) = 2"?¢(2"z) and let
(2.22) u" = op * p.
Lemma 2.4. Let f be supported on a set of diameter at most 10. Then

meas(supp (1" * f)) < An[f]-

Proof. Note that if @ is a cube with center zg and sidelength I(Q) with 27" < I(Q) < 100 and fq is
supported in ) then u™ % fg is supported on the xzg-translate of a tubular neighborhood of ¥ of width
O(1(Q)), thus on a set of measure O(I(Q)). The assertion follows by working with an efficient cover of the
support of f arising from the definition of A,,. O

The quantity ©,[f] can be used to estimate the L? norm of the support u™  f provided that one has a
lower bound for the curvature. To make this precise we first prove a slight variant of an observation in [7].

Lemma 2.5. Let 1 be a real valued C* function on [—1,1]%, so that SUp|q|<3 [0%Y(@)| < As; here A3 < 1.
Suppose |det " (yo)| > B and Q C [-1,1]7"1 is a d — 1 dimensional cube of sidelength &1, containing yo,
here e; < [10(d — 1)*A3] 1.

Let x be a C*® function supported on Q so that the inequalities ||0%X||oo < ca(€18)~'* hold. Define
the measure v by

<mn=/xwwww@w@'

9



and define the reflection (U, f) = (v, f(—-)).
Then there are constants C, so that

|05 [v * P)(x)| < Cap®® 21 |z 1ol

Proof. We assume that d > 3 but after notational modification the proof applies also to the case d = 2.
Since v * ¥ does not change if we translate the measure we may assume that yo = 0.

We compute
w5.1) = [[ 12 = par@ne)
—Z/ O+ YOGS + ) = Dl = L)

where the ¢ form a partition of unity on the unit sphere in R¥~! which is extended to a homogeneous
function of degree 0. We assume that the restriction of (i to the unit sphere is supported on a set of
diameter < ;3 and the summation is over O((g13)'~?) terms. The (}, satisfy the natural estimates

0% (u')| < CalerB) 1o/ |71

Note that in the integral defining I, the variables ' and y' are restricted to a ball of radius < ;8 and o'
is further restricted to a sector with solid angle &; 5.

Now note that by |02 , 1| < As, |det " (0)| > 8 and Cramer’s rule we have

Tixj
(2.23) | < B7H(d —1)° A5 4" (0)u'].
We now pick a unit vector 8y € supp (.
Let
¥ (0)0k
Ok = T (0)0,]
|9 (0)0k|
and let v 9,...,054—1 be an orthonormal basis of the orthogonal complement of Roy, and with ¢t =

ta,...,tq—1) define o, (") = 4" L4.05.:. Now write y' = g (t") + t10, and we get
1=2 ’

/t / /t (' + rou(t") + trog) Fu', Wi (b, £ )) by ' dt”
w S Sty
where
Uy (ty,t",u") = P(wr(t") + trog +u') — (g (t") + t1ox)
= u',/o1 Vip(wg (t") + t1og + su')ds).
We wish to change variables in the inner ¢;-integral. Observe that

S, 1) =l (64,4 O)o)

1
+ |u'|/0 (O, [¢" (0r (") + t1vg + su’) — 1" (0)] vk )ds

1 !
u
+ |“I|/0 <—|u,| — Op, " (g (t") + t10g + su')oy )ds

(224) :|ul||’(ﬁ”(0)0k| + e (tl, t”, u') + e2 (tl, t”, u')
10



where by our assumption on the third derivatives the error term e; is bounded by 2(d — 1)2A3e18/u’|, and
since u' € supp (i the error term es is bounded by (d — 1)?A3e13|u'|. The main term is |u'||[¢"(0)0k| >
[u'|8(d — 1)~2A3~% and thus the derivative 8; ¥, is single signed and of size ~ f|u’|. Therefore we may
perform the change of variables t; + ug = U (t1,t",u') with inverse t¥(ug;u’,#") and obtain

(2.25) (v*v,f) = fu' ug)Hy, (v ug, t")dugdu' dt"”
;/// a)Hp d d

where , , , "
G (u')x (u')x(u' + i (") + t1by)
|6tlIlk(t’1"(ud;u’)t”))t”,u')|

Hi(u',ug,t") =
We have the estimate
|Hk(ula Svt”)l 5 /8_1|ul|_1

and Hp(u',uq,t") vanishes if |u'| > Clug| or |u'/|u'| — k| > €18 or |t"| > B. Integrating in t" yields a
factor of O(B%~2) and since Y, (x(u') = O(1) we obtain the claimed estimate for @ = 0. The estimates for
the derivatives follow by a straightforward examination of the derivatives of ¥ (ug;u’,#") and applications
of the chain rule. We omit the details. O

Now let ¢,, be as in (2.22).

Lemma 2.6. There is a small constant €1 depending only on X so that the following holds for 8 < 1.

Let x € Cg° 1is supported on a set of diameter €13 and suppose that the support of x contains a point
P on ¥ where the Gaussian curvature satisfies |K(P)| > . Let v™ = ¢y, * p. Suppose that f is supported
on a set of diameter 1. Then

177 % 0™ x flloo S B2 (1 +n)On[f]-

Proof. After localization and a change of variable we may reduce to the situation of Lemma 2.5.

Notice that |[v™(x)| < 2" since v is a density on a hypersurface. By Lemma 2.5 we have

v @) S 80 [ ming2n, )y
and we observe that

/ 2| (y)ldy < 2°0,[]
|z—y|<2—m

and .
/ ——|f(y)|dy < 247'0,[f], 0<£<n.
2

1< jp—y|<2-t+1 [€ = Y|

The asserted estimate follows by summing over £ =0,...,n. O

Finally we also need the behavior of the quantities of length and thickness under nonisotropic dilations.
Here we will have to compare isotropic dilations to nonisotropic ones. Let 7 = trace(P) and denote by );
the eigenvalues of P. Then we may choose positive constants a, A so that
(2.26) a<Re(}j) < A<
Then there are positive constants ¢; < C; so that for all x

(2.27) at®lz| < [tfz| < Citt)z|,  t>1.

