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IMAGINARY POWERS OF LAPLACE OPERATORS

ADAM SIKORA AND JAMES WRIGHT

(Communicated by Christopher D. Sogge)

Abstract. We show that if L is a second-order uniformly elliptic operator in
divergence form on Rd, then C1(1+|α|)d/2 ≤ ‖Liα‖L1→L1,∞ ≤ C2(1+|α|)d/2.
We also prove that the upper bounds remain true for any operator with the
finite speed propagation property.

1. Introduction

Assume that aij ∈ C∞(Rd), aij = aji for 1 ≤ i, j ≤ d and that κI ≤ (aij) ≤ τI
for some positive constants κ and τ . We define a positive self-adjoint operator L
on L2(Rd) by the formula

L = −
∑

∂iaij∂j .(1)

We refer readers to [8] for the precise definition and basic properties of L. In
particular, L admits a spectral resolution E(t) and we can define the operator Liα

by the formula

Liα =
∫ ∞

0

tiαdE(t).

By spectral theory ‖Liα‖L2→L2 = 1. It is well known that Liα falls within the scope
of classical Calderón-Zygmund theory (as described in [3] or [22]) and so it extends
to a bounded operator on Lp, 1 < p < ∞, and is also weak type (1,1). The main
aim of this paper is to obtain the sharp estimate for the weak type (1, 1) norm of
Liα in terms of α.

The study of imaginary powers of operators is an important part of the theory of
operators of type ω with H∞ functional calculus (see e.g., [6], [9] and [17]). What
is perhaps more interesting and relevant from the point of view of this paper is
that the weak type (1, 1) norm of imaginary powers of self-adjoint operators can
play a central role in the theory of spectral multipliers. See [5] and [15]. Imaginary
powers of Laplace operators on compact Lie groups were also investigated in [20].
Theorem 2 below applied to Laplace operators on compact Lie groups gives the
sharp endpoint result of Theorem 3 in [20], pp. 58. See also Corollary 4 of [20], pp.
121.
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However, the starting point for this paper is the following observation from [2].
If we denote the weak type (1,1) norm of an operator T on a measure space (X,µ)
by ‖T ‖L1→L1,∞ = supλ µ({x ∈ X : |Tf(x)| > λ}) where the supremum is taken
over λ > 0 and functions f with L1(X) norm less than one, then for the standard
Laplace operator on Rd,

C1(1 + |α|)d/2 ≤ ‖(−∆d)iα‖L1→L1,∞ ≤ C2(1 + |α|)d/2 log(1 + |α|).(2)

The classical Hörmander multiplier theorem (see [13]) states that a multiplier op-
erator Tm on Rd with multiplier m satisfies

‖Tm‖L1→L1,∞ ≤ Cs sup
t>0
‖η(·)m(t·)‖Hs ≤ A(3)

for any s > d/2 and any η ∈ C∞c (R+) not identically zero. Here Hs is the Sobolev
space of order s on Rd. Since the Sobolev norm in (3) behaves like (1+ |α|)s for the
multiplier m(x) = |x|iα of (−∆)iα, (2) shows that the exponent d/2 in Hörmander’s
theorem is sharp. Furthermore, if (3) is satisfied with A <∞, then the distribution
K = m̂ agrees with a locally integrable function away from the origin which satisfies

I(B) = sup
y 6=0

∫
|x|≥B|y|

|K(x− y)−K(x)| dx ≤ A(4)

for B ≥ 2 and Hörmander’s theorem actually shows that the weak type (1,1) norm
of Tm is bounded by I(B) + ‖m‖2L∞ + Bd. One can easily compute that for the
convolution kernel K of (−∆)iα, the integral I(B) is bounded above and below by
(1 + |α|)d/2 log(1 + |α|/B). Hence Hörmander’s theorem gives the upper bound in
(2). The lower bound is a simple consequence of the explicit formula for the kernel
K of (−∆)iα. See for example, [21] pp. 51-52.

