SINGULAR INTEGRALS AND THE NEWTON DIAGRAM

ANTHONY CARBERY, STEPHEN WAINGER, AND JAMES WRIGHT

ABSTRACT. We examine several scalar oscillatory singular integrals involving
a real-analytic phase function ¢(s,t) of two real variables and illustrate how
one can use the Newton diagram of ¢ to efficiently analyse these objects. We
use these results to bound certain singular integral operators.

1. INTRODUCTION

Arnold conjectured and Varcenko verified that sharp asymptotics for a scalar os-
cillatory integral with phase function ¢ can be measured in terms of the Newton
diagram of ¢. For any smooth real-valued function ¢ € C*°(R?) with Taylor expan-
sion ), bax®, the Newton diagram II of ¢ is the unbounded polyhedron formed as
the smallest closed convex set in the positive cone RL containing

U{meﬂ@‘”mza}

a€A

where A = {a € Z4| by # 0} and a < z is the partial order defined by a; <
Z1,...,0q < g where a = (ai,...,aq) and © = (z1,...,24). When d = 1 the
Newton diagram is a half-line and simply encodes the smallest nonvanishing Taylor
coeflicient of ¢.

In this paper we will describe an elementary method initiated in [2], [3] and [4] (see
also [8], [10]) by analysing certain two dimensional oscillatory integrals of the form

I(K) = //ei)‘¢(s’t)K(s,t)x(s,t) dsdt

for large real A and various (possibly) singular kernels K. Here ¢ is real-analytic
at the origin (0,0), #(0,0) = 0, and x € C°(R?). When K = 1, the behaviour
of Iy(1) for large A is determined by the Newton distance § of II, defined as the
positive parameter such that 1 lies on the boundary of II (here 1 = (1,1)).

The boundary of II consists of finitely many vertices {V1,...,Vn} and compact
edges {Ey = V1Va,..., En_1 = VN_1Vn}, together with two infinite (vertical and
horizontal) edges Fy and En. To each edge E;,0 < j < N, we associate the
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FIGURE 1.

corresponding part of the phase ¢g;(s,t) = >_ B;nA Cas™'t*>. We say that ¢ is
R-nondegenerate if for each compact edge E;,1 < j < N —1,

V¢Ej (S,t) 7é 0
for all (s,t) with st # 0.

Theorem 1.1. (Varéenko [15]) Let ¢ be R-nondegenerate, real-valued and real-
analytic at the origin (0,0) such that ¢(0) = V¢(0) = 0. If x € C(R?) is
supported in a sufficiently small neighbourhood of (0,0) and if

i) 1 ¢ {V1,...,Vn} or B =1, then

L(1) = e A8 oA~ (1/B+e)

for some € > 0;
i) 1 =V; for some j and § > 1, then

I1) = e; X YBlog A+ O(A1/B).

Here ¢1 and ¢y are explicit constants depending on ¢.

As an application of our elementary method we will give a new proof of Theorem
1.1 in section 4. The proof does not use any resolutions of singularities.

Remarks 1.2.

e Theorem 1.1 is not true without the assumption that ¢ is R-nondegenerate
since a (real-analytic) change of variables leaves I (1) unchanged but can
change the Newton diagram and distance of ¢. The R-degenerate phase
#(s,t) = (s—t)* with Newton distance 8 = 1/2k provides a simple example.
A rotation transforms this example to the R-nondegenerate phase qNS(s, t) =
s* with Newton distance 8 = 1 /k which is the correct decay parameter
for I,(1) in this case. An interesting substitute for R-nondegeneracy is
discussed in [6].

e If 3 > 1 and $1 lies in the interior of the compact edge Ej;, the constant ¢;
in part ¢) of Theorem 1.1 is equal to

X(an)//ew’ii(s’t) dsdt;
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the existence of this oscillatory integral is discussed in section 4. The precise
values for the constants ¢; and ¢y in all cases can be determined from the
proofs given below.

It is interesting to compare Varcenko’s result with the bilinear form I(K) on
L?(R) where K(s,t) = f(s)g(t) is the product of two arbitrary L? functions. This
effectively fixes the coordinate axes (s,t) and a result of Phong and Stein [9] states
that the sharp decay estimate for the L? norm of this bilinear form is O(A~1/28)
for any real-analytic ¢ (here § is the Newton distance to the Newton diagram
associated to 92 ,¢). Such results arise from the study of certain degenerate Fourier
integral operators associated to generalised Radon transforms along curves in the
plane which is a topic studied by many authors. The C'* case has been successfully
treated by Seeger [13] and Rychkov [11] (see also [5]).

Another instance where one has sharp results for any real-analytic phase ¢ occurs
when K(s,t) = 1/st is the double Hilbert transform singular kernel. In fact we
have

Theorem 1.3. Let ¢ be any real-valued phase function which is real-analytic at
(0,0) and K (s,t) = 1/st. Then for x € C>°(R?) supported in a sufficiently small
neighbourhood of the origin and identically equal to 1 near (0,0),

L(K) = Cylogh + 0O(1)
where Cy is an explicit constant which may or may not vanish, depending on ¢.
Remarks 1.4.

e A similar result for polynomial phases was established in [8].
e Consider the translation-invariant singular integral operator Tf = f x S,
where S is the principal-valued distribution defined on a test function 1 by

(S,0) = / / D(s, 1, 6(5,4))x(s, 1) ds/sdt/t.