11



Lemma 2.7. Suppose that f is integrable and vanishes in the complement of a compact set.

Then there is a constant C depending only on the dilation group and the dimension, so that

(2.28) Onlf(3;)] < C27I M0, [f], ifj>0
and
(2.29) An[f(6-m)] < C2A™AL[f],  if m > 0.

Proof. Let j > 0 and let @ be a dyadic cube of sidelength {(Q) > 27™. Then §;Q is contained in the
union of at most 2¢ dyadic cubes {g;}, of sidelength ~ 2941(Q). Thus

[ G =2@ [ sl

<277 Z C'(27Y1(q;)) |f (w)|du < C"29273=4 @, [f].
qi

If we take the supremum over all dyadic cubes we obtain (2.28).

Next let m > 0. Let Q1,...,Qn be a cover of &,(|f]). Let QF be the double cube (dilated with respect
to the center of ();).

Now &,(|f]) = UM R, where the R, are dyadic 2=™ cubes with center z, on which the expectation
E,[|f|] does not vamsh Let R} ,, be the union of dyadic cubes of sidelength 27" which intersect d,, R, .
Then &, (|f(6—m-)|) is contamed in LJM1 R; ..

Since m > 0 each R,"j,m is contained in a 2-dilate of 4,, R, relative to the center 6,,z,. Thus the union
of the R} . is contained in the union of the dilates 6,,Q}. Each §,,Q} is contained in no more than 44

v,m

dyadic cubes of sidelength 2[m4+317(Q;). Consequently

N
Anlf(6-m?)] < C24™ Zl(Q,)

If we work with an efficient cover of &,(|f|) we obtain (2.29). O

3. Preliminary Calderén-Zygmund reductions

We shall begin with some reductions from standard Calderén-Zygmund theory. The estimates in this
section together with a trivial L' estimate will only imply the known weak-type Llog L inequality (see
Corollary 3.1 below) but they apply to more general operators than those discussed in the introduction.

In this section we shall assume that the measure u satisfies

(3.1) O S @ +1[€)

for some positive v (without loss of generality v < (d — 1)/2).

When estimating the singular integral operator (1.5) we shall assume the additional cancellation con-
dition (1.4). We note that the original hypothesis of the curvature not vanishing to infinite order implies
an estimate (3.1) for some v > 0, by an application of van der Corput’s lemma.

We shall apply a nonisotropic version of Calderén-Zygmund theory (see [10], [16]). Let p be a homo-

geneous distance function which satisfies p(tf'z) = tp(x) for all z and p(z) = 1 if |z| = 1. If 29 € R? and
12



po > 0 then we set B(zo, po) = {z : p(x — x0) < po} and we refer to B(zo, po) as the ball with center zq
and po (see [17] for a discussion of such distance functions). Notice that

B(zo,p0) ={= : |pg ' (z — m)| < 1}

We note that |z|'/® < p(z) < |24 if |z| < 1 and |z|'/4 < p(z) < |z|*/® if |2| > 1, see (2.26/27) above.
Let Mgy be the analogue of the Hardy-Littlewood maximal function associated to the family of these

nonisotropic balls, i.e. Myrf(x) = sup,ep|B|™" [5|f(y)|dy where the supremum is taken over all balls
B = B(=xg, po) which contain z.

We now fix a > 0 and define Q = {z : My f > a} and thus
2 S a7HIfl:-

By an analogue of the Lebesgue differentiation theorem we also know that |f(z)| < « for all z € R? \ Q.

The Calderén-Zygmund decomposition is based on a Whitney type decomposition. According to [16,
p.15] there are constants K; > 1, K» > 2, K3 > 1 (depending only on the distance function p), and a
sequence of balls By,...,Bj,..., with B; = B(z;,p;), and a sequence 20 of measurable sets (‘generalized
Whitney cubes’) wy,...,wj,..., so that the following properties are satisfied:

(a) The B; are pairwise disjoint.

(b) If Bf = B(x;, K1p;) then the numbers K, p; belong to {27 : j € Z} and U; B; = Q. Moreover each

z € Q is contained in no more than K3 of the balls B;-‘.

(c) Bj Cw; C B;

(d) The w; are pairwise disjoint, and we have Jw; = Q.

(e) If B}* = B(z;, K»p;) then By* N (R?\ Q) # 0.

(f) Each Bj* is contained in Q* = {z : Mur(xa) > (10K3)""} and thus

(3.2) meas(%) < a |l < / &(f|/a)dz.

We thus get a decomposition f = g + >, .oy fw Where fy(z) = f(z) if + € w and |f(z)| > a and
fw(z) = 0 otherwise; moreover |g(z)| < a and |w|™! [|f,|dz < a for each w. The sets w play the role of
the usual Whitney cubes. For each w € 20 we assign a point z,, and an integer r(w) by setting z.,;, = z;
and r(w;) = logy(K1p;):

In what follows we choose ¢ > 0 small, specifically the choice
1 .
(3.3) c<g min{1,~v}
works. We then further decompose f,, by setting
f2(z) = fu(z) if 260 Va < |f,(2)] < 20
Observe that f, = Y>>, f» and
oo
1 n
> o [ @it S o
n=1

We also let

n —_ 1 n
0(2) = xulo) o /w )dy,
b (2) = f7(2) — g7(2),
13



and

Now

(3.4)

moreover

(3.5)

and

(3.6)

g @)= gu(@),  b(z) =) bi(a).

oo

S o (@)] < ﬁ / S 1)y x() < — / | fu(®)ldy xu(@) S 0

|w]

Dlgt@)| Sa
n=1

oo

3 Hgila+ 5] 5 [ 1f@ds S aol.

n=1 w

It will also be necessary to decompose the measure y further. Let u™ be the regularization defined in

(2.22) and let

pi (@) =275 pn (27 ).