The main observation of this paper is to note that there is a slight improvement of
the bound I(B)+‖m‖2L∞+Bd to I(B)+(‖m‖2L∞Bd)1/2. This can be achieved either
by using C. Fefferman’s ideas in [11] of exploiting more information of L2 bounds
or by varying the level of the Calderón-Zygmund decomposition and optimising.
Hence we will be able to remove the log term in (2). We will show that this more
precise estimate holds for a general class of operators.

Theorem 1. Suppose that L is defined by (1). Then

C1(1 + |α|)d/2 ≤ ‖Liα‖L1→L1,∞ ≤ C2(1 + |α|)d/2(5)

for all α ∈ R.

Proof of the lower bound. We begin with some known estimates for the kernel
pt(x, y) of the heat operator e−tL associated to L. First, this kernel satisfies Gauss-
ian bounds

C1
1
td/2

e−b1ρ
2(x,y)/t ≤ pt(x, y) ≤ C2

1
td/2

e−b2ρ
2(x,y)/t(6)

(see [8]) for some positive constants C1, C2, b1 and b2 and where ρ(x, y) denotes
the geodesic distance between x and y given by the Riemannian metric (ai,j). In
this setting of uniform ellipticity, κ|x − y| ≤ ρ(x, y) ≤ τ |x − y|. Secondly, from
the construction of a parametrix for the heat equation with respect to L (either
via Hadamard’s construction, see §17.4 of [14], or using pseudodifferential operator
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techniques, see chapter 7, §13 of [23]), we have for each y ∈ Rd a ball B(y, r) such
that for x ∈ B(y, r) and 0 < t < 1,

|pt(x, y)− (det aij(y))−1/2(4πt)−d/2e−ρ
2(x,y)/4t| ≤ Ct1/2t−d/2.(7)

Here we are using the fact that pt is symmetric, pt(x, y) = pt(y, x). From (6) and
(7), we have for x ∈ B(y, r) the bound

|pt(x, y)− (det aij(y))−1/2(4πt)−d/2e−ρ
2(x,y)/4t| ≤ Ct1/4t−d/2 exp (−b′ρ(x, y)2/t)

which translates into a bound for the kernelKLiα of Liα since the functional calculus
for L gives us the relationship

Liα = Γ(−iα)−1

∫ ∞
0

t−iα−1e−tLdt

for α 6= 0. Thus for x ∈ B(y, r),

|KLiα(x, y)− (det aij(y))−1/24iαπ−d/2γ(α)ρ(x, y)−d−i2α|
≤ C|Γ(−iα)|−1ρ(x, y)−d+1/2

(8)

where γ(α) = Γ(iα + d/2)/Γ(−iα). Using (8) with y = 0 we obtain for λ large
enough

µ({|KLiα(x, 0)| ≥ λ})

≥ µ({C1|γ(α)|ρ−d(x, 0) ≥ 2λ})−µ({C2|Γ(−iα)|ρ−d+ 1
2 (x, 0) ≥ λ})

= µ(B(0, (2C1|γ(α)|/λ)1/d))− µ(B(0, (C2|Γ(−iα)|/λ)1/(d−1/2)))

≥ C′|γ(α)|/λ.
Here µ is Lebesgue measure and the sets above have the further restriction that
x ∈ B(0, r). Since KLiα is smooth away from the diagonal, we see that Liαφδ(x)
tends to KLiα(x, 0) as δ → 0 for any x 6= 0 and any approximation of the identity
{φδ}. Hence the above estimate shows that the weak type (1,1) norm of Liα is
bounded below by |γ(α)|= |Γ(iα + d/2)/Γ(−iα)|∼(1 + |α|) d2 (see [10]).

The upper bound in Theorem 1 holds in a much more general setting which
we describe now. Assume that (X,µ, ρ) is a space with measure µ and metric ρ.
If ‖P‖L2→L∞ < ∞, then we can define the kernel KP of the operator P by the
formula

〈P (ψ), φ〉 =
∫
P (ψ)φdµ =

∫
KP (x, y)ψ(x)φ(y)dµ(x)dµ(y).

