
6. Representation of integers as sums of two squares

Which n ∈ Z can be represented as a sum n = x2 + y2 for x, y ∈ Z? Obviously need
n ≥ 0. Can clearly assume that x and y are nonnegative. We have 0 = 02 +02, 1 = 12 +02,
2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, but no such representation for n = 3, 6 or 7.

Important note: (2k)2 ≡ 0 (mod 4), and (2k + 1)2 = 8
(

k+1
2

)

+ 1 ≡ 1 (mod 8) (and so
certainly ≡ 1 (mod 4)).

6.1. The case n = p, prime. Which primes are the sum of two squares?

Theorem 6.1. An odd prime p is a sum of two squares (of integers) iff p ≡ 1 (mod 4).

Proof. As x2, y2 ≡ 0 or 1 (mod 4), so x2+y2 ≡ 0 or 1 or 2 (mod 4). Assuming p = x2+y2,
then as p is odd, we have p ≡ 1 (mod 4).

Conversely, assume p ≡ 1 (mod 4), and, knowing that then
(

−1
p

)

= 1, take r ∈ N with

r2 ≡ −1 (mod p). Define f(u, v) = u + rv and K = ⌊√p⌋. Note that

K <
√

p < K + 1, (1)

as
√

p 6∈ Z. Consider all pairs (u, v) with 0 ≤ u ≤ K and 0 ≤ v ≤ K. There are (K+1)2 > p
such pairs, and so the multiset of all f(u, v) for such u, v has, by the Pigeonhole Principle,
two such pairs (u1, v1) 6= (u2, v2) for which f(u1, v1) ≡ f(u2, v2) (mod p). Hence

u1 + rv1 ≡ u2 + rv2 (mod p)

u1 − u2 ≡ −r(v1 − v2) (mod p)

a ≡ −rb (mod p),

say, where a = u1−v1 and b = v1−v2 are not both 0. Hence a2 ≡ −b2 (mod p) as r2 ≡ −1
(mod p), so that p | (a2 + b2). But |a| ≤ K, |b| ≤ K, giving

0 < a2 + b2 ≤ 2K2 < 2p.

So a2 + b2 = p. �

6.2. The general case. We now look at what happens if a prime ≡ −1 (mod 4) divides
a sum of two squares.

Proposition 6.2. Let q ≡ 3 (mod 4) be prime, and q | (x2 + y2). Then q | x and q | y, so
that q2 | (x2 + y2).

Proof. Assume that it is not the case that both x and y are divisible by q, say q ∤ x. Then

from x2 + y2 ≡ 0 (mod q) we get (yx−1)2 ≡ −1 (mod q), contradicting
(

−1
q

)

= −1. �

Proposition 6.3. If n is a sum of two squares and m is a sum of two squares then so is
nm.
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Proof. If n = a2 + b2 and m = c2 + d2 then

nm = (a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

�

(This identity comes from complex numbers:

(a + ib)(c + id) = ac − bd + i(ad + bc)

gives

|a + ib|2 · |c + id|2 = |ac − bd + i(ad + bc)|2
and hence the identity.)

Corollary 6.4. If n = A2
∏

i ni where A, ni ∈ Z and each ni is a sum of two squares, then
so is n.

Proof. Use induction on i to get n/A2 =
∏

i ni = a2 + b2 say. Then n = (Aa)2 + (Ab)2. �

We can now state and prove our main result.

Theorem 6.5 ( Fermat). Write n in factorised form as

n = 2f2

∏

p≡1 (mod 4)

pfp

∏

q≡−1 (mod 4)

qgq ,

where (of course) all the p’s and q’s are prime. Then n can be written as the sum of two
squares of integers iff all the gq’s are even.

Proof. If all the gq are even then n = A2×(product of some p’s) and also ×2 if f2 is odd.
So we have n = A2 ×

∏

i(a
2
i + b2

i ) by Theorem 6.1 (using also 2 = 12 +12 if f2 odd). Hence,
by Corollary 6.4, n is the sum of two squares.