For our basic decomposition of the singular Radon transform we set f* = ) fo and using f =
g+ fP=9+>,9"+>, b" we split

where

Zﬂk xf=Hr1+Hio+ Hrs+ Hyp
kez

Hri=> g
kEZ

Hip=3% Y (e —up)*f"

k€EZn>1

Hrzg=)Y Y upxg"

k€Zn>1

Hy =Y ppxb™

kEZn>1

A further decomposition is necessary for Hy. For given n > 1, ] € Z we define

(3.8)

and set

I =[ln,(I+1)n)

(1) = [0 1), (4 1+ )]

Br= Y b
wir(w)elr
14



We split H, = Hjr + Hyjr where

HII—ZZ Z pi; * B

n>11€Z keZ\(IP)*

H111=ZZ Z pi * Bp*.

n>11EZ ke(Ip)*

(3.9)

Note that Hyy is the portion of Hy where the scaling of the measures pj, is very different from the scaling of
the balls w, which enables us to use standard L' arguments in the complement of the set Q*. The difficult
term to estimate is Hyyy.

We shall show that

3

(3.10.1) S HLll2 S o2 £
i=1

(3.10.2) |Hrrl| ot eaveey S IIfIl

(From (3.10.1/2) we get by Chebyshev’s inequality

meas({ i|H“( )| >a/10}) <a_2HZ|HI,|

i=1
—2 2 1
(3.11) Sa [Z||HI,,~||2] S alIflh
i=1
and
(3.12) meas({z € R \ Q* : [H1(2)| > /10}) <o | f]1-

We now prove the L? bounds (3.10.1) using standard arguments. The cancellation of p = u® implies
that p0(&) = O(|¢]) and since pg is smooth we get

(3.13) K0(€)| S min{j¢], €]V}

for large N.

Even without such a cancellation assumption the difference u™ —u™ ! does have cancellation and using
the decay assumption (3.1) on the Fourier transform of 4 it is straightforward to check that for m > 1

(3.14) [ (€) — pmL(€)] S 2™ min{2 ™|é], (2| V)

Indeed the left hand side of (3.14) is < (1 + |§|)_7|$(2_m§) - $(2_m_1§)| and since ¢(n) = 1 + O(|n|%)
we obtain the bound 27™7(2-™[¢|)?~7 which yields the claim for |¢| < 2™*! since also d — v > 1. For
€] > 2™+ we use that [a™(€)| < Cn €77 (1 +27™[¢))~N

Since pf pn () = u"(5%€) we obtain using (3.13), (3.14) that

ka NSt

(3.15) s
DI — up QI S 27™.
kEZ

15



We recover the well-known result that 7T is L2 bounded, and as a consequence of the last displayed
inequality we also get

| o0 = wiy 1], < ZHZ ) f <2l
kEZ

Now clearly
2
[Hrally = | 3 v S N9l S all 1l
keZ

and using (3.13) and (3.14) we also obtain
2 2
ol < (3| Xt =)+ 7)) < (271171l
n>1  keZ n>1
SO 2SR S Do 27 M2 e S | £l

n>1 n>1

by our choice of ¢ in (3.3). Moreover

n—1

HH1,3“§ = szzgl ,uk+ Z m+1l _ )% g )
Z HZ K - Br) TDZW!}"

< (H > uR
keZ
5 all fll-

(x|

2

)

Finally we prove the L' bound (3.10.2). Suppose that r(w) € I}*. For k > max(I},)* (thus k — r(w) >
2n/a) we use the cancellation of b7, and obtain with y,, € w

@) = [ 2747 [0 = 9) = 6 ao — ) B )y
=277 [y~ ), Voo = v+ 500~ ) )y
and since |6_;(y — y)| < 200@)=k)e for y € w and ||Vu*||; = O(2") we get
[ B @da 5 202 B .

Moreover notice that by our assumption that p is supported in the unit ball we have that uj * b} is
supported in Q* if k& < min(I}*)*.
Thus

IHrrll o reves) < ZZ > llup* Bk

€Z k>max(I])*

n>1

ZZ Yoo > 2Py,
n>11€Z k>max(I]*)* r(w)EI]
>
n>1

< Z "SRl S Nl
€7



by the definition of (I*)*. Thus (3.10.2) is proved.

A decomposition similar to (3.7), (3.9) applies to the maximal operator where no cancellation on y is
assumed. We have
sup lpe * fI < Mpy+ Mro+ Mrs + Myr+ Mg

where
My, = sup |u * g|
kEZ
My ="y sup |(ux — p) * f"]
71 HEZ
M3 = su Tk g”
(3.16) 3= sup |uf * 9"
n>1

M= sup |uy * By
DI DR

Mirr = Z Z SUP) |k * B

n>1 ez FeU)”

Concerning the L? boundedness we observe that supy |u9 * f| is pointwise controlled by the Hardy-
Littlewood maximal function Mgy f, associated to the given dilation group. Therefore

(3.17) l sup i * £l S N2

Again by Fourier transform arguments as above

1/2

Jowp 6 = # il < | (210 =+ 1)

— g / n
s ([ S © - T @PFOPE) T S 2Tk S 2l
k

This shows that we can repeat the arguments for Hy above and get

3
(3.18) S IMyille S @22 £/

i=1

In the definition of M;; we may replace the sup over k ¢ (I;*)* by the sum and the estimation is exactly
the same as for Hy; above. This yields

(3.19) IMrrllzrwaesy S -

We combine these estimates with (3.2) and we see that in order to prove Theorems 1.1 and 1.2 we are left
to prove the inequalities

(3.20) meas{z : |Myy| > %a} < / @loglog(ﬁ + |f(;)|)da:
(3.21) meas{z : |Hrrr| > ga} < / @loglog(é n |f§f)|)dm

This will be done in §5 and §6 below.