Note that supx ‖KP (x, ·)‖L2 = ‖P‖L2→L∞ . Next, we say that

supp KP ⊂ {(x, y) ∈ X2 : ρ(x, y) ≤ r}(9)

if 〈P (ψ), φ〉 = 0 for every φ, ψ ∈ L2 and every r1 + r2 + r < ρ(x′, y′) such that
ψ(x) = 0 for ρ(x, x′) > r1 and φ(x) = 0 for ρ(x, y′) > r2. This definition (9) makes
sense even if ‖P‖L2→L∞ =∞. Now if L is a self-adjoint positive definite operator
acting on L2(µ), then we say that it satisfies the finite speed propagation property
of the corresponding wave equation if

supp KCt(
√
L) ⊂ {(x, y) ∈ X2 : ρ(x, y) ≤ t},(10)

where Ct(
√
L) =

∫
cos(t

√
λ) dE(λ).
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Theorem 2. Suppose that L satisfies (10). Next assume that

‖ exp(−tL)‖2L2→L∞ ≤ C1Vd,D(t1/2)−1 ≤ Cµ(B(x, t1/2))−1 ≤ C2Vd,D(t1/2)−1(11)

for all t > 0 and x ∈ X, where B(x, t) is a ball with radius t centred at x and

Vd,D(t) =
{
td for t ≤ 1,
tD for t > 1,

for d,D ≥ 0. Then

‖Liα‖L1→L1,∞ ≤ C2(1 + |α|)max(d,D)/2

for all α ∈ R.

We remark that (10) and (11) are equivalent to having Gaussian upper bounds on
the heat kernel and the associated volume growth on balls. See [18]. Furthermore,
the upper bound in Theorem 1 follows from Theorem 2. Indeed, if X = Rd,
ρ(x, y) = τ |x−y| and µ is Lebesgue measure, then it is well known (see e.g. [8] and
[19]) that (11) and (10) hold. We are going to prove Theorem 2 only in the case
d = D. The argument for the other cases is similar.

2. Preliminaries

The following lemma is a very simple but useful consequence of (10).

Lemma 1. Assume that L satisfies (10) and that F̂ is a Fourier transform of an
even bounded Borel function F with supp F̂ ⊂ [−r, r]. Then

supp KF (
√
L) ⊂ {(x, y) ∈ X2 : ρ(x, y) ≤ r}.

Proof. If F is an even function, then by the Fourier inversion formula,

F (
√
L) =

1
2π

∫ +∞

−∞
F̂ (t)Ct(

√
L) dt.

But since supp F̂ ⊂ [−r, r],

F (
√
L) =

1
2π

∫ r

−r
F̂ (t)Ct(

√
L) dt

and Lemma 1 follows from (10).

Lemma 2. Let φ ∈ C∞c (R) be even, φ ≥ 0, ‖φ‖L1 = 1, supp(φ) ⊂ [−1, 1], and
set φr(x) = 1/r φ(x/r) for r > 0. Let Φ denote the Fourier transform of φ and Φr

denote the Fourier transform of φr. If (11) and (10) hold, then the kernel KΦr(
√
L)

of the self-adjoint operator Φr(
√
L) satisfies

supp KΦr(
√
L) ⊂ {(x, y) ∈ X2; ρ(x, y) ≤ r}(12)

and

|KΦr(
√
L)(x, y)| ≤ C r−d(13)

for all r > 0 and x, y ∈ X.
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Proof. (12) follows from Lemma 1. For any m ∈ N and r > 0, we have the
relationship

(I + rL)−m =
1
m!

∞∫
0

e−rtLe−ttm−1 dt

and so when m > d/4, (11) implies

‖(I + rL)−m‖L2→L∞ ≤
1
m!

∫ ∞
0

‖ exp (−rtL)‖L2→L∞e
−ttm−1dt

≤ C1 r
−d/4

(14)

for all r > 0. Now ‖(I + r2L)−m‖L1→L2 = ‖(I + r2L)−m‖L2→L∞ and so

‖Φr(
√
L)‖L1→L∞ ≤ ‖(I + r2L)2mΦr(

√
L)‖L2→L2 ‖(I + r2L)−m‖2L2→L∞ .

