5. QUADRATIC RECIPROCITY

5.1. Introduction. Recall that the Legendre symbol ( ) is defined for an odd prime p

a
p
and integer a coprime to p as

(a) B { 1if a is a quadratic residue  (mod p);

P —1 otherwise;

Recall too that for a,b coprime to p

()=G)G)

(easily proved by writing a, b as powers of a primitive root), and that, by Euler’s Criterion,

(__1) — (—1)®D2 = {17 ifp=1 (mod 4)

P -1, ifp=-1 (mod 4).

Theorem 5.1 ( Law of Quadratic Reciprocity (Legendre, Gauss)). For distinct odd primes

p and q we have
p q p=1 g-1
- — )1 =(-1) 2 2 .
(5) ()

(Thus (g) = <Q> unless p and ¢ are both = —1 (mod 4), in which case <§> = — (ﬂ).)

P P
There are now 240 recorded proofs of this (not all different), including six by Gauss —

see
http://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html.

We’ll give one of Gauss’s proofs, using
Lemma 5.2 ( Gauss’s Lemma). For an odd prime p, put p' = p_;l) and let a be an integer
coprime to p. Consider the sequence

a,2a,3a,...,pa,

reduced mod p to lie in (—5,%). Then <Q> = (—=1)", where v is the number of negative
p
numbers in this sequence.

Proof. Now all of a,2a, 3a,...,p'a are = (mod p) to one of +1,£2, ... +p'. Further,

e no two are equal, as ia = ja (mod p) = i =j (mod p);

e none is minus another, as ia = —ja (mod p) = i+ j =0 (mod p).
So they must be +1,+2, ..., +p’, with each of 1,2,...,p" occurring with a definite sign.
Hence

a-2a-3a-...-pa=(£l)-(£2)-...-(£p)) (mod p),
giving
a” (p)l = (=1)"(')! (mod p),
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and so, as (p')! is coprime to p, that
a’ = (-1)" (mod p).

Finally, using Euler’s criterion (Prop. 2.8), we have

(9) =a’ = (~1) (mod p).

p
Hence <%> = (—-1). O

We can use Gauss’s Lemma to evaluate (%)

Proposition 5.3. For p an odd prime we have (%) =(-1)"3

(This is equal to 1 when p = £1 (mod 8), and to —1 when p = £3 (mod 8).)

Proof. There are four similar cases, depending on p (mod 8). We give the details for p = 3
(mod 8), p = 8¢+ 3 say. Then p’ = 4¢ + 1, and, taking a = 2 in Gauss’s Lemma, we see
that for the sequence

2,4,6,..., 40,404+ 2,...,8(+ 2

that this becomes

2,4,6,... 40, —(40+ 1), —(40 — 1),...,—3, -1
when reduced (mod p) into the range (—£,%). This clearly has 2/ positive members, and
hence v = p’ — 20 = 2 + 1 negative members. Hence <%> = (—1)%* = 1. O

Doing the other three cases would be a good exercise!

We now use Gauss’s Lemma with a = ¢ to prove the Law of Quadratic Reciprocity.

Proof of Theorem 5.1. Take distinct odd primes p and q. For k = 1,2,...,p" write (one
step of the Euclidean algorithm)

kq = qup + 1% (1)
say, where 1 < r, < p—1 and
qu
.= |— |- (2)
\‘p

Now, working in IF,, we have

{Q> QQ> cee >p/Q} = {Tla r2,... arp’} = {&17 Az, ... a&t} U {_bb _b27 ceey _bu}a
as in Gauss’s Lemma. So the a;’s are in (0,%) and the —b;’s are in (—£,0). (In fact
t =p' — v, but not needed.) Now put

t v
i=1 i=1
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So, by the definition of the a;’s and —b;’s we have

/

p
Zrk:a—b—i-l/p. (3)
k=1

Now, in the proof of Gauss’s Lemma we saw that

{al,ag,...,at}U{bl,bg,...,by} = {1,2,...,]),},

so that
p2—1
< =14+2+---+p =a+b (4)

and

P-1
LS
k=1

P P
Zquk+Zrk (using (1))
k=1 k=1

/

p

=p Z qr +a—0b+ vp, (using (3).) (5)
k=1

Next, on subtracting (5) from (4) we get

p’ -1
8

p/
(=1 =p> a—2b+vp.
k=1

Reducing this modulo 2 we have 0 = Zi;l g — v (mod 2),orv = Zi;l qr (mod 2). Thus
Gauss’s Lemma gives

<g) = (-1 = (~) e = (cpTialR),
p
using (2).

Now, reversing the roles of p and ¢ we immediately get

(E) _ =l

q
where of course ¢’ = (¢ — 1)/2, and we’ve replaced the dummy variable & by ¢. So

(g) (E) — (_1){25:1 L%JJFZE,:lL%pJ},
p q
which equals (—1)P'?, by Prop. 1.4. O