Weak type LlogL estimates. We note that weak type Llog L inequalities for T and M can be already
obtained from trivial L' estimates for Hy;; and Myrr. Here we are essentially reproving the result in [4].
17



Corollary 3.1. Let p be a compactly supported Borel measure satisfying

&) < C(1+[¢)7.

Then M is of weak type Llog L. If in addition the cancellation condition [ du(z) = 0 holds, then T is of
weak type Llog L.

Proof. Given our previous estimates we just have to estimate the measure of the sets where M > «
or |Hrrr| > a. We simply use Chebyshev’s inequality and are left with estimating a=!||Mj||; and
a™'||Hrrr||1, respectively. Using that the L' norm of uf is uniformly bounded in k,n we get

IHodlle <300 D0 i *BPle Sy >0 Do bl

n>11€Z ke(I}p)* n>11€Z ke(IP)* r(w)ely
flz
SYY X il s Sl s [ 1i@hoge+ L 2a
n>1I€Z r(w)el] n>1

and the same argument applies to Myrr. O

4. A stopping time argument

In order to refine the previous estimates for Myrr; and Hyrr we need a further decomposition of bJj,.
Here we use a stopping time argument based on length A, (and thickness ©,,). The reader will note some
similarities with Christ’s stopping time argument in [2].

In what follows g will denote the set of dyadic unit cubes of the form (ny,...,ng) +[0,1)%, n; € Z.

Proposition 4.1. For every n and every w with r(w) € I* there is a decomposition

(4.1) = 3 fo

KE])*

so that the following properties are satisfied.

(i)
(4.2) ol =1l
RE(IP)*
(ii) For every q € Qo, k € (I")*
(43) MY sree] sat 3 1 Galdy
r(w)<k r(w)<k 4

(iii) For every q € Qo, and for every k € (I')* and s > 1 with k + s € (I')*,

(4.4) Onl > Fr(Orts)xq) < 16(n+ 1)a.

r(w)<k

Proof. This is proved by an inductive construction.

= ¥

wir(w)El]

We shall give a decomposition of

since the w are disjoint this will yield a decomposition of each by, Set £7#* = max(I]')* and k; = k7 — j.
We shall establish the following
18



Claim. For N =0,1,... we can decompose

N
G°=>[H +5]+GN

J=0

so that
(i) GF 1 =Hi+ S+ GV if j>1
(i) GI = 2 e Efi’l’Q) G211, where G37 vanishes in the complement of d,;q and

0,[GH7(0x, )] < 80

Moreover
L(j,Q) <n+1

Hi(z) =0 ifx ¢ U w
r(w)<s;

Si(z) =0 ifx ¢ U w
r(w)=k;

GN(z)=0 ifx ¢ U w.
r(w)<kKN

(iv) For each q € Qo,
An[H (8, )xg] < ot / \H (5., )| dy.
q
(v) For k > kj, k € (Il")* and each q € Qo,
0, [Hj (&e')Xq] +0, [SJ (&c')Xq] < 16(” + l)a-
(vi) The functions G7, G393, H7, S7 are nonnegative at x (nonpositive) if and only if f(x) is nonnegative
(nonpositive).

If we accept the claim then in order to complete the proof of the proposition we observe that in the
above statement k = k; = kn2* — j and thus we merely have to define

nd
Hr 05 () if v €w,r(w) <k <KPY,
W (2) =4 SERE R () ifrew,r(w) =k
0 if x ¢ worif kK < r(w).

Then (4.1) follows from (iii) and (4.2) from (4.1) and (vi). (4.3) is a consequence of (iv) and (4.4) follows
from (v).

Proof of the Claim. We argue by induction and assume that either N = 0 or that N > 0 and statements
(i)-(vi) hold for all j < N — 1.

If N =0weset S®=H®=0and G°=G° If N > 1 we begin by defining functions SV, GN where
SN(z) = GN7(z) if £ € U, (y)=py @ and SN (z) = 0 otherwise, and GV (z) = GN~'(z) — SV(z). Thus
G" is supported on UT(w) <xy W and coincides with GN~! there. Note that GV vanishes if x; < min I

and the construction stops then.
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We now use Proposition 2.3 to decompose for ¢ € Qg
L

gN(‘anw)Xq(w) = Z g+ hg’q
=

so that ©,[gN9]A,[AY 1] < 8 [ |g)-9|dz and h" vanishes for L > n 4 1. Also the signs of the functions
g1, hY"? coincides with the sign of GV (0., (2))xq(2) and we have h2°% = gN:a 4+ hN4 for v > 1 with
An[RD] < An[B)4]/2.

Let L(N,q) be the minimal integer L so that

(4.5) An[hY 7] < 071 / W9 (y) |y

Then L(N,q) < n + 1 (since hy? vanishes for L > n + 1).

Now, Ap[h)4] > @~ [ |h)4 (y)|dy for v < L(N,q), by the minimality of L(N,q), and since |g)9| <
|29 | we get

“Y)ldy
46 Onlg g 190" (W)ldy
(4.6) l9,77] < A ]
Now define G}4(x) = g)4(6_xy ), for v < L(N,q), and GN(z) = 3 cq, STEMND GN.a (). Moreover
HNA(z) = hg(?v o (O—kyz) and HY(2) = 37 o HY(z). Then the statement (vi) about the sign of G},
GY and H" holds. (iv) follows from (4.5). Statements (i) and (iii) hold by construction, and the inequality
for the thickness in (ii) holds by (4.6) by (4.6).
In view of (i), (vi) we also have |HN| + |SY| < |GN71| < |GN=#| for s > 1 so that by statement (ii)
for j < N —1 we get