The L2 operator norm of the first term is equal to the L∞ norm of the function
(1 + r2|t|)2mΦ(r

√
|t|) which is uniformly bounded in r > 0 and so (13) follows by

(14).
Next we recall the Calderón-Zygmund decomposition in the general setting of

spaces of homogeneous type (see e.g. [3] or [22]).

Lemma 3. There exists C such that, given f ∈ L1(X,µ) and λ > 0, one can
decompose f as

f = g + b = g +
∑

bi

so that
1. |g(x)| ≤ Cλ, a.e. x and ‖g‖L1 ≤ C‖f‖L1.
2. There exists a sequence of balls Bi = B(xi, ri) such that the support of each
bi is contained in Bi and∫

|bi(x)|dµ(x) ≤ Cλµ(Bi).

3.
∑
µ(Bi) ≤ C 1

λ

∫
|f(x)| dµ(x).

4. There exists k ∈ N such that each point of X is contained in at most k of the
balls B(xi, 2ri).

We are now in a position to prove Theorem 2.

3. Proof of Theorem 2

The proof follows closely the line of argument in [1] (which of course generalises
to this setting). We are attempting to prove

λµ({x ∈ X : |Liαf(x)| ≥ λ }) ≤ C(1 + |α|) d2 ‖f‖L1.

As usual we start by decomposing f into g +
∑
bi at the level of λ according to

Lemma 3. We will follow the idea of C. Fefferman [11] of using more information
of the L2 operator norm (in our case, ‖Liα‖L2→L2 = 1) by smoothing out the
bad functions bi at a scale smaller than the size of its support and considering
this part of the good function where L2 estimates can be used (see also [4]). In
our case for each bi, consider Φsi(

√
L)bi where si = θri, θ = (1 + |α|)− 1

2 , and let
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G = g +
∑

Φsi(
√
L)bi be the modified good function. Hence f = G + B where

B =
∑

(I − Φsi(
√
L))bi and we write

λµ({|Liαf(x)| ≥ λ}) ≤ λµ({|LiαG(x)| ≥ λ/2})
+ λµ({|LiαB(x)| ≥ λ/2}).

(15)

The first term is less than 4/λ ‖LiαG‖2L2 ≤ 4/λ ‖G‖2L2. However, according to
Lemma 2,

|Φsi(
√
L)bi(x)| ≤

∫
|KΦsi (

√
L)(x, y)bi(y)| dµ(y) ≤ C (θri)−d‖bi‖L11B(xi,2ri)

and therefore by Lemma 3, |G(x)| ≤ Cθ−dλ for a.e., x. Using Lemma 2 again
which shows that the Lp → Lp operator norms of Φr(

√
L) are uniformily bounded

in r > 0, we also have that

‖G‖L1 ≤ ‖g‖L1 + C
∑
‖Φsi(

√
L)bi‖L1 ≤ ‖g‖L1 + C

∑
‖bi‖L1 ≤ C‖f‖L1.

Therefore the first term in (15) is bounded by (1 + |α|) d2 ‖f‖L1.
Since µ(

⋃
B(xi, θ−1ri)) ≤ Cθ−d

∑
µ(Bi) ≤ C(1 + |α|) d2 ‖f‖L1/λ, then to bound

the second term in (15), it suffices to show∫
x/∈∪B∗i

|LiαB(x)| dµ(x) ≤ C(1 + |α|) d2 ‖f‖L1,(16)

where B∗i = B(xi, θ−1ri). Let Hα(t) = |t|2iα so that

LiαB(x) =
∑

Hα(1− Φsi)(
√
L)bi(x)

and therefore the left side of (16) is less than∑
i

∫
x/∈∪jB∗j

∣∣∣∫ KHα(1−Φsi )(
√
L)(x, y)bi(y) dµ(y)

∣∣∣ dµ(x)

≤
∑
i

∫
|bi(y)|

∫
x/∈B∗i

|KHα(1−Φsi )(
√
L)(x, y)| dµ(x) dµ(y).

