
8. p-adic numbers

8.1. Motivation: Solving x2 ≡ a (mod pn). Take an odd prime p, and an integer a

coprime to p. Then, as we know, x2 ≡ a (mod p) has a solution x ∈ Z iff
(

a
p

)

= 1. In

this case we can suppose that b2
0 ≡ a (mod p). We claim that then x2 ≡ a (mod pn) has

a solution x for all n ∈ N.
Assume that we have a solution x of x2 ≡ a (mod pn) for some n ≥ 1. Then x is

coprime to p, so that we can find x1 ≡ 1

2
(x + a/x) (mod p2n). (This is the standard

Newton-Raphson iterative method x1 = x − f(x)/f ′(x) for solving f(x) = 0, applied to
the polynomial f(x) = x2 − a, but (mod p2n) instead of in R or C.) Then

x1 − x = −1

2

(

x − a

x

)

= − 1

2x

(

x2 − a
)

≡ 0 (mod pn),

and

x2

1 − a =
1

4

(

x2 + 2a +
a2

x2

)

− a

=
1

4

(

x − a

x

)2

=
1

4x2
(x2 − a)2

≡ 0 (mod p2n)

Thus, starting with x0 such that x2
0 ≡ a (mod p20

), we get successively x1 with x2
1 ≡ a

(mod p21

), x2 with x2
2 ≡ a (mod p22

),. . . , xk with x2
k ≡ a (mod p2k

),. . . , with xk+1 ≡ xk

(mod p2k

). So, writing the xi in base p, we obtain

x0 = b0

x1 = b0 + b1p say, specified (mod p2)

x2 = b0 + b1p + b2p
2 + b3p

3 say, specified (mod p4)

x3 = b0 + b1p + b2p
2 + b3p

3 + b4p
4 + b5p

5 + b6p
6 + b7p

7 say, specified (mod p8),

and so on.
So, in any sense, is x∞ =

∑

∞

i=1
bip

i a root of x2 ≡ a (mod p∞)? It turns out that, yes,
it is: x∞ is a root of x2 = a in the field Qp of p-adic numbers.

8.2. Valuations. In order to define the fields Qp of p-adic numbers for primes p, we first
need to discuss valuations.

A valuation | · | on a field F is a map from F to the nonnegative real numbers satisfying

For each x ∈ F |x| = 0 iff x = 0; (ZERo)

For each x, y ∈ F |xy| = |x| · |y|; (HOMomorphism)

For each x, y ∈ F |x + y| ≤ |x| + |y|. (TRIangle)

26
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If in addition

For each x, y ∈ F |x + y| ≤ max(|x|, |y|), (MAXimum)

then | · | is called a nonarchimedean valuation. A valuation that is not nonarchimedean,
i.e., for which there exist x, y ∈ F such that |x + y| > max(|x|, |y|), is called archimedean.
For instance the standard absolute value on R is archimedean because 2 = |2| = |1 + 1| >
max(|1|, |1|) = 1.

Note that MAX is stronger than TRI in the sense that if MAX is true than TRI is
certainly true. So to show that a valuation is nonarchimedean we only need to check that
ZER, HOM and MAX hold.

Proposition 8.1. For any valuation | · | on a field F we have |1| = | − 1| = 1 and for
n ∈ N (defined as the sum of n copies of the identity of F ) we have | − n| = |n| and
|1/n| = 1/|n|. Further, for n, m ∈ N we have |n/m| = |n|/|m|.
Proof. We have |1| = |12| = |1|2, using HOM, so that |1| = 0 or 1. But |1| 6= 0 by ZER, so
|1| = 1.

Also 1 = |1| = |(−1)2| = | − 1|2 by HOM, so that | − 1| = 1 since | − 1| > 0.
Further, | − n| = |(−1)n| = | − 1| · |n| = 1 · |n| = |n|, and from n · (1/n) = 1 we get

|n| · |1/n| = |1| = 1, so that |1/n| = 1/|n|.
Finally, from n/m = n · (1/m) we get |n/m| = |n| · |1/m| = |n|/|m|. �

8.3. Nonarchimedean valuations. From now on we restrict our attention to nonar-
chimedean valuations.

Proposition 8.2 (Principle of Domination). Suppose that we have a nonarchimedean val-
uation | · | on a field F , and that x, y ∈ F with |x| 6= |y|. Then

|x + y| = max(|x|, |y|).
Note the equal sign in this statement!