Gn[HN(‘an—i-S')Xq] + QH[SN(‘SNN-FS')Xq] = QH[HN(‘SKN—S )Xq] + Qn[SN(‘SHN—s')Xq]
L(N-s,q)
<20,[GN T By X S16 ) On[GY " (Suy_,)] < 16L(N — s5,q)a < 16(n + 1)a

v=1

This implies (v) for j = N and the Claim is proved. O

5. The main estimate for the maximal function

We shall prove the nontrivial estimate (3.20) for the maximal function, assuming again that the cur-
vature assumption in the introduction is satisfied, and prove the inequality

(5.1) rneas({w sup| Z i x BfY| > a}) < /<I>(|f|/a)dw

ke(I")*

with ®(t) = tloglog(e? + t).
We use the decomposition in Proposition 4.1 and form an additional exceptional set O;. To define it
we set for ¢ € Qo, k € (I]')*,

(5‘2) Fn A n z fn n )
r(w)el;
r(w)<k
20



and define

(5.3) oo=JU U U U supp (up=Fps);

n=11€Z re(I})* ¢€Q0 ke(I})*
k<k

moreover we define
(5.4) 0O=0,UQ"

where Q* is as in (3.2).
To estimate the measure of O; observe that supp (uf * Fy»%) = dgsupp (u§ * [Fy-b*(6y-)]) and since
for k < & the function F"""(8-) is supported in a set of bounded diameter we get by (2.29) and (4.3)

meas (supp (uj * Fq"’l’n)) = 2¥"meas(supp (ug * [F;’l’n(‘sk')]))
5 2kTAn[Fqn,l,l€(5k_)] 'S 2"572(”*]‘7)14‘/\"[Fq”al’"/((sn.)]

5 2kr2(n—k)Aa—1 / |F(f’l"‘(6,gy)|dy 5 2(k—n)(-r—A)a—1 / |Fqn,l,n(y)|dy.

Thus, we can sum a geometric series in k£ < k and obtain

oo o

meas@) <3 Y Yot / Frin)dy <3 Yt / 157, () ldy

n=11€Z ke(I')* ¢€0 n=1 w

(5.5 sa ' % [1nzwlay sat 1wy

n=1 w

and the measure of O = O; U Q* satisfies the same estimate. Note that the contributions for k < &,
r(w) = K are also supported in O since p is assumed to be supported in the unit ball and thus

UU U U supp (up = for™) c o

n=11€Z w:r(w)el;’ k<r(w)

It now remains to handle the contribution in the complement of O which only involves the scales k > &
and contributions for r(w) € I* with r(w) < &; to simplify the notation below we set

I ={rell:r <k}

We shall first cut out a contribution from ’'flat’ parts of ¥. We recall that the curvature does not vanish
to infinite order on ¥ and therefore there is a number 1 > 0 such that

(5.6) /Z K (2)| "do(z) < co.

This is well known (for example, one may use an argument in [16, p.343] to reduce to an inequality in one
dimension where one can use Holder’s inequality and compactness).

By Chebyshev’s inequality (5.6) implies that

(5.7) {z € |K@)| < n~9/1}| Sn .
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Now we use a partition of unity to write

p= Z Vi,n

ISVAL
where each v*" is supported on a cube R; of diameter e;n~3/" (here &; will be as in Lemma 2.6) and the
supports of the ™ have bounded overlap, independent of n. Note that then

(5.8) card(J™) < nPld-D/m,

We split the index set into disjoint subsets as J" = J* U J5* where J3' consists of all i € J with the
property that |K(z')| < n=3/" for all 2’ € supp R;.
Then by (5.7) we have that the sum of the total variations of the v*", for which i € JJ*, satisfies the

bound
DO ol NEone
USVES
Let
'u/z',n — Vi,n * ¢n
and uln =9~ kruz n(2 kP )

Slnce' the cardinality of (I}*)* is O(n) and .. 7r | ,u;'c’””l = O(n~3) the contribution of the measures
Yiegp Mi" k € (I')* can be handled by a straightforward L' estimate:

meas({w sup‘ Z Z Zm * Z S

nl  ke(I])* €T r(w)el"
kE(I")* <k

e[ X X Y X,

> a/lO})

n,l ke(l")” ne(I,")* €IS r(w)el”"
Y Y Y Yl X b
n,l ke(IM)* ke(I})* i€TS 7'(1,0)6[{"”c
(5.9) a3 e > etk Sl
n,l ke(I")” r(w)el"

Next choose a large constant Cy; specifically the choice

100 d A o
. > — 5 (—
(5.10) Co - (1+n)max{1,T_A}+10+log2(CI)

will work where ¢; < Cy are as in (2.27). Then the contribution for the scales k < k < k + Cologn is also
handled by an L! estimate:
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meas a: sup‘ Z Z ,ufc’"* Z fooR(x ‘>a/10})

ke()* €I r(w)el}"
kE(Il )" k<k<k+Cologn

28 DD INEED SEED DI LD Sl il

n,l ke(I;)* ke()™ eIy 1*(111)611""c
k<k<k+Cologn

Sea'd > Y DR Vi

nl k€(IT)* wir(w)elm" k<k<rk+Cologn

$a'S S tognllfntlh

n,l ke(I7)* r(w)el"™

(5.11) Sa 'Y lognllfly < / VOl 1o 10g (e2 + L)

It remains to show

.12 meas({a:sup| XX Yat X e )| > a/10}) SallIf I

keI €I r(w)er™"
kG(Il )" k>k+Cplogn

and this will be accomplished by proving L? estimates.

