
3. Arithmetic functions

3.1. Arithmetic functions. These are functions f : N → N or Z or maybe C, usually
having some arithmetic significance. An important subclass of such functions are the
multiplicative functions: such an f is multiplicative if

f(nn′) = f(n)f(n′)

for all n, n′ ∈ N with n and n′ coprime (gcd(n, n′) = 1).

Proposition 3.1. If f is multiplicative and n1, . . . , nk are pairwise coprime (gcd(ni, nj) =
1 for all i 6= j) then

f(n1n2 . . . nk) = f(n1)f(n2) . . . f(nk).

This is readily proved by induction.

Corollary 3.2. If n factorises into distinct prime powers as n = pe1

1 . . . pek

k then

f(n) = f(pe1

1 ) . . . f(pek

k ).

So multiplicative functions are completely determined by their values on prime powers.
Some examples of multiplicative functions are

• The ‘1-detecting’ function ∆(n), equal to 1 at n = 1 and 0 elsewhere – obviously
multiplicative;

• τ(n) =
∑

d|n 1, the number of divisors of n;

• σ(n) =
∑

d|n d, the sum of the divisors of n.

Proposition 3.3. The functions τ(n) and σ(n) are both multiplicative.

Proof. Take n and n′ coprime, with ℓ1, . . . , ℓτ(n) the divisors of n, and ℓ′1, . . . , ℓ
′
τ(n′) the

divisors of n′. Then all the τ(n)τ(n′) numbers ℓiℓ
′
j are all divisors of nn′. Conversely, if m

divides nn′ then m = ℓℓ′, where ℓ | n and ℓ′ | n′. (Write m as a product of prime powers,
and then ℓ will be the product of the prime powers where the prime divides n, while ℓ′

will be the product of the prime powers where the prime divides n′. Note that n and n′,
being coprime, have no prime factors in common.) So ℓ is some ℓi and ℓ′ is some ℓ′j , so all
factors of nn′ are of the form ℓiℓ

′
j . Thus τ(nn′) = τ(n)τ(n′), and

σ(nn′) =
∑

i,j

ℓiℓ
′
j =

(

∑

i

ℓj

)(

∑

j

ℓ′j

)

= σ(n)σ(n′).

�

Given an arithmetic function f , define its ‘sum over divisors’ function F (n) =
∑

d|n f(d).

Proposition 3.4. If f is multiplicative, and n =
∏

p p
ep then

F (n) =
∏

p|n

(

1 + f(p) + f(p2) + · · ·+ f(pep)
)

. (1)

Further, F is also multiplicative.
8
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Proof. Expanding the RHS of (1), a typical term is
∏

p|n f(pe′p), where 0 ≤ e′p ≤ ep. But, by

the multiplicivity of f , this is simply f(d), where d =
∏

d|n p
e′p is a divisor of n. Conversely,

every divisor of n is of this form, for some choice of exponents e′p. Hence the RHS of (1)
is equal to

∑

d|n f(d), which is F (n).

Next, taking n and n′ coprime, we see that (1) immediately implies that F (n)F (n′) =
F (nn′), i.e., that F is multiplicative. �

Proposition 3.5. Euler’s ϕ-function ϕ(m) is multiplicative.

Proof. Take n and n′ coprime, and let

{i : 1 ≤ i ≤ n, gcd(i, n) = 1} = {a1 < a2 < · · · < aϕ(n)},

the reduced residue classes mod n. Similarly, let

{j : 1 ≤ j ≤ n′, gcd(j, n′) = 1} = {a′1 < a′2 < · · · < a′ϕ(n′)}.

If x ∈ {1, 2, . . . , nn′} and gcd(x, nn′) = 1 then certainly gcd(x, n) = gcd(x, n′) = 1, so that

x ≡ ai (mod n) x ≡ a′j (mod n′) (2)

for some pair ai, a
′
j. Conversely, given such a pair ai, a

′
j we can solve (2) using the CRT to

get a solution x ∈ {1, 2, . . . , nn′} with gcd(x, nn′) = 1. Thus we have a bijection between
such x and such pairs ai, a

′
j. Hence

#{such x} = ϕ(nn′) = #{ai, a
′
j} = ϕ(n)ϕ(n′).