Proof. Put s = x + y, and assume w.l.g. that |x| < |y|. Then |s| ≤ max(|x|, |y|) = |y|,
while

|y| = |s − x| ≤ max(|s|, | − x|) = max(|s|, |x|) = |s|,
since otherwise we’d have |y| ≤ |x|. Hence |s| = |y| = max(|x|, |y|). �

Corollary 8.3. Suppose that x1, . . . , xn ∈ F , with | · | nonarchimedean. Then

|x1 + . . . , +xn| ≤ max(|x1|, . . . , |xn|),
with equality if |x1| > max(|x2, . . . , |xn|).
Proof. Use induction, with the help of MAX, for the inequality. For the equality, put
x1 = y and x2 + · · · + xn = x in the Principle of Domination. �

Corollary 8.4. For | · | nonarchimedean and n ∈ Z we have |n| ≤ 1.

Proof. Apply the Corollary above with all xi = 1. Then use | − n| = |n|. �
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Lemma 8.5. If | · | is a nonarchimedean valuation on F , then so is | · |α for any α > 0.

Proof. It’s easily checked that ZER, HOM and MAX still hold when the valuation we start
with is taken to the α-th power. �

[ The same does not apply to TRI – we need 0 < α ≤ 1 for TRI to still always hold.]

8.4. Nonarchimedean valuations on Q.

Corollary 8.6. If | · | is a nonarchimedean valuation on Q with |n| = 1 for all n ∈ N then
| · | is trivial, i.e., |x| = 0 if x = 0 while |x| = 1 if x 6= 0.

Proof. We then have |x| = 0 by ZER, while |n/m| = |n|/|m| = 1/1 = 1. �

We’ll ignore trivial valuations from now on.

Proposition 8.7. If | · | is a nonarchimedean valuation on Q with |n| < 1 for some n ∈ N,
then there is a prime p such that {n ∈ N : |n| < 1} = {n ∈ N : p divides n}.
Proof. Take the smallest positive integer n1 such that |n1| < 1. We know that n1 > 1. If
n1 is composite, say n1 = n2n3 with 1 < n2, n3 < n1, then, by the minimality of n1, we
have |n2| = |n3| = 1, so that |n1| = |n2| · |n3| = 1 · 1 = 1 by HOM, a contradiction. Hence
n1 is prime, = p say.

Then for any n with |n| < 1 we can, by the division algorithm, write n = qp + r where
0 ≤ r < p. But then |r| = |n − qp| ≤ max(|n|, | − qp|) = max(|n|, | − 1| · |q| · |p|) < 1,
as | − 1| = 1, |q| ≤ 1 and |p| < 1. By the minimality of p we must have r = 0, so that
p | n. �

Next, we show that there is indeed a valuation on Q corresponding to each prime p.
We define | · |p by |0| = 0, |p|p = 1/p and |n| = 1 for n ∈ Z and coprime to p, and
|pkn/m|p = p−k for n and m coprime to p. We call this the p-adic valuation on Q.

Proposition 8.8. The p-adic valuation on Q is indeed a valuation.

Proof. The definition of | · |p ensures that ZER and HOM hold. It remains only to check
that MAX holds.

Let x = pkn/m and y = pk′

n′/m′,where n, m, n′m′ are all coprime to p. Suppose w.l.g.
that k ≤ k′. Then |x|p = |pk|p · |n|p/|m|p = p−k as |n|p = |m|p = 1 and |p|p = 1/p. Similarly
|y|p = p−k′ ≤ |x|p. Hence

|x + y|p =

∣

∣

∣

∣

pk(nm′ + pk′
−kn′m)

mm′

∣

∣

∣

∣

p

=
p−k|nm′ + pk′

−kn′m|p
|mm′|p

≤ p−k = max(|x|p, |y|p).

as |m|p = |m′|p = 1 and |nm′ + pk′
−kn′m|p ≤ 1, since nm′ + pk′

−kn′m ∈ Z. �

[Note that the choice of |p|p = 1/p is not particularly important, as by replacing | · |p by
its α-th power as in Lemma 8.5 we can make |p|p equal any number we like in the interval
(0, 1). But we do need to fix on a definite value!]
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8.5. The p-adic completion Qp of Q. We first recall how to construct the real field R