Reintroducing cancellation. The decomposition in (4.1) was needed to exploit the geometry of the
exceptional set; however we paid the price of destroying the cancellation properties of the bI'. As the
information on the support of the f}»* has been used and is not needed anymore for the scales k >
% + Cologn we shall now modify the functions f2* to reintroduce some cancellation. Namely let {P;}24
be an orthonormal basis of the space of polynomials of degree < d on the unit ball {z : |z| < 1} and for
given w define the projection operator II,, by

I, [h)(= ZP —r(w) (@ /h 10— r(w) (y = 70))2 77 dy.
Note that
1
(5.13) M) <O [ iy

where C' is independent of A and w.
Let

9" () = My [f3 "] (),
by " (2) = fu"(2) — 9" (2),

so that bjy" vanishes off w and for polynomials p
(5.14) / bR (2)p(z)de = 0 if deg(p) < d.
We observe that since the w’s are generalized Whitney cubes for Q (see §3), we have

(5.15) 3 M lf2)(@)]| S xo(@) / | (@)ldz <

n,K



moreover by (5.13)

(5.16) > [l + llgm=lh] S I

n,K

5 [ @las,

Now (5.12) will follow from

2
(5.17) Hsup‘ z Z ZM Z 9" 2f,06||f||1
rRE(IM)* i€TT r(w)el"
kG(Il )" k>k+Cologn
. 2
(5.18) Hsup\ Z Yo omx Y || Selflh

ke(I])* ieJ? r(w)el;”"™
kE(Il )" k>k+Cologn

The estimation (5.17) is straightforward. If do denotes surface measure on ¥ and doy, the dilate
27*7dg(§_k-) then the maximal function

M f(z) = sup |doy, * f|
kEZ

defines a bounded operator on L2. By the positivity of this maximal operator the left side of (5.17) is
bounded by a constant times

[Meee [ S Sl 2> 3 S lentl, S alslh:

nl ke(I)* w nl ke(I)* w

here we used (5.15/16).

For the remainder of this section we prove (5.18).

We first replace the sup in k¥ by an £2 sum and then, for fixed k, we apply Schwarz’ inequality in the
form [}, |an|]? <3 |na,|?. Next we observe that for fixed n the number £ is contained in at most 3+2/a
of the intervals (I')*. Then we apply Schwarz’ inequality for the sim in & yielding a factor of O(n) and
for the sum in i yielding a factor of O(n*@=1/7). Finally we group the sum over w into groups for which
r(w) = r, r € I/ and apply Schwarz’ inequality in  which yields one more factor of O(n). Thus we see
that the left side of (5.18) is dominated by a constant times

2
bn,n
2

(5.20) Z Yooy > At

riR<  GeJ! rel"
ke(I")*k Cologn fRdS r(w) r

We note that the some of the applications of Schwarz’ inequality above are not really necessary but it
turns out that the polynomial factors in n are irrelevant in the range k < k — Cy logn.

Now, for fixed k, k, define

(5.21) Mk, k) = [k — (k- +log, Q +2]

)2A
where [v] denotes the largest integer < v. Note that for & < k— Cglogn we have M (k, k) < k. Let R(«, k)
be the collection of dilates ds(x,k)q, Where ¢ € Qo. For each w with r(w) = r < k we assign R € R(x, k)
so that w N R # (. We write R = R, x(w) or simply R = R(w) if the dependence on k, & is clear.
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Let DT{(n,k) be a subcollection of %R(k, k) with the property that if R, R’ € R(k,k), R # R’ and
R = dpm(k,k)0 R' = Onr(s,k)q then dist(q,¢") > 10.
We shall show for fixed n, [, k € (I")*, k € (Il”)*, r € I;"" that

(522) H Z /,L;:’n* Z bn” \ <n2+3(d+3)/ﬂ2 (k—r)co gy Z ”meHI

RER(k,k) RT(UE)TR r(w)=r
o, k(W)=

where
T— A

(5.23) co = 9 nin {1, I }

2

Given (5.22), the proof of (5.18) is a quick consequence. First note that R(k, k) can be split into O(10¢)
families of type R(k, k). Thus Minkowski’s inequality and (5.22) imply that (5.22) holds also with R(k, k)
replaced by fR(k, k). Then we obtain from (5.20) and the modified (5.22) that the left side of (5.18) is
controlled by

Z Z Z Z Z n6(1+%)2—(k—n)coa z ||b3,’”||1

nl ke(Ip)*  we()*: €I rel" r(w)=r
k<k—Cplogn

DI D DI S LD DD S - 1P

nl,Kk k>k+Cologn rell r(w)=r
<K

Now we sum the geometric series

E 2—(’9—5)C0 < n—coco
~
k>k+Cologn

and using (5.23) and our choice of Cy in (5.10) we observe that n—¢0Co < n=50(1+d/m); this yields that the
left side of (5.18) is controlled by

a3 Y Il S allflh

nbLerel" r(w)=r
Thus the proof will be finished when inequality (5.22) is verified.

Proof of (5.22).
We split for fixed n,l, k,x € (I')*, i € J* and r € I;"",

. 2
| whe Y | =1+
RER(k,k) r(w)=r
R(w)=R
where
(5.24) = ¥ / st Y @) Y W@ de
RER(k,k) r(w)=r r(w')=r
R(w)=R R(w')=R
(5.25) m= Yy / wr et S @) Y 0 @)de.
R,R' €R(k,k) r(w)=r r(w')=r
R#R' R(w)=R R(w')=R'
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We shall first estimate II. Fix w, w' occuring in the expression (5.25). Then using the cancellation of
the b" we get

g™ 5 ™ % b (@)

—‘/2“#0 * g™ (0 (x

d—1

(0 k(Y = 20), VY " 1" (0 (@ — 2)) |V (v) dy

h|,_\

=0

<.

= ‘/01 ((d—_s 1d)!1 /kaT<6_k(y — :L'w),V)duz)n *N "(S_p (T — Ty + 524 — sy))] b () dyds‘

(5.26)
92— kT S_ — Ty d -
8 (24— (d— 3))/ / a 10—k (y )| |d+1|bw’ (y)|dyds

(T — Ty + 8Ty — 8Y)

by Lemma 2.5 applied to the measure uf]’”, with 8 = n=3/7.

Nowif r € w', y € w with w' N R' # 0, wN R # 0, and if R # R’ then by the separation property of
the sets in R(«, k)

_ (M n—k)A _ (M, —k)A —(k—r)a/2
. — w = €1 — Mg w sl =
(5.27) [0_k(x — x0)| > 12 |0_ a1, .. (T — 2)| > 10c¢;2 > 5C;2
while
[0_k(y — Tw)| + |[0_k(@ — o )| < 20,27 2k=1) < 9 2 (k=)

Thus for 2 € w' we may replace |6_,(x — Ty + 5% — sy)| in the denominator of (5.26) by [6_k(x), — Zw)|.
We also take into account that ||b"||1 < a|w’| and thus obtain the bound

2 kTo— (k—r)ad

(5.28) IT < nBld+d)/n Z Z (b Z Z a|w (Tar — o)+

ReR(k,k) R(w)=R R'€R(k,k) R(w')=R’
r(w)=r R#R'  r(w')=r

Now we calculate using (5.27)

9—kr9— (k—r)ad (h—r)ad .
2 Z | ||6 (x/_$)|d+1~2 > > ; a7 du
R €R(r,k) R(w')= R'eR(k,k) R(w')=R' —k(—2wtw')
R#R' r(w’) r R£R' r(w')=r

2—(k—n)ad/ |0~ du < 2~ §(k-R)2d-1)
|u|>2—(k—r)a/2

Combining this with (5.28) yields the bound

(5.29) IT < 357 2= 5(k=m)(2d-1) Y S
RER(k,k) ngg =R

which is controlled by the right hand side of (5.22).

We now estimate the contribution I. Unfortunately, in introducing the cancellation and passing from
fir to bIv" we have obscured the geometrical information on the thickness of f]*. As the cancellation is
not needed anymore for I we (partially) undo it and estimate

I<L+1y
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where

(530 L= Y [urete Xt Y @
RER(k,k) r(w)=r r(w')=r
R(w)=R R(w')=R

(5.31) L = Z /,uk *uk * Z gw(z) Z b (z) de.
RER(k,k) r(w)=r r(w')=r
R(w)=R R(w')=R

Since |gib*(z)| S axw(z) we get

(5.32) pisn e ¥ Y [ [ e @)

ReR(k,k) Tw) ror(w)=r
R(w)=R R(w')=R

and
—kT —M(k,k)T
> / 27 < zf(ka(n,k»(rfA)/ 2 M=k dy
oty Jw 10-k(@ =) R0 p(n iy (=)
R(w)=R
< 9= (k=r)(r—A) & / lu[~Ldu < 2-=R(T=A)z
Thus
(5.33) L] S35 a2~ k=0=D 5 5 ),
ReR(k,k) m(w')=r
R(w')=R

Finally for the main term I; we use Lemma 2.6, then (2.28) and then part (iii) of Proposition 4.1 to bound

Hk *Nk * Z f;t’n(m)‘

r(w)=r
R(w)=R
‘/ w" w0 —y) D Jkydy‘
r(w)=r
R(w)=R
n173(d73)/W®n[ Z fg’n((sk)]
r(w)=r
R(w)=R
< n! 3D/ mgm (=M= g [N f18 (§yr))]
r(w)=r
R(w)=R
< p2-8(d=3)/ng—(k—M(r,k))(T—A)
Since k — M (k,k) > (k — k)a/2A we obtain
(534 L] S a2 (kR 285 3
ReR(k,k) r(w')=r
R(w')=R
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(5.33/34) and (5.29) certainly imply (5.22). This concludes the proof of Theorem 1.1. O

Remark. The above argument also applies to maximal functions associated to certain surfaces with low
codimension, for example if we assume that for every normal vector the Gaussian curvature is bounded
away from zero. In this case we have to work with the notions A,, 3, @, 3 in the remark following the proof
of Proposition 2.1; here 8 is the codimension. The condition about nonvanishing Gaussian curvature is
never satisfied for manifolds with high codimension such as curves in three or more dimensions. In those
cases it is presently open whether the weak type L log L inequality of Corollary 3.1 above can be improved.

6. Estimates for the singular integral operators
The proof of the weak type L loglog L estimate for the singular Radon transforms relies to a large extent

on the same arguments as for the maximal operator. We shall just indicate the necessary modifications.

We need to prove inequality (3.21). The definition of the exceptional set O and estimate (5.5) remains
the same. Thus we are left to show (again with ®(s) = sloglog(e? + s))

(6.1) meas({x: ‘Z Z i * Z Z frl > %a}) S/Q(M)dx

(67
n,l ke(I})* ke(])* r(w)el]"
k<k

Now, as in §5, we wish to decompose the measure into a part with curvature and a part with flatness
(with the splitting depending on n). Some care is needed now since we need to preserve the cancellation
of the measure when acting on the a-bounded contributions. Before doing this decomposition we shall
reverse the order of the steps (5.9), (5.11) and first get an analogue of (5.11) for the functions u}. Indeed
since [|uf|l1 = O(1) the argument for (5.11) yields

(6.2) meas({a: : ‘ Z Z i * Z From >

n,l,K ke(I])* r(w)el"
k<k<k+Cologn

a

and therefore we have to bound

(6.3) meas({ ‘Z Z Z up * Z

n,l ke(I]") ke(Il) r(w)el”"
k>k+Co logn

)

As before we split % = g% + b™* and we first show that
w w w

(6.4) meas({ ‘Z Z Z Wy * Z gt >

n,l ke(I]*) ke(I])* r(w)el"
1
k>n+Co logn

)<

We use the nonisotropic version of an inequality in [6, p. 548] for the maximal version of the singular
integral, namely we have

(6.5) H sup
K1,K>

5 i u | S llullo

k=K,

Here [iy, is the reflection of pj. Indeed for (6.5) one just needs |f(§)| < min{|¢],|£|~7} for some v > 0 (cf.
(3.15)). In order to use (6.5) we have to split u} = pr — (x — p3)-
28



(From (6.5) and (5.17) we get

DO SND ST S

2

nl k€P)*  ke(l)* r(w)er; "
k>k+Co logn
2
P [[E Y X aw X merud)
||u||2<1 nl ke(I])* r(w)el”"™ ke(1r)*

k>k+Cologn

Sals x| 5

nl ke(I")* r(w)el"

< sup H sup
lull2<1 M K1,K2

(6.6) S DD SIS Sl

n,l ke(I])* r(w)el”"

For each w and z € w we have

1 o 1
> Y wr@lsY X o [ @i s o [ @l s
nl  ke(P)* nl  ke(IP)* w w
r(w)el" r(w)el}"
and in view of the disjointness of the sets w the expression (6.6) is controlled by

6.7) ZHZ > > e,

ml ke(I)" r(w)el"

" S alflh.

Moreover for fixed n, and m > n we get using (3.15)

[ X wr-we %

U ke(I)” KE(I])* r(w)el] "
1

ROV IDIIEDS

Loke(I?)" re(Il)" r(w)el™"”

and thus using the telescoping sum pf — pg, = > oc_ (U — p**t') we obtain

1> > w-me Y Y

n,l ke(Il)* KE(ID)” r(w)el"™
E (Y ¥ | > X w)”]
n m=n U ke(I)”  wel)" r(w)el"

)]

which by the argument above is dominated by a constant times «f|f||;. Combining these estimates with
Chebyshev’s inequality we see that (6.4) holds.

e (XX | 2

w: r(w) ke()*

We are left to prove

(6.8) meas({z:|> > 3 upx Y W
ml wke(I')"  ke(l)” r(w)el”"
k>k+Cplogn
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We now let u™™ = vi" x ¢,,, (which was previously considered only for the case m = n) and define
the L' dilate p™™ = 27*7yimm(§_.). Split (with J* and J3* as in §5)

i = pp + (g — 1)

(6.9) =t 2 Z EU T+ - ™).

iegy m=1 €Ty

Let hL™™ = pb™™ — yb™™ ! and pP™ = Yiegr hi™™. Using (6.9) we split

o> S > bg’~=1+u+§:mm

nl KE(I])  kEU]) r(w)eL" m=1
k>k+Cologn

where

Y YR e Yo

nl ke(I)*  ke(I])* r(w)el;”"
k>k+Cologn

II = Z Z z z i,n,Mn znO)* Z bg,n

nl ke(IP)* ke(l])* i€eJy r(w)el”"
k>k+Cologn

=YY Y Y Yeror e Y owe

n>m I ke(I})* ke(I])* ieJp r(w)el;”"™
k>k+Cologn

We show that

(6.10) L1 raveey + [Tl S fIle
and
(6.11) 11,15 < (1+m)~%allf]]s.

(6.10/11) imply that the sets where |I| > «/10, |II| > @/10, and Y °_, |III,| > /10 all have measure
< a7 !|f|l:. Combining this with the estimate (3.2) for the measure of Q* yields (6.8).

The inequality
Ml maveey S I1f1l
follows from the standard estimates for singular integrals (in view of the regularity of u * ¢). The bound
for ||II||; is proved exactly as in estimate (5.9). Thus we are left to check (6.11).

Concerning the terms IT1,, we apply Cauchy-Schwarz’ inequality and estimate

s AT T T 3w

n>m keI ke()® €IV r(w)el”"™
k>k+Coplogn

< ColViy + Vi

where Cy > 10/a,

. 2
o1 LD 3D 5/ [ SHND oD SR oS
n>m ke(I])*  ke(I)* €Iy r(w)el”" 2
k>k+Cplogn
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and

(6.13) V=Y 0> Y 3 PR e PR S R S T

n>m L k&' €)Y kK EUIT)  idedy r(w)el" r(w’)eI’;"'
1=1"|>C> k>k+Cologn t
k' >k'+Cologn

The inner product in the second term is estimated by Plancherel’s theorem. By van der Corput’s
Lemma and cancellation there is the Fourier transform estimate

| FIhg™™1(¢)| < min{|€], €77}
and thus ~ , ) )
|f[hzl,m,z % h:,m,z“ 5 2—\]9—1;: lary
which is O(2-™-V1e/2) if ke (IM)*, K € (Iﬁ)* J=11>0 > 10/a Set
En(@) = > Y b
KE(I) r(w)el"

We may apply Cauchy-Schwarz and Parseval’s theorem to bound

Vim < Z pA+6(d—1)/ Z 9—nll— ”7/|5ln ||5l' €)|de

n>m L
[1=1'|>C
< Z nAt6(d=1)/n Z 2_"”_"‘7||51,n||2||5l',n||2
n2m Ly
[1—1'|>Co
< Z ’I’L4+6(d 1) /772 Czcwnzllgln”2

n>m

Now

txaeon] S e,
r(w)el;”"
where ¢ is as in (3.3) and hence we obtain

(6.14) Vi Sad 2753 3 N o .

n>m U ke(I])” r(w)el™

S 27 ™al| £l

For the term IV, we have by Cauchy-Schwarz for the k£ summation and other applications of Cauchy-
Schwarz leading to (5.20)

LEED LD VD VN [ND DI S ETD VL L

2
n>m I ke(IM* ke(IP)*  iE€T] r(w)en""

k>k+Cyplogn
i,m,m Z bnn

(6.15) DI DED DD DEND D) D 17

n>m U ke(I)" re(Ip)" €I rerpt r(w)=r
k>k+Cplogn
i,7,Mm iLwn,n —  i,n : . : .
Now I satisfies similar quantitative properties as pu, " = " considered in §5; in particular we

have |8 (us™™ % p&™™)(z)| < n-3(d-3-2laD/n(2=m 4 |g|)~1-lal Thus the estimates for expression (5.20),
are apphcable and we obtain the bound

LR SR VD SIIESC ol o

n>m Kk k>k+Cologn v op(w)=r
(6.16) S STt HE@D/=Cocog 7|, < (14 m)~2alfli-
n>m

This shows (6.11) and thus (6.8) and the proof of Theorem 1.2. is complete. O
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