
4. Primality testing

4.1. Introduction. Factorisation is concerned with the problem of developing efficient
algorithms to express a given positive integer n > 1 as a product of powers of distinct
primes. With primality testing, however, the goal is more modest: given n, decide whether
or not it is prime. If n does turn out to be prime, then of course you’ve (trivially) factorised
it, but if you show that it is not prime (i.e., composite), then in general you have learnt
nothing about its factorisation (apart from the fact that it’s not a prime!).

One way of testing a number n for primality is the following: suppose a certain theorem,
Theorem X say, whose statement depends on a number n, is true when n is prime. Then
if Theorem X is false for a particular n, then n cannot be prime. For instance, we know
(Fermat) that an−1 ≡ 1 (mod n) when n is prime and n ∤ a. So if for such an a we have
an−1 6≡ 1 (mod n), then n is not prime. This test is called the Pseudoprime Test to base
a. Moreover, a composite number n that passes this test is called a Pseudoprime to base
a.

(It would be good if we could find a Theorem Y that was true iff n was prime, and was
moreover easy to test. Then we would know that if the theorem was true for n then n
was prime. A result of this type is the following (also on a problem sheet): n is prime iff
an−1 ≡ 1 (mod n) for a = 1, 2, . . . , n − 1. This is, however, not easy to test; it is certainly
no easier than testing whether n is divisible by a for a = 1, . . . , n.)

4.2. Proving primality of n when n − 1 can be factored. In general, primality tests
can only tell you that a number n either ‘is composite’, or ‘can’t tell’. They cannot confirm
that n is prime. However, under the special circumstance that we can factor n−1, primality
can be proved:

Theorem 4.1 ( Lucas Test, as strengthened by Kraitchik and Lehmer). Let n > 1 have
the property that for every prime factor q of n− 1 there is an integer a such that an−1 ≡ 1
(mod n) but a(n−1)/q 6≡ 1 (mod n). Then n is prime.

Proof. Define the subgroup G of (Z/nZ)× to be the subgroup generated by all such a’s.
Clearly the exponent of G is a divisor of n − 1. But it can’t be a proper divisor of
n − 1, for then it would divide some (n − 1)/q say, which is impossible as a(n−1)/q 6≡ 1
(mod n) for the a corresponding to that q. Hence G has exponent n − 1. But then
n− 1 ≤ #G ≤ #(Z/nZ)× = ϕ(n). Hence ϕ(n) = n− 1, which immediately implies that n
is prime. �

Corollary 4.2 (Pepin’s Test, 1877). Let Fk = 22k

+ 1, the kth Fermat number, where

k ≥ 1. Then Fk is prime iff 3
Fk−1

2 ≡ −1 (mod Fk).

Proof. First suppose that 3
Fk−1

2 ≡ −1 (mod Fk). We apply the theorem with n = Fk. So

n − 1 = 22k

and q = 2 only, with a = 3. Then 3
Fk−1

2 6≡ 1 (mod Fk) and (on squaring)
3Fk−1 ≡ 1 (mod Fk), so all the conditions of the Theorem are satisfied.
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Conversely, suppose that Fk is prime. Then, by Euler’s criterion and quadratic reci-
procity (see Chapter 5) we have

3
Fk−1

2 ≡
(

3

Fk

)

=

(

Fk

3

)

=

(

2

3

)

= −1,

as 2 is not a square (mod 3).
�

We can use this to show that F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537 are all
prime. It is known that Fk is composite for 5 ≤ k ≤ 32, although complete factorisations
of Fk are known only for 0 ≤ k ≤ 11, and there are no known factors of Fk for k = 20 or
24. Heuristics suggest that there may be no more k’s for which Fk is prime.

4.3. Carmichael numbers. A Carmichael number is a (composite) number n that is a
pseudoprime to every base a with 1 ≤ a ≤ n and gcd(a, n) = 1. Since it it immediate that
an−1 6≡ 1 (mod n) when gcd(a, n) > 1, we see that Carmichael numbers are pseudoprimes
to as many possible bases as any composite number could be. They are named after the
US mathematician Robert Carmichael (1879 – 1967).

[But even finding an a with gcd(a, n) > 1 gives you a factor of n. (Imagine that n is
around 10300 and is a product of three 100-digit primes – such a’s are going to be few and
far between!)]

For examples of Carmichael numbers, see problem sheet 3.

4.4. Strong pseudoprimes. Given n > 1 odd and an a such that an−1 ≡ 1 (mod n),
factorise n − 1 as n − 1 = 2fq, where q is odd, f ≥ 1 and consider the sequence

S = [aq, a2q, a4q, . . . , a2f q ≡ 1],

taken (mod n). If n is prime then, working left to right, either aq ≡ 1 (mod n), in which
case S consists entirely of 1’s, or the number before the first 1 must be −1. This is because
the number following any x in the sequence is x2, so if x2 ≡ 1 (mod n) for n prime,
then x ≡ ±1 (mod n). (Why?) A composite number n that has this property, (i.e., is a
pseudoprime to base a and for which either S consists entirely of 1’s or the number before
the first 1 in S is −1) is called a strong pseudoprime to base a.