The multiplier m = S for this operator is related to I)(K) in Theorem
1.3 by m(0,0,A) = Ix(K). The proof of Theorem 1.3 can be modified to
show that T is bounded on all LP(R®),1 < p < oo if and only if every
vertex V;,1 < j < N, of the Newton diagram of ¢ has at least one even
component. This extends the result in [2] from polynomial to real-analytic
surfaces and we will indicate the required modifications in section 5 (see
also [10] for a further extension). Interestingly this result for T is false in
the C'* category, even if ¢ has some nonvanishing derivative; that is, even
if ¢ is of finite-type in some sense. An example is produced in section 5.

e Recently certain variants of Theorem 1.3 have been used in the study of
real-analytic mappings ¢ : T? — T* between tori which have the property
that the change of variable f — f o ¢ linear transformation maps abso-
lutely convergent Fourier series to uniformly convergent (with respect to
rectangular summation) Fourier series. See [4].

In each of the three cases, K =1, K(s,t) = f(s)g(t), or K(s,t) = 1/st, the nature
of K dictates the decomposition of I (K) needed to understand its behaviour for
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large \. When K (s,t) = f(s)g(t) is the product of two arbitrary L?(R) functions,
a subtle decomposition away from the zero set of 8%,¢ is used by Phong and Stein
[9] to estimate the norm of the form Ix(fg). We will use a more elementary decom-
position, one with respect to the edges {E;} of the Newton diagram II of ¢ in the
proof of Theorem 1.1, and one with respect to the vertices {V;} of II in the proof
of Theorem 1.3. In both cases the two decompositions are similar as well as the
method used to analyse I (1) and I (1/st).

To illustrate the method in a simple setting we prove the following proposition in
the next section.

Proposition 1.5. For any real-valued ¢ of a single variable which is real-analytic
at 0,

(1) I, = / er) ds/s = 0(1).
ls|<1

Remark 1.6. Proposition 1.5 is well-known; in fact, higher dimensional versions,
where 1/s is replaced by a general homogeneous Calderén-Zygmund kernel K (z) =
Q(x)/|z|¢ with Q € Llog L(S?!) having mean value zero, also hold. These are
special instances of the theory of generalised singular Radon transforms; see for
example, [14].

In the next section we will sketch the proof of Proposition 1.5, highlighting an idea
which will be used in the proofs of Theorems 1.1 and 1.3. In section 3 we describe
the basic decomposition of I(K) for both K = 1 and K(s,t) = 1/st and prove
some basic estimates. In section 4 we complete the proof of Theorem 1.1. The final
section is devoted to the proof of Theorem 1.3 as well describing how to extend the
main result in [2] regarding the singular integral operator T' (defined in the remarks
after the statement of Theorem 1.3) from polynomial to real-analytic surfaces.

2. PROOF OF PROPOSITION 1.5

We may assume that ¢(0) = 0. The Newton diagram of ¢ simply picks out the
first nonvanishing by # 0 Taylor coefficient of ¢(s) = 3", -, bps™. In particular this
tells us that ¢(s) ~ bps* for s small (note that we may restrict the integration of
I in (1) to an arbitrarily small interval |s| < € - independent of A - which creates
an O(1) error). Thus for small s the monomial by,s* dominates the other terms in
the expansion of ¢ and we will see that for sufficiently small € > 0,

(2) / ) ds/s = / girbrs* ds/s + O(A%F)
ls|<e Is|<e

for some § > 0. The second integral in (2) is zero if k is even whereas when k is
odd, it is equal to wsgn(b)/k + O(1/X) which gives us an asymptotic description
of I, and in particular proves (1).

We decompose the first integral in (2) dyadically in s (in higher dimensions it is
natural to decompose into dyadic annuli since Q € Llog L(S?!) possesses some
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regularity which should be compared to the homogeneous example K (s,t) = 1/st

of Theorem 1.3),
>/ M) ds)s = 37 T,(\)
90—

—p+1
P>Po P<|s|<27P P>Ppo

where we write

I,(\) = / N0 ds)s with  gp(s) = bs® + Y 27 (7PPp, .
1<|s]<2 n>k
Here ¢, is a normalised phase adapted to the dyadic interval 27 < |s| < 27P*!
indexed by p and on which ¢ has size 27P*. Similarly we decompose the second

integral in (2)
/ girbrs® ds/s := Z II,(N\)
\5|§€ p>p0
where IT,(A) = [, |« 27" bus" g /s We examine the difference I, () — IT,())
for each p. o

The idea is very simple. For small A\27P* we gain in the difference since ¢,(s) —
brs® = O(27P) for large p and so

[L,(A\) — II,(N)| < C277 A27P%,
For large A2 P* we treat I, and II, separately, integrating by parts to obtain
(I, (A) = IL,(N)| < C 27PN

for any N > 0. Putting these estimates together shows that |I,(A) — IL,(A)| <
C 27 min(A27P* [A\27P*]79) for some § > 0. Summing in p establishes (2).