from Q, using Cauchy sequences. Take the ordinary absolute value | · | on Q, and define
a Cauchy sequence to be a sequence (an) = a1, a2, . . . , an, . . . of rational numbers with the
property that for each ε > 0 there is an N > 0 such that |an−an′ | < ε for all n, n′ > N . We
define an equivalence relation on these Cauchy sequences by saying that two such sequences
(an) and (bn) are equivalent if the interlaced sequence a1, b1, a2, b2, . . . , an, bn, . . . is also a
Cauchy sequence. [Essentially, this means that the sequences tend to the same limit, but as
we haven’t yet constructed R, where (in general) the limit lies, we can’t say that.] Having
checked that this is indeed an equivalence relation on these Cauchy sequences, we define
R to be the set of all equivalence classes of such Cauchy sequences. We represent each
equivalence class by a convenient equivalence class representative; one way to do this is
by the standard decimal expansion. So, the class π will be represented by the Cauchy
sequence 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . , which we write as 3.14159 . . . . Further, we
can make R into a field by defining the sum and product of two Cauchy sequences in the
obvious way, and also the reciprocal of a sequence, provided the sequence doesn’t tend to
0.

[The general unique decimal representation of a real number a is

a = ±10k(d0 + d110−1 + d210−2 + · · ·+ dn10−n + . . . ),

where k ∈ Z, and the digits di are in {0, 1, 2, . . . , 9}, with d0 6= 0. Also, it is forbidden that
the di’s are all = 9 from some point on, as otherwise we get non-unique representations,
e.g., 1 = 100(1.00000 . . . ) = 10−1(9.99999 . . . ).]

We do the same kind of construction to define the p-adic completion Qp of Q, except
that we replace the ordinary absolute value by | · |p in the method to obtain p-Cauchy
sequences. To see what we should take as the equivalence class representatives, we need
the following result.

Lemma 8.9. Any rational number m/n with |m/n|p = 1 can be p-adically approximated
arbitrarily closely by a positive integer. That is, for any k ∈ N there is an N ∈ N such
that |m/n − N |p ≤ p−k.

Proof. We can assume that |n|p = 1 and |m|p ≤ 1. We simply take N = mn′, where
nn′ ≡ 1 (mod pk). Then the numerator of m/n − N is an integer that is divisible by
pk. �

An immediate consequence of this result is that any rational number (i.e., dropping
the |m/n|p = 1 condition) can be approximated arbitrarily closely by a positive integer
times a power of p. Thus one can show that any p-Cauchy sequence is equivalent to one
containing only those kind of numbers. We write the positive integer N in base p, so that
pkN = pk(a0+a1p+a2p

2+· · ·+arp
r) say, where the ai are base-p digits ∈ {0, 1, 2, . . . , p−1},

and where we can clearly assume that a0 6= 0 (as otherwise we could increase k by 1). We
define Qp, the p-adic numbers, to be the set of all equivalence classes of p-Cauchy sequences
of elements of Q. Then we have the following.
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Theorem 8.10. Every nonzero element (i.e., equivalence class) in Qp has an equivalence
class representative of the form

pka0, p
k(a0 + a1p), pk(a0 + a1p + a2p

2), . . . , pk(a0 + a1p + a2p
2 + · · · + aip

i), . . . ,

which we write simply as

pk(a0 + a1p + a2p
2 + · · · + aip

i + . . . ) [= pk(

∞
∑

i=0

aip
i)].

Here, the ai are all in ∈ {0, 1, 2, . . . , p − 1}, with a0 6= 0.

Thus we can regard p-adic numbers as these infinite sums pk(
∑

∞

i=0
aip

i). We define
the unary operations of negation and reciprocal, and the binary operations of addition and
multiplication in the natural way, namely: apply the operation to the (rational) elements of
the p-Cauchy sequence representing that number, and then choose a standard equivalence
class representative (i.e., pk(

∑

∞

i=0
aip

i) with all ai ∈ {0, 1, 2, . . . , p − 1}, a0 6= 0) for the
result. When we do this, we have

Theorem 8.11. With these operations, Qp is a field, the field of p-adic numbers, and
the p-adic valuation | · |p can be extended from Q to Qp by defining |a|p = p−k when
a = pk(

∑

∞

i=0
aip

i). Again, the ai are all in ∈ {0, 1, 2, . . . , p − 1}, with a0 6= 0.

We shall skip over the tedious details that need to be checked to prove these two theo-
rems.

Note that, like R, Qp is an uncountable field of characteristic 0 (quite unlike Fp, which
is a finite field of characteristic p).

We define a p-adic integer to be an p-adic number a with |a|p ≤ 1, and Zp to be the set
of all p-adic integers.

