
2. Congruences

Recall that x ≡ a (mod m) means that m | (x − a), or that x = a + km for some
k ∈ Z. Recall too that if a, b ∈ Z then there are a′, b′ ∈ Z such that aa′ + bb′ = gcd(a, b).
The numbers a′, b′ can be found using the Extended Euclidean Algorithm, which you may
recall from your First Year. In particular, when gcd(a, b) = 1 there are a′, b′ ∈ Z such that
aa′ + bb′ = 1. Then aa′ ≡ 1 (mod b), so that a′ is the inverse of a (mod b).

2.1. Chinese Remainder Theorem.

Theorem 2.1 (Chinese Remainder Theorem). Given m1, . . . , mk ∈ N with gcd(mi, mj) =
1 (i 6= j) (“pairwise coprime”), and a1, . . . , ak ∈ Z, then the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk)

has a solution x ∈ Z.

Proof. In fact x can be constructed explicitly. For i = 1, . . . , k define m′

i to be the inverse
(mod mi) of m1 . . .mi−1mi+1 . . .mk, so that

m1 . . . mi−1m
′

imi+1 . . .mk ≡ 1 (mod mi).

Then x =
∑k

i=1 aim1 . . .mi−1m
′

imi+1 . . . mk ≡ ai (mod mi) for i = 1, . . . , k, because every
term except the ith is divisible by mi. �

Then, if x0 is one solution to this set of congruences, it’s easy to see (how?) that the
general solution is x = x0 + ℓm1 · · ·mk for any integer ℓ. In particular, there is always
a choice of ℓ giving a unique solution x in the range 0 ≤ x < m1 · · ·mk of the set of
congruences.

Q. If the mi not pairwise coprime, what is the condition on the ai’s so that the set of
congruences above again has a solution x?

One answer: factorize each mi as a product of prime powers:

mi =
∏

j

p
rji

j ,

where the pj ’s are the prime factors of
∏

i mi, and the rji are all ≥ 0. Then replace
the congruence x ≡ ai (mod mi) by the set of congruences x ≡ ai (mod p

rji

j ) for each j
(justify!). Next, collect together all the congruences whose modulus is a power of the same
prime, say (changing notation!) x ≡ a1 (mod pn1), . . . , x ≡ aℓ (mod pnℓ). Then if these
congruences are pairwise consistent, we need only take the one with the largest modulus
(pnℓ say). So we end up taking just one congruence for each p, and so the moduli we
take are all pairwise coprime. (Two congruences x ≡ a1 (mod pm) and x ≡ a2 (mod pn)
with m ≤ n (note: same p in both) are pairwise consistent if a2 ≡ a1 (mod pm).) If some
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such pair of congruences are not consistent, then that pair of congruences, and hence the
original set of congruences, has no solution.

An example of an inconsistent pair of congruences is x ≡ 0 (mod 2), x ≡ 1 (mod 4).

Lemma 2.2. (i) The congruence ax ≡ b (mod m) has a solution x ∈ Z if and only if
gcd(a, m) | b; in this case the number of solutions x is gcd(a, m).

(ii) If xa ≡ 1 (mod m) and xb ≡ 1 (mod m) then xgcd(a,b) ≡ 1 (mod m).

Proof. (i) Put g = gcd(a, m). Then b = ax + km shows that g | b. Conversely, if g | b
then a

g
x ≡ b

g
(mod m

g
) and gcd(a

g
, m

g
) = 1 (justify!). So a

g
has an inverse (mod m

g
)

and x ≡ b
g
·
(

a
g

)

−1

(mod m
g
).

The g different solutions to ax ≡ b (mod m) are then x0+km
g

for k = 0, 1, . . . , g−

1, for any solution x0 of a
g
x ≡ b

g
(mod m

g
).

(ii) We have gcd(a, b) = aa′ + bb′ say, by the Extended Euclidean algorithm, so

xgcd(a,b) = xaa′+bb′ = (xa)a′

· (xb)b′ ≡ 1 (mod m).

�

2.2. Solving equations in Fp. We now restrict our congruences to a prime modulus p, and
consider the solutions of equations f(x) = 0 for f(x) ∈ Fp[x] and x ∈ Fp. Since Fp = Z/(p),
this is equivalent, for f(x) ∈ Z[x], of solving f(x) ≡ 0 (mod p) for x ∈ {0, 1, 2, . . . , p − 1}.

Theorem 2.3. A nonzero polynomial f ∈ Fp[x] of degree n has at most n roots x in Fp.

Proof. Use induction: for n = 1, f(x) = ax + b say, with a 6= 0, whence f(x) = 0 has a
solution x = a−1b in Fp.

Now assume n ≥ 1 and that the result holds for n. Take f(x) ∈ Fp[x] of degree n + 1.
If f = 0 has no roots x ∈ Fp the the result is certainly true. Otherwise, suppose f(b) = 0
for some b ∈ Fp. Now divide x − b into f(x), (i.e., one step of the Euclidean algorithm
for polynomials) to get f(x) = (x − b)f1(x) + r say, where f1 is of degree n, and r ∈ Fp.
Putting x = b shows that r = 0. Hence f(x) = (x−b)f1(x), where f1 has, by the induction
hypothesis, at most n roots x ∈ Fp. So f has at most n + 1 roots x ∈ Fp, namely b
and those of f1 = 0. Hence the result is true for n + 1 and so, by induction, true for all
n ≥ 1. �

Note that the proof, and hence the result, holds equally well when Fp is replaced by any
field F . However, it does not hold when the coefficients of f lie in a ring with zero divisors.
For instance, on replacing F by the ring Z/8Z, the equation x2 − 1 ≡ 0 (mod 8) has four
solutions x = 1, 3, 5, 7 (mod 8).

Question. Where in the above proof was the fact that we were working over a field used?

2.3. F
×

p is cyclic! Denote by F
×

p the multiplicative group Fp \ {0}, using the field multi-
plication (and forgetting about its addition).

We need some group theory at this stage. Recall that the exponent of a finite group G
is the least e ∈ N such that ge = 1 for each g ∈ G.

Let Cr denote the cyclic group with r elements: Cr = {1, g, g2, . . . , gr−1 | gr = 1}. Here
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Proposition 2.4. Let G be a finite abelian group with #G elements. If G is noncyclic
then its exponent is < #G.

Proof. For the proof, recall the Fundamental Theorem of Abelian Groups, which tells us
that any such G is isomorphic to a product

Cn1
× Cn2

× Cn3
× · · · × Cnk−1

× Cnk

of cyclic groups, for some k ∈ N and integers n1, . . . , nk all > 1 and such that n1 | n2,
n2 | n3, . . . , nk−1 | nk. Hence all ni’s divide nk and so nk is the exponent of G. However,
#G = n1n2 . . . nk, which is greater than nk as k > 1. �

Proposition 2.5. For p an odd prime, the group F
×

p is cyclic (of size p − 1 of course).

Proof. Suppose F
×

p were noncyclic. Then, by the previous Proposition, there would exist
an exponent e < p − 1 such that xe = 1 for each x ∈ F

×

p . But then the equation xe = 1
would have more than e solutions in Fp, contradicting Theorem 2.3. �

A generator g of the cyclic group F
×

p (p an odd prime) is called a primitive root (mod p).
Then we can write F

×

p = 〈g〉.

2.4. Number of primitive roots. Given a prime p, how many possible choices are there
for a generator g of F

×

p ? To answer this, we need to define Euler’s ϕ-function. Given
a positive integer n, ϕ(n) is defined as the cardinality of the set {k : 1 ≤ k ≤ n and
gcd(k, n) = 1}.

So for instance ϕ(1) = 1, ϕ(6) = 2 and ϕ(p) = p − 1 for p prime.

Proposition 2.6. For p an odd prime, there are ϕ(p − 1) primitive roots (mod p).

Proof. Take one primitive root g. Then gk is again a primitive root iff (gk)ℓ = g in F
×

p for

some ℓ, i.e., gkℓ−1 = 1. But gn = 1 iff (p − 1) | n. So gk is a primitive root iff kℓ − 1 ≡ 0
(mod p− 1). This is impossible (why?) if gcd(k, p− 1) > 1, while if gcd(k, p− 1) = 1 then
the extended Euclidean algorithm will give us ℓ. �

2.5. Quadratic residues and nonresidues. Take p an odd prime, and r ∈ F
×

p . If the

equation x2 = r has a solution x ∈ F
×

p then r is called a quadratic residue (mod p). If
there is no such solution x, then r is called a quadratic nonresidue (mod p).

Proposition 2.7. Take p an odd prime, and g a primitive root (mod p). Then the
quadratic residues (mod p) are the even powers of g, while the quadratic nonresidues
(mod p) are the odd powers of g. (So there are p−1

2
of each.)

Proof. Suppose r ∈ F
×

p , with r = gk say. If k is even then r = (gk/2)2, so that r is a

quadratic residue (mod p). Conversely, if x = gℓ, x2 = r, then g2ℓ−k = 1, so that 2ℓ − k
is a multiple of p − 1, which is even. So k is even. �
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2.6. The Legendre symbol. Let p be an odd prime, and r ∈ F
×

p . Then the Legendre
symbol is defined as

(

r

p

)

=

{

1 if r is a quadratic residue;

−1 if r is a quadratic nonresidue.

Note that, on putting r = gk we see that
(

gk

p

)

= (−1)k =

{

1 if k is even;

−1 if k is odd.

Next, recall Fermat’s Theorem: that rp−1 = 1 for all r ∈ F
×

p . This is simply a conse-

quence of F
×

p being a group of size (order) p − 1. (We know that g#G = 1 for each g in a
finite group G.)

Proposition 2.8 (Euler’s Criterion). For p an odd prime and r ∈ F
×

p we have in F
×

p that
(

r

p

)

= r
p−1

2 . (1)

Proof. If r = gk then for k even

r
p−1

2 = gk p−1

2 = (gp−1)k/2 = 1k/2 = 1,

while if k is odd, k p−1
2

is not a multiple of p−1, so r
p−1

2 6= 1. However, rp−1 = 1 by Fermat,

so r
p−1

2 = ±1 and hence r
p−1

2 = −1. So, by Proposition 2.7, we have (1), as required. �

2.7. Taking nth roots in F
×

p . Take an odd prime p and g a fixed primitive root (mod p).
Then for any B ∈ F

×

p we define the index (old-fashioned word) or discrete logarithm (current

jargon) of B, written ind B or logp B, as the integer b ∈ {0, 1, . . . , p−2} such that B = gb in
Fp. Clearly the function logp depends not only on p but also on the choice of the primitive
root g.

Proposition 2.9. Given n ∈ N and B ∈ F
×

p , the equation Xn = B in F
×

p has a solution
X ∈ F

×

p iff gcd(n, p − 1) | logp B.
When gcd(n, p− 1) | logp B then the number of distinct solutions X of Xn = B in F

×

p is
gcd(n, p − 1).

Proof. Write B = gb, X = gx, so that gnx = gb, giving nx ≡ b (mod p − 1). Now apply
Lemma 2.2(i) to this congruence. �

For large primes p, the problem of finding the discrete logarithm logp B of B appears
to be an intractable problem, called the Discrete Logarithm Problem. Many techniques in
Cryptography depend on this supposed fact. See e.g.,

http://en.wikipedia.org/wiki/Discrete logarithm