Conversely, suppose q | n = a2 + b2, where q ≡ −1 (mod 4) is prime. Let qk be the
highest power of q dividing both a and b, so say a = qka1, b = qkb1. Then

n

q2k
= a2

1 + b2
1.

Now q ∤ n
q2k , as otherwise q would divide both a1 and b1, by Prop. 6.2. Hence q2k is the

highest power of q dividing n, i.e., gq = 2k is even. Hence all the gq’s are even. �

6.3. Related results.

Proposition 6.6. If an integer n is the sum of two squares of rationals then it’s the sum
of two squares of integers.

Proof. Suppose that

n =
(a

b

)2

+
( c

d

)2

for some rational numbers a/b and c/d. Then

n(bd)2 = (da)2 + (bc)2.
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Hence, by Thm 6.5, for every prime q ≡ −1 (mod 4) with qi||n(bd)2, i must be even. But
then if qℓ||bd then qi−2ℓ||n, with i − 2ℓ even. Hence, by Thm 6.5 (in the other direction),
n is the sum of two squares of integers. �

Corollary 6.7. A rational number n/m is the sum of two squares of rationals iff nm is
the sum of two squares of integers.

Proof. If nm = a2 + b2 for a, b ∈ Z then

n

m
=

( a

m

)2

+

(

b

m

)2

.

Conversely, if
n

m
=

(a

b

)2

+
( c

d

)2

then

nm =
(am

b

)2

+
(cm

d

)2

.

Hence, by Prop. 6.6, nm is the sum of two squares of integers. �

6.4. Finding all ways of expressing a rational as a sum of two rational squares.

Now let h be a rational number that can be written as the sum of two squares of rationals.
We can then describe all such ways of writing h.

Theorem 6.8. Suppose that h ∈ Q is the sum of two rational squares: h = s2 + t2, where
s, t ∈ Q. Then the general solution of h = x2 + y2 in rationals x, y is

x =
s(u2 − v2) − 2uvt

u2 + v2
y = −

(

t(u2 − v2) + 2uvs

u2 + v2

)

, (2)

where u, v ∈ Z not both zero.

Proof. We are looking for all points (x, y) ∈ Q2 on the circle x2 + y2 = h. If (x, y) is such a
point, then for x 6= s the chord through (s, t) and (x, y) has rational slope (t− y)/(s− x).

Conversely, take a chord through (s, t) of rational slope r, which has equation y =
r(x − s) + t. Then for the intersection point (x, y) of the chord and the circle we have

x2 + (r(x − s) + t)2 = h,

which simplifies to

x2(1 + r2) + 2rx(t − rs) + (r2 − 1)s2 − 2rst = 0,

using the fact that t2 − h = −s2. This factorises as

(x − s)((1 + r2)x + 2rt + s(1 − r2)) = 0.

For x 6= s we have

x =
s(r2 − 1) − 2rt

1 + r2
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and

y = t + r(x − s)

= −
(

t(r2 − 1) + 2sr

1 + r2

)

,

on simplification. Finally, substituting r = u/v gives (2). Note that v = 0 in (2) (i.e.,
r = ∞) gives the point (r,−s). �

Corollary 6.9. The general integer solution x, y, z of the equation x2 + y2 = nz2 is

(x, y, z) = (a(u2 − v2) − 2uvb, b(u2 − v2) + 2uva, u2 + v2),

where n = a2 + b2, with a, b, u, v ∈ Z, and u, v arbitrary.

(If n is not the sum of two squares, then the equation has no nonzero solution, by Prop.
6.6.)

In particular, for n = 1 = 12 +02, we see that the general integer solution to Pythagoras’
equation x2 + y2 = z2 is

(x, y, z) = (u2 − v2, 2uv, u2 + v2).

For a socalled primitive solution — one with gcd(x, y) = 1 – choose u, v with gcd(u, v) = 1
and not both odd.

The same method works for Ax2 + By2 + Cz2 = 0.