Clearly, if n is a prime or pseudoprime but not a strong pseudoprime, then this stronger
test proves that n isn’t prime. This is called the Miller-Rabin Strong Pseudoprime Test.

Perhaps surprisingly:

Theorem 4.3. If n is a pseudoprime to base a but not a strong pseudoprime to base a, with
say a2tq ≡ 1 (mod n) but a2t−1q 6≡ ±1 (mod n), then n factors nontrivially as n = g1g2,

where g1 = gcd(a2t−1q − 1, n) and g2 = gcd(a2t−1q + 1, n).

Proof. For then we have, for n − 1 = 2fq and some t ≤ f , that a2tq ≡ 1 (mod n) but

a2t−1q 6≡ ±1 (mod n). Now a2tq − 1 = AB ≡ 0 (mod n), where A = (a2t−1q − 1) and
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B = (a2t−1q + 1), and neither A nor B is divisible by n. Hence g1 is a nontrivial (6= 1 or n)
factor of n. Since g1 | n, we have

gcd(g1, g2) = gcd(n, g1, g2) = gcd(n, g1, g2 − g1) = gcd(n, g1, 2) = 1,

the last step because n is odd. Hence any prime dividing n can divide at most one of g1

and g2. So from n =
∏

p pep, say, and n | AB, we see that each prime power pep dividing n
divides precisely one of A or B, and so divides precisely one of g1 or g2. Hence g1g2 = n.

�

Example. Take n = 31621, a pseudoprime to base a = 2. We have n − 1 = 22 · 7905,
27905 ≡ 31313 (mod n) and 215810 ≡ 231620 ≡ 1 (mod n), so n is not a strong pseudoprime
to base 2. Then g1 = gcd(n, 31312) = 103 and g2 = gcd(n, 31314) = 307, giving n =
103 · 307.

Note that if n = n1n2 where n1 and n2 are coprime integers, then by the Chinese
Remainder Theorem we can solve each of the four sets of equations

x ≡ ±1 (mod n1) x ≡ ±1 (mod n2)

to get four distinct solutions of x2 ≡ 1 (mod n). For instance, for n = 35 get x = ±1 or
±6. For the example n = 31621 above, we have 31313 ≡ 1 (mod 103) and 31313 ≡ −1
(mod 307), so that four distinct solutions of x2 ≡ 1 (mod 31621) are ±1 and ±31313.

So what is happening when the strong pseudoprime test detects n as being composite
is that some x ∈ S is a solution to x2 ≡ 1 (mod n) with x 6≡ ±1 (mod n) because x ≡ 1
(mod n1) and x ≡ −1 (mod n2) for some coprime n1, n2 with n1n2 = n. And then both
gcd(x − 1, n) (divisible by n1) and gcd(x + 1, n) (divisible by n2) are nontrivial factors of
n.

4.5. Strong pseudoprimes to the smallest prime bases. It is known that

• 2047 is the smallest strong pseudoprime to base 2;
• 1373653 is the smallest strong pseudoprime to both bases 2, 3;
• 25326001 is the smallest strong pseudoprime to all bases 2, 3, 5;
• 3215031751 is the smallest strong pseudoprime to all bases 2, 3, 5, 7;
• 2152302898747 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11;
• 3474749660383 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11, 13;
• 341550071728321 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11, 13,

17.

(In fact 341550071728321 is also a strong pseudoprime to base 19.)
Hence any odd n < 341550071728321 that passes the strong pseudoprime test for all

bases 2, 3, 5, 7, 11, 13, 17 must be prime. So this provides a cast-iron primality test for
all such n.

4.6. Primality testing in ‘polynomial time’. In 2002 the Indian mathematicians Agrawal,
Kayal and Saxena invented an algorithm, based on the study of the polynomial ring
(Z/nZ)[x], that was able to decide whether a given n was prime in time O((log n)6+ε).
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(Here the constant implied by the ‘O’ depends on ε and so could go to infinity as ε → 0.)
(Search for ‘AKS algorithm’ on web.)

4.7. The Lucas-Lehmer primality test for Mersenne numbers. Given an odd prime
p, let Mp = 2p − 1, a Mersenne number (and a Mersenne prime iff it is prime). [It is an
easy exercise to prove that if p is composite, then so is Mp.]

Define a sequence S1, S2, . . . , Sn, . . . by S1 = 4 and Sn+1 = S2
n − 2 for n = 1, 2, . . . . so

we have

S1 = 4, S2 = 14, S3 = 194, S4 = 37634, S5 = 1416317954, . . . .