Since F (L)∗ = F (L), we may interchange the roles of x and y, and so (16) will
follow from Lemma 3 once we establish

sup
x,i

∫
ρ(x,y)≥ θ−1ri

|KHα(1−Φsi )(
√
L)(x, y)| dµ(y) ≤ C (1 + |α|) d2 .(17)

We now fix x ∈ X and i. Let η ∈ C∞c (R) be an even function supported in
{t ∈ R : 1 ≤ |t| ≤ 4} such that

∞∑
n=−∞

η(2−nt) = 1 for all t 6= 0.

We put Hα
n (t) = η(2−nt)Hα(t) so that

Hα(1− Φsi)(
√
L) =

∑
n

Hα
n (1− Φsi)(

√
L).
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Thus ∫
y/∈B∗i

|KHα(1−Φsi )(
√
L)(x, y)| dµ(y) ≤

∑
n

∫
y/∈B∗i

|KHαn (1−Φsi )(
√
L)(x, y)| dµ(y)(18)

and we will estimate each term in the sum on the right side in terms of n and i,
uniformly in x ∈ X .

Let ko = [d/2] + 1 so that∫
y/∈B∗i

(1 + 2nρ(x, y))−2kodµ(y)≤C
∞∫

θ−1 ri

(1 + 2nr)−2k0rd−1dr≤C2−2nko(θ−1ri)d−2ko

and therefore by the Cauchy-Schwarz inequality,∫
y/∈B∗i

|KHαn (1−Φsi )(
√
L)(x, y)| dµ(y)

≤ C 2−nko(θ−1ri)
d
2−ko

·
( ∫
ρ(x,y)≥θ−1ri

|KHαn (1−Φsi )(
√
L)(x, y)|2(1 + 2nρ(x, y))2kodµ(y)

)1/2

.

(19)

We break up the integral on the right side of (19) where 2nρ(x, y) is roughly constant
and consider∑

2j≥2nriθ−1

22jko

∫
2j−1−n<ρ(x,y)≤2j−n

|KHαn (1−Φsi )(
√
L)(x, y)|2 dµ(y).(20)

Fix a nonnegative even ϕ ∈ C∞c (R) such that ϕ = 1 on [−1/4, 1/4] and ϕ = 0
on R\ [−1/2, 1/2]. Then the Fourier transforms of Hα

n (1−Φsi) and Hα
n (1−Φsi)

∗ (δ − ϕ̂2n−j ) agree on {ξ : |ξ| ≥ 2j−1−n} and so by Lemma 1, the kernels of
Hα
n (1 − Φsi)(

√
L) and Hα

n (1 − Φsi) ∗ (δ − ϕ̂2n−j )(
√
L) agree on the set {(x, y) ∈

X2 : ρ(x, y) ≥ 2j−1−n }. Here δ denotes the Dirac mass at 0. For each j, the
integrals in (20) satisfy the bound∫

2j−1−n<ρ(x,y)≤2j−n

|KHαn (1−Φsi )(
√
L)(x, y)|2 dµ(y) ≤ ‖KFαn,j(

√
L)‖

2
L2→L∞ ,

where we are defining Fαn,j(t) = Hα
n (1 − Φsi) ∗ (δ − ϕ̂2n−j )(t). So by (14), the

right side of this inequality is bounded by ‖(I + 2−2nL)mFαn,j(
√
L)‖2L2→L2 2nd as

long as m > d/4. Everything then comes down to estimating the L∞ norm of
(1 + 2−2nt2)mFαn,j(t). We make the following claim.

Claim. For each j, n and m > d/4,

(1 + 2−2nt2)m|Fαn,j(t)| ≤ Cm|α|ko2−jko min(1, (2nriθ)2) min(1, |α|2−j)

uniformly in t ∈ R.

The claim shows that

‖KFαn,j(
√
L)‖L2→L∞ ≤ C |α|ko2−jko2

nd
2 min(1, (2nriθ)2) min(1, |α|2−j)
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and hence the sum in (20) is bounded by

|α|2ko2ndmin2(1, (2nriθ)2)
∑

2j≥2nriθ−1

min2(1, |α|2−j)

≤ |α|2ko2ndmin2(1, (2nriθ)2) log(2 +
|α|

2nriθ−1
).

Recall that θ and α are related so that θ|α| = |α|/(1 + |α|) 1
2 ≤ θ−1. Plugging this

into (19) gives∫
y/∈B∗i

|KHαn (1−Φsi )(
√
L)(x, y)dµ(y)≤θ−d(2nriθ)

d
2−ko min(1, (2nriθ)2) log(2+

1
2nriθ

)

and this makes the sum in (18) bounded by θ−d = (1 + |α|) d2 , proving (17) and
hence Theorem 2.

Proof of the Claim. If Gn(t) = Hα
n (t)(1−Φsi (t)), then Fαn,j(t) = 2(n−j)koG

(ko)
n ∗

ψ̂2n−j(t) where ψ(ξ) = ξ−ko(1 − ϕ(ξ)) (and so ψ̂ is continuous, rapidly decreasing
and has vanishing moments,

∫
t`ψ̂(t)dt = 0, ` = 0, 1, 2, ... ). Hence

Fαn,j(t) = 2(n−j)ko
∫
R

[
G(ko)
n (t− s)−G(ko)

n (t)
]
ψ̂2n−j (s) ds

= 2(n−j)ko
∫
R

[
G(ko)
n (t− 2n−js)−G(ko)

n (t)
]
ψ̂(s) ds.

However Gn(t) = η(2−nt)|t|2iα(1 − Φ(sit)) and thereby each time we take a de-
rivative, we gain a factor of 2−n. G

(ko)
n (t) is thus a finite sum of terms of the

form αp2−nko η̃(2−nt)|t|2iαΨ(sit) where η̃ ∈ C∞c (R), supp(η̃) ⊂ supp(η) and Ψ is a
Schwartz function which is 0(t2) as t → 0 (note that Φ′(0) =

∫
xφ(x)dx = 0 since

φ is even). The worst power p is ko which occurs when all derivatives land on the
factor |t|2iα.

Without loss of generality, let us suppose that

G(ko)(t) = αko2−nkoη(2−nt)|t|2iαΨ(sit).

From the above integral representation of Fαn,j(t), we see that the main contribution
to (1 + 2−2nt2)m|Fαn,j(t)| occurs when |t| ∼ 2n and in this case,

|Fαn,j(t)| ≤ C|α|ko2(n−j)ko2−nko min(1, (si2n)2) ≤ C|α|ko2−jko min(1, (2nriθ)2).

However we may write

Fαn,j(t) = −2(n−j)ko2n−j
1∫

0

∫
R

G(ko+1)
n (t− σ2j−ns)sψ̂(s) ds dσ

and therefore we also have

|Fαn,j(t)| ≤ C|α|ko+12(n−j)ko2n−j2−n(ko+1) min(1, (si2n)2)

≤ C|α|ko2−jko |α|2−j min(1, (2nriθ)2),

establishing the claim.
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Remarks. Theorem 1 holds also for Laplace-Beltrami operators on compact man-
ifolds of dimension d. The proof is essentially the same as the proof of Theorem
1.

The hypotheses of Theorem 2 are satisfied for Laplace operators on Lie groups
of polynomial growth. However, if L is a sub-Laplacian on the three dimensional
Heisenberg group, then d = 4 but

C1(1 + |α|)3/2 ≤ ‖Liα‖L1→L1,∞ ≤ Cε(1 + |α|)3/2+ε.

(See [16]; see also [12].) The same estimates hold for a sub-Laplacian on SU(2) for
which d = 4 and D = 0 (see [7]). Thus there are situations where the upper bound
is better than the one given by Theorem 2 and where the lower bound in Theorem
1 is false. For general groups of polynomial growth Theorem 2 gives the best known
estimates; however as the above examples show, these bounds are not always best
possible.
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