The basic idea for the proofs of Theorems 1.1 and 1.3 is the same; however a single
monomial of ¢(s,t) = Y bas*t** no longer dominates all the other monomials.
For I,(1) we will decompose the integration into various regions corresponding to
each edge E;,0 < j < N of the Newton diagram II. In the region corresponding
to Ey, say, the monomials along Ej (that is, the monomials appearing in ¢g, ) will
dominate in a certain sense. For I, (1/st) we will decompose the integration into
various regions corresponding to each vertex V;,1 < j < N of II. In the region
corresponding to Vi, say, the monomial of ¢ corresponding to V}, will dominate in a
certain sense. In both cases we will compare matters to the corresponding integral
where the phase ¢ is replaced by ¢g, or the monomial corresponding to the vertex
Vi, creating an allowable error.

3. BASIC DECOMPOSITIONS

In this section we fix a real-valued, real-analytic phase function ¢(s,t) = ) by s*1t*2
with Newton diagram TI consisting of vertices {V;}}_; and edges {F;}},-

Let n; denote an inward normal vector to the edge F;,0 < j < N, as indicated in
Figure 2. The components of n; can be chosen to be rational and for notational
convenience, we will normalise the normals n;,0 < j < N, so that all components
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FIGURE 2.

have a common denominator. To each compact edge E; = V; V1,1 <j < N —1,
we associate the positive parameter s; = (n;-V;)/(n;-1) which will serve to measure
the decay rate of the part of I (1) corresponding to E;. Similarly, if the end vertices
Vo and Vi do not lie along the coordinate axes, we set so = (ng - V1)/(no - 1) and
sy = (ny - Vn)/(ny - 1) for the noncompact edges Ey and Epn. If either Vj or
Vi lie along one of the coordinate axes, we set s = (n1 - Vo)/(no + n1) - 1 or
sy = (nv-1-Vn)/(nn—1+nn) -1, respectively. Geometrically s; is the parameter
such that s;1 lies on the line extension of E;. Hence if the ray {s1},>¢ intersects
the edge Ej, then s; = (3 is the Newton distance of II. The situation is depicted in
Figure 2 with Fy and s;.

We begin the analysis of

I\(K) = //e"w(s’t)K(s,t)x(s,t) dsdt

where x € C2°(R?) is supported in a small neighbourhood of (0,0) and K = 1 or
K(s,t) = 1/st. Fix a nonnegative, even ¢ € C° supported in {s:1/2 < |s| < 2}
such that }° ., (2Ps) =1 for s # 0. Then

@ nw= ¥ [ [0 oxsou@rs v ds
P

=(p,q)

and the integral in the sum is supported in the dyadic rectangle {(s,t) : |s| ~
27P, |t| ~ 279}, indexed by the integer lattice point P = (p,q) where both p, g are
large and positive due to the small support of x.

The basic decomposition of I,(K) will be expressed as a decomposition of L =
{P = (p,q) € N x N}. We begin with K(s,t) = 1/st and define, for each vertex
V;,1<j < N,ofII, the cone C(V;) ={P =onj_1+pn; € L: o,p >0} in L. See
Figure 3.

It is clear that L = Uj.VZIC (V;) gives an essentially disjoint decomposition of L. By
our convention that all rational components of the normals {n;} have a common
denominator, P = onj_1 + pn; € C(V;) implies that ¢ = k/d; and p = ¢/d; for
some fixed positive integer d; and integers k, £ > 0. Hence the points of C'(V}) are
parameterised by a certain subcollection A; C {(k, £) € N x N} of positive integer
lattice points. Furthermore for any a € I, P-(a—=V;) > 0 or 277> < 278V for all
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FIGURE 3.

P € C(V;) and hence the monomial by, s*31t"3-2 of ¢ corresponding to the vertex V;
domlnates all the other monomials b, s*1t*2 of ¢ on those dyadic rectangles indexed

by P € C(V;). This gives us the basic decomposition of

I(1/st) = ZS,\,] 1/st) : Z Z I p(1/st)
J=1 PeC(V;)
where I; p(K) (K (s,t) = 1/st in this instance) is the P = (p, q) integral in (3). We
will compare this to M) ;(1/st) = > pec(vy 1L ;,p(1/st) where

I1; p(1/st) / / by s (g )ap(2Ps)p(294) ds/s dt 1.
In fact, we will show that

(4) Sxi(1/st) = My ;(1/st) = O(1)
for each 1 < j < N and the behaviour of each M} ;(1/st) is easy to understand.

We shall need a further decomposition of C(V;) = Upm>0Cm (V;) where Cp, (V;) =

k /
un]’_1+mnj€L:k€N} U{PZENJ‘_1+ m+
d; d; dj

{P= i

——mnj;€L:LeN}

= CLV}) U CpV)).