There is a very fast test for determining whether or not Mp is prime.

Theorem 4.4 ( Lucas-Lehmer Test). For an odd prime p, the Mersenne number Mp is
prime iff Mp divides Sp−1.

So M3 = 7 is prime as 7 | S2, M5 = 31 is prime as 31 | S4,. . . . In this way get Mp prime
for p = 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, . . . (47th) 43112609.
There may be others between the 41st and 47th. [as at October 2012.]

For the proof, we need two lemmas.

Lemma 4.5. Put ω = 2 +
√

3 and ω1 = 2 −
√

3. Then ωω1 = 1 (immediate) and

Sn = ω2n−1

+ ω2n−1

1

for n = 1, 2, . . . .

The proof is a very easy induction exercise.

Lemma 4.6. Let r be a prime ≡ 1 (mod 3) and ≡ −1 (mod 8) (i.e., ≡ 7 (mod 24)).
Then

ω
r+1

2 ≡ −1 (mod r).

(So it’s equal to a + b
√

3 where a ≡ −1 (mod r) and b ≡ 0 (mod r).)

Proof. Put

τ =
1 +

√
3√

2
and τ1 =

1 −
√

3√
2

.

Then we immediately get ττ1 = −1, τ 2 = ω and τ 2
1 = ω1. Next, from τ

√
2 = 1 +

√
3 we

have (τ
√

2)r = (1 +
√

3)r, so that

τ r2
r−1

2

√
2 = 1 +

r−1
∑

j=1

(

r

j

)

(
√

3)j + 3
r−1

2

√
3

≡ 1 + 3
r−1

2

√
3 (mod r), (1)

as r |
(

r
j

)

. Since r ≡ −1 (mod 8) we have

2
r−1

2 ≡
(

2

r

)

= (−1)
r2

−1

8 ≡ 1 (mod r),
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using Euler’s Criterion, and Prop. 5.3. Further, since r ≡ 1 (mod 3) and r ≡ −1 (mod 4)
we have

3
r−1

2 ≡
(

3

r

)

=
(r

3

)

(−1)
r−1

2
· 3−1

2 =

(

1

3

)

· (−1) ≡ −1 (mod r),

using Euler’s Criterion again, and also Quadratic Reciprocity (Th. 5.1). So, from (1), we
have successively

τ r
√

2 ≡ 1 −
√

3 (mod r)

τ r ≡ τ1 (mod r)

τ r+1 ≡ ττ1 = −1 (mod r)

ω
r+1

2 ≡ −1 (mod r),

the last step using τ 2 = ω. �

Proof of Theorem 4.4. Mp prime ⇒ Mp | Sp−1. Assume Mp prime. Apply Lemma 4.6
with r = Mp, which is allowed as Mp ≡ −1 (mod 8) and Mp ≡ (−1)p −1 ≡ 1 (mod 3). So

ω
Mp+1

2 = ω2p−1 ≡ −1 (mod Mp) (2)

and, using Lemma 4.5, including ω−1
1 = ω, we have

Sp−1 = ω2p−2

+ ω2p−2

1 = ω2p−2

1

(

(

ω−1
1

)2p−2

ω2p−2

+ 1
)

= ω2p−2

1

(

ω2p−1

+ 1
)

≡ 0 (mod Mp),

(3)
the last step using (2).

Mp | Sp−1 ⇒ Mp prime. Assume Mp | Sp−1 but Mp composite. We aim for a
contradiction. Then Mp will have a prime divisor q (say) with q2 ≤ Mp.

Now consider the multiplicative group G =

(

Z[
√

3]
(q)

)×

of units of the ring
Z[

√
3]

(q)
. Then

G has coset representatives consisting of numbers a + b
√

3 with a, b ∈ {0, 1, 2, . . . , q − 1}
that are also invertible (mod q). So G is a group of size (order) at most q2 − 1, with
multiplication defined modulo q. From ω(ω1 + q

√
3) ≡ 1 (mod q) we see that ω = 2 +

√
3

is invertible, and so ω ∈ G. [Strictly speaking, the coset ω (mod q) ∈ G.]
Now, using Mp | Sp−1 we see that (3) holds even when Mp is composite, so we have

successively that ω2p−1

+ 1 ≡ 0 (mod Mp), ω2p−1 ≡ −1 (mod q) and ω2p ≡ 1 (mod q).
Hence the order of ω in G is 2p. Then 2p | #G ≤ q2−1 ≤ Mp−1 = 2p−2, a contradiction.
Hence Mp must be prime.

�

In practice, to test Mp for primality using Theorem 4.4, one doesn’t need to com-
pute Sj(j = 1, 2, . . . , p − 1), but only the much smaller (though still large!) numbers
Sj (mod Mp)(j = 1, 2, . . . , p − 1).

A good source of information on Mersenne numbers is



19

http://primes.utm.edu/mersenne/index.html


