
Maths 4 Number Theory 2012

0. Reference books

There are no books I know of that contain all the material of the course. however, there
are many texts on Number Theory in the library. Here are a small selection of them.

• Course in p-adic analysis by Alain M. Robert, Springer GTM 2000.
Library: QA241 Rob.

• A friendly introduction to number theory by J. H. Silverman, Prentice Hall, 2001.
QA241 Sil

• Introduction to the theory of numbers by G.H. Hardy and E.M. Wright.
QA241 Har.

• Introduction to the theory of numbers by Ivan Niven and Herbert S. Zuckerman.
QA241 Niv.

• Introduction to number theory by Lo-keng Hua Springer-Verlag, 1982.
QA241 Hua

1. The integer part (= floor) function

Definition 1. For x ∈ R, ⌊x⌋ denotes the floor, or integer part of x. It is defined as the
largest integer ≤ x.

So we have ⌊x⌋ ≤ x < ⌊x⌋ + 1. The graph of ⌊x⌋ is a ‘staircase’ function, constant on
[n, n + 1) and a jump of 1 at n, for each n ∈ Z.

Note that for x > 0, ⌊x⌋ is the number of positive integers ≤ x. Alternative notation
is [x]. It looks like a trivial function, but it satisfies some surprising identities (as well as
some not-so-surprising ones!)

Proposition 1.1. For x ∈ R and n ∈ N we have

(i) ⌊k + x⌋ = k + ⌊x⌋ for k ∈ Z, x ∈ R.

(ii)
⌊

ℓ
n

+ δ
⌋

=
⌊

ℓ
n

⌋

for ℓ ∈ N and 0 ≤ δ < 1

n
.

(iii)

⌊x⌋ +

⌊

x +
1

n

⌋

+

⌊

x +
2

n

⌋

+ · · ·+

⌊

x +
n − 1

n

⌋

= ⌊nx⌋ .

Proof. (i) and (ii) are easy. For (iii), note that if it is true for x then, using (i), it is true
for x + k, k ∈ Z (k is added to both sides), so we can assume that 0 ≤ x < 1.
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Now write x = ℓ
n

+ δ (0 ≤ δ < 1

n
) for ℓ/n the largest rational with denominator n that

is ≤ x. Then 0 ≤ ℓ < n and for j = 0, 1, . . . , n − 1
⌊

x +
j

n

⌋

=

⌊

ℓ

n
+ δ +

j

n

⌋

=

⌊

ℓ + j

n

⌋

(using (ii))

=

{

1 if j ≥ n − ℓ;

0 otherwise.

So the LHS of (iii) sums to ℓ. But its RHS is ⌊nx⌋ = ⌊ℓ + nδ⌋ = ℓ, as nδ < 1. Hence
RHS=LHS. �

Proposition 1.2. Let r1, . . . , rk ∈ R. Then

k
∑

i=1

⌊ri⌋ ≤

⌊

k
∑

i=1

ri

⌋

≤
k
∑

i=1

⌊ri⌋ + k − 1.

Proof. If it’s true for all ri ∈ [0, 1) then it’s true for all ri (just add an integer N to some ri,

which adds N to ⌊ri⌋ and N to
⌊

∑k

i=1
ri

⌋

. Do this for each i.). So we can assume that all

ri ∈ [0, 1), giving all ⌊ri⌋ = 0 and 0 ≤
∑k

i=1
ri < k and hence 0 ≤

⌊

∑k

i=1
ri

⌋

≤ k − 1. �

These two inequalities are both best possible of their type, since the left one has equality
when all the ri are integers, and the right one has equality when all the ri are in [k−1

k
, 1).

Corollary 1.3. Let n = n1 + · · · + nk, where the ni are in N0 = N ∪ {0}. Then the

multinomial coefficient
(

n

n1, . . . , nk

)

=
n!

n1!n2! . . . nk!
= B

say, is an integer.

Proof. From Problem Sheet 1, Q8(a) we know that for each prime p the power of p that

divides n! is
∑

∞

j=1

⌊

n
pj

⌋

, a finite sum. So the power of p dividing B is

∞
∑

j=1

⌊

n

pj

⌋

−

k
∑

i=1

∞
∑

j=1

⌊

ni

pj

⌋

=

∞
∑

j=1

(

⌊

n

pj

⌋

−

k
∑

i=1

⌊

ni

pj

⌋

)

≥ 0,

by the above Proposition, on putting ri = ni/p
j. Thus B is divisible by a nonnegative

power of p for every prime p, so must be an integer. �

Another way to prove that this number is an integer is to show that it is the coefficient
of xn1

1
. . . xnk

k in the expansion of (x1 + · · ·+ xk)
n.

Say that p, q ∈ N are coprime (or relatively prime) if gcd(p, q) = 1.
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Proposition 1.4. Let p and q be two coprime odd positive integers. Then
p−1

2
∑

k=1

⌊

kq

p

⌋

+

q−1

2
∑

ℓ=1

⌊

ℓp

q

⌋

=
p − 1

2
·
q − 1

2
.

We shall see later that this result will be used in the proof of the Law of Quadratic
Reciprocity.

Proof. Consider the rectangle with corners (0, 0), (p/2, 0), (0, q/2) and (p/2, q/2). (Suggest
you draw it, along with its diagonal from (0, 0) to (p/2, q/2), and the horizontal axis the
k-axis, the vertical axis the ℓ-axis. The diagonal is then the line with equation ℓ = kq/p.)
We count the number of integer lattice points (k, ℓ) strictly inside this rectangle in two
different ways. First we note that these points form a rectangle with corners

(1, 1), (
p − 1

2
, 1), (1,

q − 1

2
), (

p − 1

2
,
q − 1

2
),

so that there are p−1

2
· q−1

2
of them in all.

On the other hand, we count separately those below and above the diagonal. Below the

diagonal we have, for k = 1, . . . p−1

2
that

⌊

kq

p

⌋

is the number of points (k, ℓ) with 1 ≤ ℓ ≤ kq

p
,

i.e., below the diagonal, in the kth column. So the total is
∑

p−1

2

k=1

⌊

kq

p

⌋

.

To count the number of lattice points above the diagonal, we flip the diagram over,
reversing the rôles of p and q, and of k and ℓ. Then we get that the number of points above

the diagonal is
∑

q−1

2

ℓ=1

⌊

ℓp

q

⌋

. It remains to check that there are no lattice points actually on

the diagonal. For if the integer lattice point (k, ℓ) were on the diagonal ℓ = kq/p we would
have ℓp = kq so that, as p and q are coprime, p | k. But k < p, so this is impossible. �

As an exercise, can you state and prove the variant of this result in the case that p and
q, while still odd, need not be coprime?

One should also be aware of the following variants of ⌊x⌋:

• The ceiling of x, ⌈x⌉, is the least integer ≥ x. Note that ⌈x⌉ = −⌊−x⌋.
• The nearest integer to x (no standard notation) can be defined either as

⌊

x + 1

2

⌋

,

where then the nearest integer to 1

2
is 1, or as ⌈x − 1

2
⌉, where then the nearest

integer to 1

2
is 0.