�

In passing, mention

Proposition 3.6 (Euler’s Theorem). If a, n ∈ N and gcd(a, n) = 1 then aϕ(n) ≡ 1
(mod n).

Proof. This is because the reduced residue classes mod n form a multiplicative group
(Z/nZ)× of size(order) ϕ(n). So, in this group, aϕ(n) = 1. �

Note that on putting n = p prime we retrieve Fermat’s Little Theorem ap−1 ≡ 1 (mod p).
[In fact the exponent of the group (Z/nZ)× is usually smaller than ϕ(n). To give the

exponent, we need to define a new function ψ on prime powers by ψ = ϕ on odd prime
powers, and at 2 and 4, while ψ(2e) = 1

2
ϕ(2e) if e ≥ 3. Then the exponent of (Z/nZ)× is

lcmp:pep ||n ψ(pep). This follows from the isomorphism

(Z/nZ)× ∼=
∏

p:pep ||n

(Z/pepZ)×

and the fact that (Z/pepZ)× has exponent ψ(pep).]

Proposition 3.7. We have ϕ(n) = n
∏

p|n

(

1 − 1
p

)

.

Proof. Now ϕ(pk) = pk − pk−1 (why?), which = pk
(

1 − 1
p

)

, so the result follows from

Corollary 3.2. �
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The Möbius function µ(n) is defined as

µ(n) =

{

0 if p2 | n for some prime p;

(−1)k if n = p1p2 . . . pk for distinct primes pi.

In particular, µ(1) = 1 and µ(p) = −1 for a prime p. It is immediate from the definition
that µ is multiplicative. Then, applying (1), we see that

∑

d|n µ(d) = ∆(n).

Integers with µ(n) = ±1 are called squarefree.
The Möbius function arises in many kinds of inversion formulae. The fundamental one

is the following.

Proposition 3.8 (Möbius inversion). If F (n) =
∑

d|n f(d) (n ∈ N) then for all n ∈ N

we have f(n) =
∑

d|n µ(n/d)F (d).

Proof. Simplify
∑

d|n µ(n/d)F (d) =
∑

d|n µ(n/d)
∑

k|d f(k) (n ∈ N) by interchanging the

order of summation to make
∑

k|n the outer sum. But a simpler proof is given below. �

3.2. Dirichlet series. For an arithmetic function f , define its Dirichlet series Df(s) by

Df(s) =
∞
∑

n=1

f(n)

ns
.

Here s ∈ C is a parameter. Typically, such series converge for ℜs > 1, and can be
meromorphically continued to the whole complex plane. However, we will not be concerned
with analytic properties of Dirichlet series here, but will regard them only as generating
functions for arithmetic functions, and will manipulate them formally, without regard to
convergence.

The most important example is for f(n) = 1 (n ∈ N), which gives the Riemann zeta
function ζ(s) =

∑∞
n=1

1
ns . Also, taking f(n) = n (n ∈ N) gives ζ(s− 1). (Check!).

Proposition 3.9. If f is multiplicative then

Df(s) =
∏

p

(

1 +
f(p)

ps
+
f(p2)

p2s
+ · · · +

f(pk)

pks
+ . . .

)

=
∏

p

Df,p(s), (3)

say.

Proof. Expanding the RHS of (3), a typical term is

f(pe1

1 )f(pe2

2 ) . . . f(per
r )

pe1

1 p
e2

2 . . . per
r

=
f(n)

ns

for n =
∏r

i=1 p
ei

i , using the fact that f is multiplicative. �

Such a product formula Df(s) =
∏

pDf,p(s) over all primes p is called an Euler product

for Df(s).
For example

ζ(s) =
∏

p

(

1 +
1

ps
+

1

p2s
+ · · ·+

1

pks
+ . . .

)

=
∏

p

(

1

1 − p−s

)

,
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on summing the Geometric Progression (GP). Hence also

1

ζ(s)
=
∏

p

(

1 − p−s
)

=

∞
∑

n=1

µ(n)

ns
= Dµ(s),

on expanding out the product.

Proposition 3.10. We have
(

∑

k

ak

ks

)

·

(

∑

ℓ

bℓ
ℓs

)

=

(

∑

n

cn
ns

)

,

where cn =
∑

k|n akbn/k.

Proof. On multiplying out the LHS, a typical term is

ak

ks
·
bℓ
ℓs

=
akbn/k

ns
,

where kℓ = n. So all pairs k, ℓ with kℓ = n contribute to the numerator of the term with
denominator ns. �

Corollary 3.11. We have DF (s) = Df(s)ζ(s).

Proof. Apply the Proposition with ak = f(k) and bℓ = 1. �

Corollary 3.12 ( Möbius inversion again). We have f(n) =
∑

d|n µ(n/d)F (d) for all
n ∈ N.

Proof. From Corollary 3.11 we have

Df (s) = DF (s) ·
1

ζ(s)
=

(

∑

k

F (k)

ks

)

·

(

∑

ℓ

µ(ℓ)

ℓs

)

=

(

∑

n

cn
ns

)

,

where cn =
∑

k|n F (k)µ(n/k). But Df (s) =
∑∞

n=1
f(n)
ns , so, on comparing coefficients,

f(n) =
∑

k|n F (k)µ(n/k). �

We now compute the Dirichlet series for a few standard functions. [Part (a) is already
proved above.]

Proposition 3.13. We have

(a) Dµ(s) = 1
ζ(s)

;

(b) Dϕ(s) = ζ(s−1)
ζ(s)

;

(c) Dτ (s) = ζ(s)2;
(d) Dσ(s) = ζ(s− 1)ζ(s).
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Proof. (b) Now

Dϕ(s) =
∏

p

(

1 +
ϕ(p)

ps
+
ϕ(p2)

p2s
+ · · · +

ϕ(pk)

pks
+ . . .

)

=
∏

p

(

1 +
p− 1

ps
+
p2 − p

p2s
+ · · ·+

pk − pk−1

pks
+ . . .

)

=
∏

p

(

1 +
p− 1

ps
·

1

1 − p1−s

)

, on summing the GP

=
∏

p

(

1 − p−s

1 − p−(s−1)

)

, on simplification

=
ζ(s− 1)

ζ(s)
.

(c) Now

Dτ (s) =
∏

p

(

1 +
τ(p)

ps
+
τ(p2)

p2s
+ · · ·+

τ(pk)

pks
+ . . .

)

=
∏

p

(

1 +
2

ps
+

3

p2s
+ · · · +

k + 1

pks
+ . . .

)

=
∏

p

1

(1 − p−s)2 using (1 − x)−2 =
∞
∑

k=0

(k + 1)xk

= ζ(s)2

(d) This can be done by the same method as (b) or (c) – a good exercise! But, given
that we know the answer, we can work backwards more quickly:

ζ(s− 1)ζ(s) =

(

∑

k

k

ks

)

·

(

∑

ℓ

1

ℓs

)

=
∑

n

∑

k|n k · 1

ns
= Dσ(s),

using Prop. 3.10
�

3.3. Perfect numbers. A positive integer n is called perfect if it is the sum of its proper
(i.e., excluding n itself) divisors. Thus σ(n) = 2n for n perfect.

Proposition 3.14. An even number n is perfect iff it of the form n = 2p−1(2p − 1) for
some prime p with the property that 2p − 1 is also prime.

Prime numbers of the form 2p − 1 are called Mersenne primes. (Unsolved problem: are
there infinitely many such primes?)

It is easy to check that σ(2p−1(2p − 1)) = 2p(2p − 1) when 2p − 1 is prime. The converse
is more difficult — I leave this as a tricky exercise: you need to show that if k ≥ 2 and
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2k−1p1 . . . pℓ is perfect then ℓ = 1 and p1 = 2k −1. (It’s easy to prove that if 2k −1 is prime
then so is k.)

It is an unsolved problem as to whether there are any odd perfect numbers. See e.g.,
http://en.wikipedia.org/wiki/Perfect number for lots on this problem.