See Figure 3. In particular this divides each cone C(V}) into two parts, C~(Vj)
Um>0C;, (V) and CT(V}) = Up>oC;h(V;). This leads us to the cones C(E;)
C~(V;) U C*(Vj41) in L associated to each compact edge E; = V;Vjq1,1 < j
N — 1. To the noncompact edges Ey and Ex we associate C(Ey) = CT(V;) an
C(Eny) = C~(Vy) respectively. This gives us another decomposition of L
U;V oC(E;) but now with respect to the edges {E;} of the Newton diagram
of ¢; each cone C(E;) = Upn>0Cn(E;) decomposes further where Cy,(E;) =
C,(V;) U CH(Vjq1). We will use this decomposition to analyse I,(1). In fact
we decompose

!:1 || o..l/\ Il

N N
= ZSA,J'(I) = Z Z
7=0

j=0 PEC(E'j)
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and then compare each S ;(1) to Mx;(1) = 3" pec ;) I1;,p(1) where

II;p(1) = / / €98 (58 (s, )0p(27 )1 (298) dsdt.
We will show that
(5) Sa;(1) = My (1) = OA~(1/s:+3i)y

for some §; > 0; recall that s; = (n;-V;)/(n;-1) <  where  is the Newton distance
of II. This shows that in some sense, the monomials appearing in ¢g; dominate
the other monomials of ¢ on those dyadic rectangles indexed by P € C(Ej;).

In either case K =1 or K(s,t) = 1/st, if P € C(V}), we write
Iip(K)=2"F1 / / A2 YT 05.p(5.t) ) (97Ps 2~ U) K (27Ps, 2794)h(s)0(t) dsdt

where

¢j.p(s,t) =2""Yip(2775,279) = ijsz’ltvf’2 + Z 2 FPr(a=Vi)p gorpoe
a€[II\V;]NA

is a normalised phase with respect to P € C(V;). We will compare each I; p(K),
for P € C(V;), to I p(K) defined above which can be written as
II; p(K) = 27P'1//e"’\z_P'Vj¢’K’J"P(s’t)x(2*ps,2*qt)K(2*ps,2*qt)7,b(s)v,l}(t) dsdt

where qbl/st,j,p(s,t) = ijSVj,lth,Q if P € C(V;) and ¢y 5, p(s,t) = 2P'VJ‘¢E]. (27Ps,279)
if P € C=(V;) whereas ¢y p(s,t) =2FVigp, _ (27Ps,279t) if P € CT(V;). Recall
that O(V;) = C—(v;) U CH(V,) and C(Ey) = C= (V;) U O+ (Vo).

As in Proposition 1.5 we split the analysis of the difference I; p(K) — II; p(K) for
P € C(V;) into the cases when A2-FVi is small and large. Again we will gain in
the difference. To understand this when K (s,t) = 1/st and P € C(V;), we need to
estimate the difference

d)j,P(sa t) - ¢1/st,j,P(s7t) = Z ba2_(a_Vj).P5alta2
a€[M\V;]NA

for |s|,|t| ~ 1. We observe that d;1 > 0 and J;2 > 0 where

. = . f _ A . ) — . f . N o
51’1 ae[Hl{lEj]ﬁA(a V';) nj and 61’2 aE[H\lgj—l]ﬂA(a V7) -1

Hence for P € Cp,(V}),
(@ =Vj)- P 2m/dj(a—=Vj)-(nj-1+n;) 2 d;m

for some ¢; > 0, uniformly for @ € II\V;. This implies that ¢; p(s,t)—1 /51,5, (s, 1) =
0(27%™) and thus

© Ipp(1/st) = I p(1/st) = 02~ %™ A2V,
uniformly for P € Cp, (V;).
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In order to understand the difference I; p(K) — II; p(K) when K =1 and P €
C(E;j) = C~ (V) UC™(Vj41), we need to estimate the difference

bi.p(s,t) — b1, p(5,1) = Z b2 (@ Vi) P goryas
a€[I\E;]NA
for |s|,|t| ~ 1 if P € C~(V;), and the difference
bir1,p(5,t) — P1j+1,P(5,1) = Z bo2 (= Vi+1)-Pgarqar
a€[I\E;]NA
for |s|,|t| ~ 1 if P € CT(Vj41). In the first case for P € C;,(V;), we have
+k J;
(@=Vp)-P > T 2@ = V) my > L+
J j
and in the second case, for P € C}(Vj11),
k J;
(@=Vis) P > T (@ = Vi) -my > T2
i1 djt1

in both instances, these hold uniformly for & € II \ E;. Thus for some €; > 0,
(7) Lip(1) = II;p(1) = (279 mHR2= P [xg= P Vo)),
uniformly for P € Cy,(E;) = C,,,(V;) U C;t(Vj41) where r = j or j + 1 depending

on whether P € C;,(V;) or P € C}}(Vj41), respectively. Estimates (6) and (7) are
good when A2~ PV is small.
Complementary estimates when A2-FYi is large are easily obtained for II; p(K)
in both cases K =1 and K (s,t) = 1/st. When K (s,t) = 1/st, integration by parts
shows that for P € C(V;), I\ p(1/st) =

(8) //ei)a—P-vjva- st,lth,2X(2*I’s,Z*Qt)lp(s)w(t) ds/s dt/t — 0([/\2,p.1/j],N)
for any N > 0.