Proposition 8.12. With the arithmetic operations inherited from Qp, the set Zp is a ring.

Proof. This is simply because if a and a′ ∈ Zp, then |a|p ≤ 1 and |a′|p ≤ 1, so that

|a + a′|p ≤ max(|a|p, |a′|p) ≤ 1 by MAX ;

|a · a′|p = |a|p · |a′|p ≤ 1 by HOM ,

showing that Zp is closed under both addition and multiplication, and so is a ring. �

An p-adic number a is called a p-adic unit if |a|p = 1. Then k = 0 so that a =
∑

∞

i=0
aip

i

with all ai ∈ {0, 1, 2, . . . , p − 1} and a0 6= 0. The set of all p-adic units is a multiplicative
subgroup of the multiplicative group Q×

p = Qp \ {0}. This is because if |a|p = 1 then
|1/a|p = 1/|a|p = 1, so that 1/a is also a unit.

8.6. Calculating in Qp.



31

8.6.1. Negation. If a = pk(
∑

∞

i=0
aip

i), then

−a = pk

(

(p − a0) +
∞
∑

i=1

(p − 1 − ai)p
i

)

,

as can be checked by adding a to −a (and getting 0!). Note that from all ai ∈ {0, 1, 2, . . . , p−
1} and a0 6= 0 we have that the same applies to the digits of −a.

8.6.2. Reciprocals. If a = pk(
∑

∞

i=0
aip

i), then

1

a
= p−k(a′

0 + a′

1p + · · ·+ a′

ip
i + . . . )

say, where for any i the first i digits a′

0, a
′

1, . . . , a
′

i can be calculated as follows: Putting
a0 +a1p+ · · ·+aip

i = N , calculate N ′ ∈ N with N ′ < pi+1 such that NN ′ ≡ 1 (mod pi+1).
Then writing N ′ in base p as N ′ = a′

0 + a′

1p + · · ·+ a′

ip
i gives a′

0, a
′

1, . . . , a
′

i.

8.6.3. Addition and multiplication. If a = pk(
∑

∞

i=0
aip

i) and a′ = pk(
∑

∞

i=0
a′

ip
i) (same k)

then a+a′ = pk((a0 +a′

0)+ (a1 +a′

1)p+ · · ·+(ai +a′

i)p
i + . . . ), where then ‘carrying’ needs

to be performed to get the digits of a + a′ into {0, 1, 2, . . . , p − 1}. If a′ = pk′

(
∑

∞

i=0
a′

ip
i)

with k′ < k then we can pad the expansion of a′ with initial zeros so that we can again
assume that k′ = k, at the expense of no longer having a′

0 nonzero. Then addition can be
done as above.

Multiplication is similar: multiplying a = pk(
∑

∞

i=0
aip

i) by a′ = pk′

(
∑

∞

i=0
a′

ip
i) gives

a · a′ = pk+k′

(a0a
′

0 + (a1a
′

0 + a0a
′

1)p + · · ·+ (

i
∑

j=0

aja
′

i−j)p
i + . . . ),

where then this expression can be put into standard form by carrying.

8.7. Expressing rationals as p-adic numbers. Any nonzero rational can clearly be
written as ±pkm/n, where m, n are positive integers coprime to p (and to each other), and
k ∈ Z. It’s clearly enough to express ±m/n as a p-adic number a0 + a1p + . . . , as then
±pkm/n = pk(a0 + a1p + . . . ).

8.7.1. Representating −m/n, where 0 < m < n. We have the following result.

Proposition 8.13. Put e = ϕ(n). Suppose that m and n are coprime to p, with 0 < m < n,
and that the integer

m
pe − 1

n
is written as d0 + d1p + · · ·+ de−1p

e−1

in base p. Then

−m

n
= d0 + d1p + · · ·+ de−1p

e−1 + d0p
e + d1p

e+1 + · · ·+ de−1p
2e−1 + d0p

2e + d1p
2e+1 + . . . .
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Proof. We know that pe
−1

n
is an integer, by Euler’s Theorem. Hence

−m

n
=

mpe
−1

n

1 − pe
= (d0 + d1p + · · ·+ de−1p

e−1)(1 + pe + p2e + . . . ),

which gives the result. �

In the above proof, we needed m < n so that mpe
−1

n
< pe, and so had a representation

d0 + d1p + · · ·+ de−1p
e−1.

8.7.2. The case m/n, where 0 < m < n. For this case, first write −m/n = u/(1 − pe),
where, as above, u = m · pe

−1

n
. Then

m

n
=

−u

1 − pe
= 1 +

pe − 1 − u

1 − pe
= 1 +

u′

1 − pe
,

where u′ = pe − 1− u and 0 ≤ u′ < pe. Thus we just have to add 1 to the repeating p-adic
integer u′ + u′pe + u′p2e + . . . .

Example What is 1/7 in Q5?
From 56 ≡ 1 (mod 7) (Fermat), and (56 − 1)/7 = 2232, we have

−1

7
=

2232

1 − 56

=
2 + 1 · 5 + 4 · 52 + 2 · 53 + 3 · 54

1 − 56

= (21423)(1 + 56 + 512 + . . . )

= 214230 214230 214230 214230 214230 . . . .

Hence
1

7
= 330214 230214 230214 230214 230214 230214 . . . ,

which is a way of writing 3 + 3 · 51 + 0 · 52 + 2 · 53 + . . . .

8.8. Taking square roots in Qp.

8.8.1. The case of p odd. First consider a p-adic unit a = a0 + a1p + a2p
2 + · · · ∈ Zp,

where p is odd. Which such a have a square root in Qp? Well, if a = b2, where b =
b0 + b1p + b2p

2 + · · · ∈ Zp, then, working modulo p we see that a0 ≡ b2
0 (mod p), so that a0

must be a quadratic residue (mod p). In this case the method in Section 8.1 will construct
b. Note that if at any stage you are trying to construct b (mod n) then you only need to
specify a (mod n), so that you can always work with rational integers rather than with
p-adic integers.

On the other hand, if a0 is a quadratic nonresidue, then a has no square root in Qp.

Example. Computing
√

6 in Q5. While the algorithm given in the introduction to
this chapter is a good way to compute square roots by computer, it is not easy to use
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by hand. Here is a simple way to compute square roots digit-by-digit, by hand: Write√
6 = b0 + b1 · 51 + b2 · 52 + . . . . Then, squaring and working mod 5, we have b2

0 ≡ 1
(mod 5), so that b0 = 1 or 4. Take b0 = 1 (4 will give the other square root, which is minus
the one we’re computing.)

Next, working mod 52, we have

6 ≡ (1 + b1 · 5)2 (mod 52)

6 ≡ 1 + 10b1 (mod 52)

1 ≡ 2b1 (mod 5),

giving b1 = 3. Doing the same thing mod 53 we have

6 ≡ (1 + 3 · 5 + b2 · 52)2 (mod 53)

6 ≡ 162 + 32b2 · 52 (mod 53)

−250 ≡ 32b2 · 52 (mod 53)

0 ≡ 32b2 (mod 5),

giving b2 = 0. Continuing mod 54, we get b3 = 4, so that
√

6 = 1+3 ·5+0 ·52 +4 ·53 + . . . .

Next, consider a general p-adic number a = pk(a0 +a1p+ . . . ). If a = b2, then |a|p = |b|2p,
so that |b|p = |a|1/2

p = p−k/2. But valuations of elements of Qp are integer powers of p, so
that if k is odd then b 6∈ Qp. But if k is even, there is no problem, and a will have a square
root b = pk/2(b0 + b1p + . . . ) ∈ Qp iff a0 is a quadratic residue (mod p).

8.8.2. The case of p even. Consider a 2-adic unit a = 1 + a12 + a22
2 + · · · ∈ Z2. If a = b2,

where b = b0 + b12
1 + b22

2 + · · · ∈ Z2, working modulo 8, we have b2 ≡ 1 (mod 8), so that
we must have a ≡ 1 (mod 8), giving a1 = a2 = 0. When this holds, the construction of
Section 8.1 will again construct b. On the other hand, if a 6≡ 1 (mod 8), then a has no
square root in Q2.

For a general 2-adic number a = 2k(1 + a12 + a22
2 + . . . ), we see that, similarly to the

case of p odd, a will have a square root in Q2 iff k is even and a1 = a2 = 0.

8.9. The Local-Global Principle. The fields Qp (p prime) and R, and their finite ex-
tensions, are examples of local fields. These are complete fields, because they contain all
their limit points. On the other hand, Q and its finite extensions are called number fields
and are examples of global fields. [Other examples of global and local fields are the fields
F(x) of rational functions over a finite field F (global) and their completions with respect
to the valuations on them (local).] One associates to a global field the local fields obtained
by taking the completions of the field with respect to each valuation on that field.

Suppose that you are interested in whether an equation f(x, y) = 0 has a solution x, y
in rational numbers. Clearly, if the equation has no solution in R, or in some Qp, then,
since these fields contain Q, the equation has no solution on Q either.
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For example, the equation x2 + y2 = −1 has no solution in Q because it has no solution
in R. The equation x2 + 3y2 = 2 has no solution in Q because it has no solution in Q3,
because 2 is a quadratic nonresidue of 3.

The Local-Global (or Hasse-Minkowski) Principle is said to hold for a class of equations
(over Q, say) if, whenever an equation in that class has a solution in each of its completions,
it has a solution in Q. This principle holds, in particular, for quadratic forms. Thus for
such forms in three variables, we have the following result.

Theorem 8.14. Let a, b, c be nonzero integers, squarefree, pairwise coprime and not all of
the same sign. Then the equation

ax2 + by2 + cz2 = 0 (1)

has a nonzero solution (x, y, z) ∈ Z3 iff
−bc is a quadratic residue of a; i.e. the equation x2 ≡ −bc (mod a) has a solution x;
−ca is a quadratic residue of b;
−ab is a quadratic residue of c.

(Won’t prove.) The first of these conditions is necessary and sufficient for (1) to have a
solution in Qp for each odd prime dividing a. Similarly for the other two conditions. The
condition that a, b, c are not all of the same sign is clearly necessary and sufficent that (1)
has a solution in R. But what about a condition for a solution in Q2?

8.9.1. Hilbert symbols. It turns out that we don’t need to consider solutions in Q2, because
if a quadratic form has no solution in Q then it has no solution in a positive, even number
(so, at least 2!) of its completions. Hence, if we’ve checked that it has a solution in all its
completions except one, it must in fact have a solution in all its completions, and so have
a solution in Q. This is best illustrated by using Hilbert symbols and Hilbert’s Reciprocity
Law.

For a, b ∈ Q the Hilbert symbol (a, b)p, where p is a prime or ∞, and Q∞ = R, is defined
by

(a, b)p =

{

1 if ax2 + by2 = z2 has a nonzero solution in Qp;

−1 otherwise.

Hilbert’s Reciprocity Law says that
∏

p(a, b)p = 1 . (Won’t prove; it is, however, essentially

equivalent to the Law of Quadratic Reciprocity.) Hence, a finite, even number of (a, b)p (p
a prime or ∞) are equal to −1.

8.10. Nonisomorphism of Qp and Qq. When one writes rational numbers to any (inte-
ger) base b ≥ 2, and then forms the completion with respect to the usual absolute value
| · |, one obtains the real numbers R, (though maybe written in base b). Thus the field
obtained (R) is independent of b. Furthermore, b needn’t be prime.

However, when completing Q (in whatever base) with respect to the p-adic valuation
to obtain Qp, the field obtained does depend on p, as one might expect, since a different
valuation is being used for each p. One can, however, prove this directly:
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Theorem 8.15. Take p and q to be two distinct primes. Then Qp and Qq are not isomor-
phic.

Proof. We can assume that p is odd. Suppose first that q is also odd. Let n be a quadratic
nonresidue (mod q). Then using the Chinese Remainder Theorem we can find k, ℓ ∈ N

with 1+kp = n+ℓq. Hence, for a = 1+kp we have
(

a
p

)

=
(

1

p

)

= 1 while
(

a
q

)

=
(

n
q

)

= −1.

Hence, by the results of Subsection 8.8 we see that
√

a ∈ Qp but
√

a 6∈ Qq. Thus, if there
were an isomorphism φ : Qp → Qq then we’d have

φ(
√

a)2 = φ(
√

a
2
) = φ(a) = φ(1 + 1 + · · · + 1) = a,

so that φ(
√

a) would be a square root of a in Qq, a contradiction.
Similarly, if q = 2 then we can find a = 1 + kp = 3 + 4ℓ, so that

√
a ∈ Qp again, but√

a 6∈ Q2. so the same argument applies. �

Note that for any integer b ≥ 2 one can, in fact, define the ring of b-adic numbers,
which consists of numbers pk(a0 + a1b + a2b

2 + · · · + aib
i + . . . ), where k ∈ Z and all

ai ∈ {0, 1, 2, . . . , b − 1}. However, if b is composite, this ring has nonzero zero divisors
(nonzero numbers a, a′ such that aa′ = 0), so is not a field. See problem sheet 5 for the
example b = 6.


