Maths 4 Number Theory 2012

0. REFERENCE BOOKS

There are no books I know of that contain all the material of the course. however, there
are many texts on Number Theory in the library. Here are a small selection of them.

e Course in p-adic analysis by Alain M. Robert, Springer GTM 2000.
Library: QA241 Rob.

e A friendly introduction to number theory by J. H. Silverman, Prentice Hall, 2001.
QA241 Sil

e Introduction to the theory of numbers by G.H. Hardy and E.M. Wright.
QA241 Har.

e Introduction to the theory of numbers by Ivan Niven and Herbert S. Zuckerman.
QA241 Niv.

e Introduction to number theory by Lo-keng Hua Springer-Verlag, 1982.
QA241 Hua

1. THE INTEGER PART (= FLOOR) FUNCTION

Definition 1. For x € R, |x] denotes the floor, or integer part of x. It is defined as the
largest integer < x.

So we have |z| <z < |z| + 1. The graph of |z]| is a ‘staircase’ function, constant on
[n,n+ 1) and a jump of 1 at n, for each n € Z.

Note that for > 0, |z] is the number of positive integers < z. Alternative notation
is [x]. Tt looks like a trivial function, but it satisfies some surprising identities (as well as
some not-so-surprising ones!)

Proposition 1.1. For z € R and n € N we have

(i) [k+x] =k+ |z] forkeZ, z € R.
(i) |[£+6] =|L| forteNand0<d <L

(iii)

1 2 n—1
e+ (e +—|+|oz+—|+ -+ |z+ = |nx] .
n n n
Proof. (i) and (ii) are easy. For (iii), note that if it is true for x then, using (i), it is true

for v + k, k € Z (k is added to both sides), so we can assume that 0 < z < 1.
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Now write z = £ +§ (0 < § < 1) for ¢/n the largest rational with denominator n that
is <x. Then 0 </ <nandfor j=0,1,...,n—1

IR

- || (using (i)

n
B 1if5>n—1¢
N 0 otherwise.

So the LHS of (iii) sums to ¢. But its RHS is |nz] = [£+nd| = ¢, as nd < 1. Hence
RHS=LHS. O

Proposition 1.2. Let rq,...,r, € R. Then

Xk: [ri] < {ij nJ <

=1 =1

k
1

Proof. 1f it’s true for all r; € [0, 1) then it’s true for all r; (just add an integer N to some 7;,
which adds N to |r;] and N to LZL TZ'J. Do this for each 7.). So we can assume that all

r; € [0,1), giving all |r;] =0 and 0 < Zle r; < k and hence 0 < {Zle riJ <k-1. O

These two inequalities are both best possible of their type, since the left one has equality
when all the r; are integers, and the right one has equality when all the r; are in [%, 1).

Corollary 1.3. Let n = ny + -+ + ny, where the n; are in Ny = N U {0}. Then the

multinomial coefficient
n n!
( ) = ln! =B
ny,...,Ng 1Mol ... M-

Proof. From Problem Sheet 1, Q8(a) we know that for each prime p the power of p that

say, 1S an integer.

divides n! is Z;; L%J, a finite sum. So the power of p dividing B is

-] -5 (5] -2 1))

7j=1 %
> 0,

by the above Proposition, on putting r; = n;/p’. Thus B is divisible by a nonnegative
power of p for every prime p, so must be an integer. O

Another way to prove that this number is an integer is to show that it is the coefficient

of 1" ... x}* in the expansion of (x1 + -+ x)™.

Say that p, ¢ € N are coprime (or relatively prime) if ged(p, q) = 1.



Proposition 1.4. Let p and q be two coprime odd positive integers. Then
p=1 a1
2 qu 2 VpJ p—1 g—1
> |43 |2) -2t 5t
k=1 {p = L1 2 2
We shall see later that this result will be used in the proof of the Law of Quadratic
Reciprocity.
Proof. Consider the rectangle with corners (0,0), (p/2,0), (0,¢/2) and (p/2,q/2). (Suggest
you draw it, along with its diagonal from (0,0) to (p/2,¢/2), and the horizontal axis the
k-axis, the vertical axis the f-axis. The diagonal is then the line with equation ¢ = kq/p.)

We count the number of integer lattice points (k,¢) strictly inside this rectangle in two
different ways. First we note that these points form a rectangle with corners

(A S CU i ¢ e e

2 2 7 2
so that there are p—gl . q2;1 of them in all.

On the other hand, we count separately those below and above the diagonal. Below the
diagonal we have, for k =1, ... 7’2;1 that {%J is the number of points (k, ¢) with 1 < /¢ < %,

(1,1

p
To count the number of lattice points above the diagonal, we flip the diagram over,

reversing the roles of p and ¢, and of k and ¢. Then we get that the number of points above

p—1
i.e., below the diagonal, in the kth column. So the total is Y, 2, L@J

q=1
the diagonal is )_,2, {%’J. It remains to check that there are no lattice points actually on

the diagonal. For if the integer lattice point (k, ¢) were on the diagonal ¢ = kq/p we would
have ¢p = kq so that, as p and ¢ are coprime, p | k. But k < p, so this is impossible. [

As an exercise, can you state and prove the variant of this result in the case that p and
¢, while still odd, need not be coprime?

One should also be aware of the following variants of |x]:
e The ceiling of x, [x], is the least integer > z. Note that [z] = — | —z].
e The nearest integer to = (no standard notation) can be defined either as |z + 1],

where then the nearest integer to % is 1, or as [z — £], where then the nearest
integer to % is 0.
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