On the other hand, when K = 1, we have
(9) IVér,5,p(s, 1) = [V[27 Vi g, (27P5,2798)]| > 6; > 0

on the support of 9(s)i(t), uniformly for P € C~(V;) C C(Ej;), say, whenever E;
is a compact edge (similarly for P € C*(Vj;1) C C(E;)). This follows from the R-
nondegeneracy hypothesis that V¢g, never vanishes away from the coordinate axes.
In fact, more generally, for P = ong + 7n; with 0,7 > 0, 2PVigg, (2775,279t) =

by, sVittViz 4 Z §la=Vi)mop ga1ga2
2
a€[E;\V;]1nA

where § = 277 and (a — Vj) - ng > 0 whenever a € E; \ V;. The R-nondegeneracy
hypothesis implies that the gradient of A¢p,(Bs,Ct) does not vanish whenever
st #0 and A, B and C positive fixed constants; therefore, we see that the gradient
of the above expression, denoted by F(s, t, §) say, is nonzero for (s,t) in the support
of 1(s)1(t) and 6 > 0. But the above expression also shows that F(s,t,0) # 0 and
since F is clearly continuous on the compact product supp(i(s)i(t)) x [0,1] we
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see that F is uniformly bounded below on this product, establishing (9). A simi-
lar argument gives a bound from below of the gradient of 2F 'VJ'+1¢EJ. (27Ps,279%),
uniformly for P = on; + mny with o,7 > 0.

Even for the noncompact edges Ey and Ey, (9) continues to hold whether or
not ¢ is R-nondegenerate, as long as the components of P = (p,q) are large and
positive which is the situation when the support of x is sufficiently small. For
P = mthng + 20y € Cr(Eo) = G (V1), say, d1,0,p(s,t) =

Z Q—P'(Q—Vl)basa1t(12 — SV1,1[bV1tV1,2 + Z zfﬁ(afvl)'mbat(m]_

acEqNA a€EonA

as>Vi 2
However m = cq since ng is proportional to (1,0) and from this, it is easily seen
that (9) also holds for the noncompact edges as well since ¢ can be chosen to be
large if the support of x is small.

Hence, for P € C~(V;) C C(E;) say, since any C*¥ norm of ¢ ; p is bounded above,
an integration by parts argument shows that II; p(1) =

(10)
201 [ [ e ety s, )p(s)(0) dsdt = 02 "IN
for any N > 0. Similarly for P € C*(Vj;1) C C(Ej).

To prove similar estimates for I; p(K), we need similar derivative bounds for the
normalised phases ¢; p(s,t) = 2P"Vi¢(27Ps,27%) which we establish in the follow-
ing lemma.

Lemma 3.1. For every M >0 and 1 < j < N, there exists constants §;,Crr,; > 0
such that for (s,t) € supp(¥(s)¥(t)) and P € C(V;) large in the sense that both p
and q in P = (p,q) are large,

i) llgj.pllom < Cha,ys
i) ifj=1and Pe Ct(Vy) orif j=N and P € C~(Vy),

IVé;p(s,t)| > 6
iii) there is some derivative 0% such that

10%¢;,p(st)] > dj;
) if in addition, ¢ is R-nondegenerate,

IV;.p(s,t)| > 4
holds for any 1 < j < N.

Proof. Since
Bip(s,1) =25 Vig(2 75,270ty = 3 2 (e Vi, s pen
and 2=P(@=Vi) < 1 for P € C(V;) and « € TI, we see that i) holds. The proof of

part 4i) is similar to the proof given above that the gradient of ¢4, ; is bounded
below. We leave the details to the reader.
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For parts 4ii) and iv), suppose that P € C~(V;) (the proof when P € C*(Vj) is
similar). Furthermore, we may suppose that 1 < j < N —1 so that P € C(E;) and
E; is a compact edge; otherwise we are in the situation of part 4¢). For part 4ii),
we write

¢j,p(s,t) = by, sV91tV52 4 Z 2 P a=Vi)p gorgoz

a€ll\V;
and consider the 8%/ derivative of ¢; p:
0Vig;p(s,t) = ¢; + Z 2 PrlaVi)g g Viagon—Viz
acIl\Vj :

a12Vj1, a2>Vj2

where c; is nonzero. Since P € C~(V;) and 1 < j < N —1, we have that a € IT\ Vj
such that a; > Vj 1,2 >V, implies that o € II \ E;. Hence, for P = dﬂjnj_l +

md—jknj €C,(V;) and a € [IT\ E;]NA,

k 0;
P =) > Llpm+ K]
J

and in this case, m + k ~ max(p,q) which we are taking to be large. This shows
that [0Y ¢; p(s,t)| > |c;|/2 if p and ¢ are large, completing the proof of part 7ii).

For part iv), we write

B3p(5.1) = 2P Vo, (275 210 N 2P g
aEH\Ej

and use (9) to uniformly bound from below the gradient of the first term, ¢1 ; p.
It suffices to show that the gradient of the second term can be made as small as
we like by taking P = (p, ¢) large enough. This follows by the same argument in
part iii) to show that 2-F(@=V3) is uniformly small if the max(p, ) is large. This
completes the proof of Lemma 3.1. a

As a consequence of Lemma 3.1 we obtain the complementary estimates for I; p(K),
P € C(Vj), when A2~V is large. For instance, when K (s,t) = 1/st, parts i) and
i1i) of Lemma 3.1, together with an integration by parts argument (using a version
of van der Corput’s lemma in higher dimensions; see for example, [14]) shows that
for P € C(V;), I; p(1/st) =

(11) / / N2 65 p (st y (2P 5 2= 9)p(s)(t) ds/sdt/t = O(N2~FVi]~9)

for some 6 > 0. On the other hand, when K = 1, parts i), ¢) and iv) of Lemma
3.1, together with an integration by parts argument, imply that for P € C~(V;) C
C(EJ)J say, I],P(l) =

(12)
2_Pll/ / e (0 (2775, 2" (st dsdt = O(27 P 2P YN)

for any N > 0. A similar estimate holds for I p(1) when P € C*(V;) C C(Ej_1).
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4. PROOF OF THEOREM 1.1

Recall that we are trying to understand the oscillatory integrals
L(K) = / / M0 I (s )y (s, 1) dsdt

where ¢ is a real-valued, real-analytic phase at (0,0), x € C>°(R?) is supported in
a sufficiently small neighbourhood of (0,0), and either K = 1 or K(s,t) = 1/st.
In both cases Ix\(K) = }_; Sx;(K) where for K =1, Sy j(1) = X pec(g;) Lip(1)
and 0 < j < N, and for K(s,t) = 1/st, Sx;(1/st) = Y pec(v,) Lip(1/st) and
1<j<N. Here, if P € C(V}),

Lip(K)=2""1 / / N2 Y05 p(st) ) (2775 2 U)K (2P, 27T (s)0)(¢) dsdt
where ¢; p(s,t) = 2PVig(27Ps,279¢).

In this section we complete the proof of Theorem 1.1 which concerns the case
K =1 under the additional hypothesis that ¢ is R-nondegenerate. As described in
the previous section we compare Sy ;(1) with M ;(1) = 3 peo(g;) 115, (1). From
(7), (10) and (12), we see that for P € Cn(E;) = C,(V;) U CH(Vjy1) (that is,

—_—m, . m+k, . — m+4k, . . m .
P=Fn; 1+ %n; or P = J4in; + —dj+1nﬂ+1)’

(13) |I; p(1) — II; p(1)] < Cn ;275 MR 2= P L min(1, A2~ V+]~N)

for some €; > 0 and any N > 0. Here r = j or r = j 4+ 1 depending on whether
P e C;,,(V;) or P € C}t(Vjy1) respectively. By choosing N large enough and
summing over all m, k > 0, we obtain

Sx;i(1) = My;(1) = O(,\—(1/8j+6j))

for some &; > 0, establishing (5) and reducing the analysis of Ix(1) to >_; M ;(1)
(it is convenient to sum first in k and then m if V,. does not lie on one of the
coordinate axes; otherwise sum in the opposite order).

To bound M3;(1) = > pec(r;) 11;,p(1), we use (10) to see that for P € C(E;),
[11;,p(1)| < Cn ;2”7 min(1, 2”7V Y)

for any N > 0 and this leads to the estimate My ;(1) = O(A"/%), for each
0 < j < N as long as the vertex V,. does not lie along the line {s1}550. When
V., lies along this line, summing the above estimates (say, in the case r = j so that
we are summing over P € C~(V})) adds an extra factor of log\ due to the fact
that s;_1 = s; in this case (after summing in k, we are left with O(log A) terms of
order 1 in the m sum).

This gives us the correct estimate for I, (1) when the Newton distance § is strictly
larger than 1. To get the asymptotic refinement we first consider the case when
B1 ¢ {Vi,...,Vn}. Let Ej;, denote the edge whose interior contains 81. For j # jo,
the bounds My ;(1) = O(A~ /i) mentioned above contribute to the error estimate.
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Next we observe that
(14) / / Nejo (0 (5,8) dsdt — My jo(1) = O(A~(1/6+9)

for some € > 0. In fact the above difference is equal to

Z // iApE; (s t) )’¢(2p3)’¢(2qt) dsdi

PEC(Ejq)
= > I p(1)
PEC(Ej,)
If P ¢ C(Ej,) then there exist 0 > 0 and positive numbers a, b, c and d such that
either P = kang + fbnj, for certain positive integers k,{ satisfying k& > o¥f, or
P = kcnj, +4dny for certain positive integers k, £ satisfying £ > ok. Concentrating
on those P ¢ C(Ej,) which are linear combinations of ng and n;,, we write

T p(1) = 2-P1 / / Vi G (a)y (2P, 2= 94) b (s))(t) dsdt

where aa(s,t) = 2PVio g, (277s,279t); the general argument establishing (9)
shows that the gradient of this normalised phase is also uniformly bounded be-
low. Hence integration by parts shows

[T, p(1)] < C27 P min(1, (2271 Yi0]™N)

for any N > 0. Summing over all such P = kang + £bn;,, choosing N large enough,
establishes (14).

This leaves us with developing the asymptotic behaviour of

/ / e, (98)y (s, 1) dsdt

as A tends to infinity. This is fairly straightforward and so we will be brief. Let m
denote the absolute value of the slope of the edge Ej, and assume that m is positive
and finite (that is, Ej, is a compact edge); the other cases are easier to handle.
Finally we may assume that 1 ¢ E; ; otherwise both vertices (2,0) and (0,2) lie
on Ej, and the R-nondegeneracy hypothesis implies that ¢g,, has a nondegenerate
critical point at (0,0) and so stationary phase asymptotics can be invoked.

Let (A, B) denote the strictly positive components of the vector nj, /(Vj, - nj,) and
note that a- (4, B) =1 for all o € Ej, since for such a, (a —V},) -nj, = 0. Making
the change of variables s = A~4s and t — APt gives us

_)\ 1/ﬁ // Z¢7E (St) )\ A )\ Bt) dsdt

We split the above integral by writing x(A~4s, A=5t) = [x(A~4s, \=Bt)—x(A~45,0)]
+[x(A~4s,0) — x(0,0)] + x(0,0). We denote the first difference by x1(s,t) and the
second difference as x2(s). Here we are implicitly assuming the existence of the
oscillatory integral [ [ e"%io Y dsdt for the case we are considering; however the
argument sketched below also shows that this integral does indeed exist. We con-

centrate on showing

(15) / / e () 3, (s) dsdt = O(A\~0)
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for some ¢y > 0. It is slightly easier to show that S;(\) = O(A~%) for some
do > 0 and this, together with (15), gives the desired result. We split the re-
gion of integration defining S2(\) into three parts; |s| > C|¢t|™, |s| < C!|¢|™ and
C7Lt|™ < |s| < C|t|™. The first and second regions correspond to where the mono-
mials associated to the endpoint vertices Vj, and Vj, 41, respectively, are pointwise
larger than the other monomials in ¢p; . In either case, the size of any derivative
of the phase ¢, is understood (being determined by the endpoint vertices) and
straightforward integration by parts arguments show the decay estimates O(A™¢)
for some € > 0 in these cases.

We shall concentrate on estimating the part of the integral defining S2()) over
the third region where all the monomials in ¢p,; have the same size. We make

the change of variable t — s'/™t (treating the positive and negative s integrals
separately), reducing the analysis of S3(A) to

// eisa1+a2/m¢Ej0 (l,t)sl/mX2(s)d8dt_
1/C<|t|<C

Here the exponent oy + as/m = a - (1,1/m) is constant as « varies over Ej; N A
and the basic observation is that the constant

n = (a=1)-(1,1/m)

is strictly positive since we are assuming that 1 ¢ E, . Consider first the part of
the integral where s > X% for any § > 0; that is

So.s E/ sl/m/ e Q) gt ds
' 5>A8 L<jg<co

where Q(t) = ¢, (1,t) and r =1+ ~ + 1.

We split the ¢ integral in S» 5 around the critical points of (). Away from the critical
points of @ (where |Q'(t)| 2 1) an integration by parts argument shows that the ¢
integral is O(1/s'*7) which allows us to estimate that part of S, 5 successfully. In
a small neighbourhood of a critical point of @, say |t — a| < € for small € > 0 where
Q'(a) =0,1/C < |a] < C, we make the change of variable ¢ — ¢ — a to write this
part of Sy 5 as

Susa= [ e@@sm [ POt ds
s>A8 |t]<e

where P(t) = Q(t + a) — Q(a) is a polynomial satisfying |P(t)| < [t|*, |P'(t)| =
|t|¥o—! on the interval |t| < € for some ko > 2. Since ¢ is R-nondegenerate, we see
that @Q(«a) # 0. An integration by parts argument (in s) shows that

S2,6,a =C/ e"Q(a)Srsl/m/ e POP@t)dtds + OA™°)
s>A8 [t|<e

for some constnat C' and £ > 0. Now integrating by parts in the ¢ integral shows
that Sa,5,0 = O(A™ ) for every nonzero critical point a of @ and any § > 0.
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For the part where s < X, we write x2(s) = sA~4 fol dx/0s(A\~4s0,0)do and
trivially estimate

1 s Mg, s Ox A
/ / / oo (1 t’AA s (A As0,0)dsdt do = O(\~(A=29)),
0 t|~1 Js<AS

Taking § < A/2 establishes (15), completing the proof that
1) = Xx(0,0) [ [ 5Dt + 000157

For the case 81 € {V1,...,Vn}, say 1 = Vj},, we consider only the situation when
B > 1 since otherwise stationary phase methods apply. From the above analysis we
have

(1) = Z //eiW(s’t)X(s,t)¢(2”s)¢(2"t)dsdt-i—O()\_(l/B"'f))
PEC(EjO_l)UC(EjO)

for some € > 0. Furthermore, similar arguments already used show that the above
sum is equal to

iAby; (st) s
Peg(: // 5,8)1(2Ps)Y(2%)dsdt + O(A~/7)

and the sum is easily seen to be equal to cA~!log A + O(1/)) for some ¢ # 0 since
B is a positive integer larger than 1. We omit the details. This completes the proof
of Theorem 1.1.

5. ANALYSIS OF I)(1/st) AND T

In this section we complete the proof of Theorem 1.3. Recall that we are trying to
understand the oscillatory integral

I, (1/st) // X5ty (s,t) ds/sdt/t

where ¢ is a real-valued, real-analytic phase at (0,0) and x € C(R?) is sup-
ported in a sufficiently small neighbourhood of (0,0). Furthermore Ix(1/st) =

2i<j<n Sxj(1/st) where Sy ;(1/st) = 3 pecqy,) Lj,p(1/st) and for P € C(Vj),
I, p(1/st) = / / A2 65p(0:t) 3 (97P5 298 )p(s)p(t) ds/s dt/t
where ¢; p(s,t) = 2PVig(27Ps,279¢).
As described in section 3 we compare Sy ;(1/st) with My ;(1/st) = 3_ pec(v,) 11i,p(1/st).
From (6), (8) and (11), we see that for P € Cp,(Vj),
(16) \I;,p(1/st) — IT; p(1/st)] < C;27 %™ min(A2~FY3, [A27FV3]9)

for some €; > 0. If the endpoint vertices Vo and Vi do not lie along the coordinate
axes, then we can sum over P € Cp,(V}) to obtain

(17) > Lp(1/st) - II;p(1/st)| < C27%™
PeCm (Vj)
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for some J; > 0. Summing in m establishes (4).

With regard to the singular integral operator T'f = f %S mentioned in the remarks
after the statement of Theorem 1.3, the operator corresponding to I; p(1/st) is the
convolution operator T; pf = f *S; p where for P € C(V}), S; p is the distribution
defined on a test function p by

(Ss.p0 ) = / / pls,, 8(s, 1) x(s, Ey(2P 8)ep(20) s sdl 1.

Similarly the operator Mj; pf = f * U; p corresponding to Il p is defined exactly
in the same way except ¢ is replaced by the monomial by,s"51¢"32. The above
bounds translate in this setting to the fact that the difference operators {T} p —
M; p}pec,.(v;) are almost orthogonal whose sum has an L2 operator norm bound
of O(27%™). Using appropriate Littlewood-Paley theory these L? estimates can be
converted into LP,1 < p < oo estimates; see [2].

Thus, if the vertices Vp and Viy do not lie along the coordinate axes, summing over
m > 0 reduces the analysis of Ix(1/st) and T' to > ; M ;(1/st) and 3°; M;f =
> 2pec(v;) Mj,pf, respectively. As in [2], if each vertex V; has at least one
even component, the operator ) ;M is bounded on all LP;1 < p < oo (if one
of the components of V; is even, then clearly M, ;(1/st) = 0). If there exists a
vertex V; whose components are both odd, then one can argue exactly as in [2]
to show that T is not bounded on L2. Finally, it is not difficult to show that
>-; My ;(1/st) = Cylog A + O(1) for an explicit Cyy depending on the signs of the
coefficients by, for those vertices V; which have both components odd. This is
carried out in [8] where one can find a formula for C.

If either Vp or Vi lies along the coordinate axes, the sum (17) collapses. In this
case (at least for those P € C*(V;) or P € C~(Vn)), we need to replace I]; p, say,
with

1L p = //e"’\d’(o’t)x(s,t)¢(2”s)¢(2qt) ds/sdt/t.

Similarly we need appropriate replacements for IIn p as well as for the operators
M,,p and My, p. With these substitutions, the sum estimate (17) now holds as well
as the fact that the difference operators {1 p — My p} Peci(vy)> 58y, are almost

orthogonal whose sum has an L? operator norm bound of O(27%™) for some & > 0.
This case was overlooked in [2].

We shall now show that the result determining the L? boundedness for the singular
integral operator T does not extend to ¢ € C*, even in the finite-type category.
For any € > 0, we consider the operator

(18) Tef(xayaz) = pv/l tl< f(x_say_taz_¢(37t)) dS/Sdt/t

where ¢(s,t) = s*t+1)(s) and 1 is an appropriate smooth function near s = 0 such
that ¢(¥)(0) = 0 for all k£ > 0. In this case there is only one vertex, (2,1), for the
Newton polygon IT of ¢. We will show that when ¢ is convex and odd, a necessary
and sufficient condition for (18) to be unbounded on L? for all € > 0 is that there
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exists a sequence s; \, 0 such that for
(19)  o0j < s; satisfying ¢'(0;) = (s;)/sj, then we have s;/0; — oco.
This is just the contrapositive to the (local) h doubling condition used in [7] to

analyse Hilbert transforms along convex curves in the plane. In fact we will show
that for every € > 0,

M (é', n, ry) = / / ei[§8+nt+’7¢(37t)] ds/s dt/t

ls], [t]<e

is an unbounded function. We take 7 = 0 and perform the ¢ integral first; m.(£,0,7) =

/ elléstrv(s)] / et dt/tds/s = —2/5in(§s+'y¢(s))l(s2) ds/s
|s|<e [t]<e 0
where I(s?) = 2 [ sin(ys®t)dt/t. Here we are assuming that ¢ is odd. Since
I(s%) = O(vs?) and I(s?) = sgn(y)m + O(1/vs?), we see that (for v < 0)

me(£,0,7) = 2r / sin(és +yi(s)) ds/s + O(1).
|3

Now take j so large in (19) that s; < € and ¢"(0;) < w. For such a j, consider
—v =7/[2h(0;)] and £ = —y1'(0;). Then since s; < €, we have

/ sin(és + yi(s)) ds/s = / sin(€s + yi(s)) ds/s + O(1)
Bl Rl

by the convexity of ¢ (see [7]). Also ¢"(0;) < 7 gaurantees that vz < o; and
so (see [7], page 740)

S5 (sito;)/2
/ sl )i / sin(€s +yi)(s))ds/s > % log((1+ (51/97))/2)
lv~2 7i

and by (19) this completes the proof that m. is an unbounded function of &, and
7.
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