6.5. Sums of three squares, sums of four squares.

Proposition 6.10. No number of the form 4a(8k + 7), where a is a nonnegative integer,
is the sum of three squares (of integers).

Proof. Use induction on a. For a = 0: Now n2 ≡ 0, 1 or 4 (mod 8), so a sum of three
squares is ≡ 1 or 1 or 2 or 3 or 4 or 5 or 6 (mod 8), but 6≡ 7 (mod 8).

Assume result true for some integer a ≥ 0. If 4a+1(8k + 7) = n2
1 + n2

2 + n2
3 then all the

ni must be even, and so = 4(n′2
1 + n′2

2 + n′2
3 ) say. But then 4a(8k + 7) = n′2

1 + n′2
2 + n′2

3 ,
contrary to the induction hypothesis. �

In fact (won’t prove)

Theorem 6.11 (Legendre 1798, Gauss). All positive integers except those of the form
4a(8k + 7) are the sum of three squares.

Assuming this result, we can show

Corollary 6.12 (Lagrange 1770). Every positive integer is the sum of four squares.

Proof. The only case we need to consider is n = 4a(8k + 7). But then n − (2a)2 =
4a(8k + 6) = 22k+1(4k + 3), which (being exactly divisible by an odd power of 2) is not of
the form 4a′

(8k′ + 7), so is the sum of three squares. �
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7. Fermat’s method of descent

Around 1640, Fermat developed a method for showing that an equation had no integer
solutions. In essence, the method is as follows: assume that the equation does have a
solution. Pick the ‘smallest’ (suitably defined) one. Use the assumed solution to construct
a smaller solution, contradicting the fact that the one you started with was the smallest.
This contradiction proves that there is in fact no solution. The technique is called Fermat’s
method of descent. It is, in fact, a form of strong induction. (Why?)

We illustrate the method with one example:

Theorem 7.1. The equation

x4 + y4 = z2 (3)

has no solution in positive integers x, y, z.

Corollary 7.2 (Fermat’s Last Theorem for exponent 4). The equation x4 + y4 = z4 has
no solution in positive integers x, y, z.

Proof of Theorem 7.1. (From H. Davenport, The higher arithmetic. An introduction to the
theory of numbers, Longmans 1952, p.162). Suppose that (3) has such a solution. Assume
we have a solution with |z| minimal. We can clearly assume that z is positive and 6= 1,
i.e., that z > 1. If d = gcd(x, y) > 1 we can divide by d4, replacing x by x/d, y by y/d and
z by z/d2 in (3), obtaining a solution with |z| smaller. So we must have gcd(x, y) = 1.

Now from Corollary 6.9 we know that

X2 + Y 2 = Z2

has general solution (with gcd(X, Y ) = 1), possibly after interchanging X and Y of

X = p2 − q2 Y = 2pq Z = p2 + q2,

where p, q ∈ N and gcd(p, q) = 1, so

x2 = p2 − q2 y2 = 2pq z = p2 + q2.

As a square is ≡ 0 or 1 (mod 4), and x is odd (because gcd(x, y) = 1), we see that p is
odd and q is even, say q = 2r. So

x2 = p2 − (2r)2
(y

2

)2

= pr.

Since gcd(p, r) = 1 and pr is a square, we have p = v2 and r = w2 say, so

x2 + (2w2)2 = v4.

Note that, as gcd(p, q) = 1, we have gcd(x, q) = 1 = gcd(x, 2w2). Hence applying Corollary
6.9 again

x = p2
1 − q2

1 2w2 = 2p1q1 v2 = p2
1 + q2

1 ,

where gcd(p1, q1) = 1 and not both are odd. Say p1 odd, q1 even. Thus w2 = p1q1, giving
p1 = v2

1, q1 = r2
1, say. Hence

v2(= p2
1 + q2

1) = v4
1 + r4

1,
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which is another solution of (3)! But

v2 = p =
√

z − q2 <
√

z,

giving v < z1/4, so certainly v < z (as z > 1), contradicting the minimality of z. �


