9.1. The Prime Number Theorem. How frequent are the primes? At the end of the eighteenth century, Gauss and Legendre suggested giving up looking for a formula for the *n*th prime, and proposed instead estimating the number of primes up to x. So, define the prime-counting function $\pi(x)$ by

$$\pi(x) = \sum_{\substack{p \le x \\ p \text{ prime}}} 1.$$

Gauss conjectured on computational evidence that $\pi(x) \sim \frac{x}{\log x}$. This was proved by independently by Hadamard and de la Vallée Poussin in 1896, and became known as

Theorem 9.1 (The Prime Number Theorem). We have $\pi(x) \sim \frac{x}{\log x}$ as $x \to \infty$.

It turns out to be more convenient to work with

$$\theta(x) = \sum_{\substack{p \le x \\ p \text{ prime}}} \log p,$$

which is called *Chebyshev's* θ -function. In terms of this function it can be shown (not difficult) that the Prime Number Theorem is equivalent to the statement $\theta(x) \sim x$ $(x \to \infty)$.

We won't prove PNT here, but instead a weaker version, and in terms of $\theta(x)$:

Theorem 9.2. As $x \to \infty$ we have

$$(\log 2)x + o(x) < \theta(x) < (2\log 2)x + o(x),$$

so that

$$0.6931x + o(x) < \theta(x) < 1.3863x + o(x).$$

9.2. Proof of Theorem 9.2.

9.2.1. The upper bound.

Proposition 9.3. We have $\theta(x) < (2 \log 2)x + O(\log^2 x)$.

Proof. Consider $\binom{2n}{n}$. By the Binomial Theorem, it is less than $(1+1)^{2n} = 4^n$. Also, it is divisible by all primes p with n , so

$$4^n > \binom{2n}{n} \ge \prod_{n$$

Hence $\theta(2n) - \theta(n) \le 2n \log 2$.

Now if $2n \le x < 2n+2$ (i.e., $n \le x/2 < n+1$) then $\theta(x/2) = \theta(n)$ and

$$\theta(x) \le \theta(2n) + \log(2n+1) \le \theta(2n) + \log(x+1),$$

35

so that, for each x,

$$\theta(x) - \theta(x/2) \le \theta(2n) + \log(x+1) - \theta(n)$$
$$\le 2n \log 2 + \log(x+1)$$
$$\le x \log 2 + \log(x+1).$$

So (standard telescoping argument for $x, x/2, x/2^2, \ldots, x/2^k$ where $x/2^{k-1} \ge 2, x/2^k < 2, \theta(x/2^k) = 0$):

$$\begin{aligned} \theta(x) &= \left(\theta(x) - \theta\left(\frac{x}{2}\right)\right) + \left(\theta\left(\frac{x}{2}\right) - \theta\left(\frac{x}{2^2}\right)\right) + \left(\theta\left(\frac{x}{2^2}\right) - \theta\left(\frac{x}{2^3}\right)\right) + \dots \left(\theta\left(\frac{x}{2^{k-1}}\right) - \theta\left(\frac{x}{2^k}\right)\right) \\ &\leq \log 2\left(x + \frac{x}{2} + \dots + \frac{x}{2^{k-1}}\right) + k\log(x+1) \\ &\leq 2x\log 2 + \lfloor \log_2 x \rfloor \log(x+1) \\ &\leq 2x\log 2 + O(\log^2 x). \end{aligned}$$

9.2.2. The lower bound. To obtain an inequality in the other direction, we look at

$$d_n = \operatorname{lcm}(1, 2, \dots, n) = e^{\sum_{p^m \le x} \log p}.$$

Define

$$\psi(x) = \sum_{\substack{p^m \le x \\ p \text{ prime}}} \log p;$$

(i.e., log p to be counted m times if p^m is the highest power of p that is $\leq x$). So $d_n = e^{\psi(n)}$.

Lemma 9.4. We have $\psi(x) < \theta(x) + 2x^{1/2} \log x + O(\log^2 x)$.

Proof. Now

$$\psi(x) = \sum_{p \le x} \log x + \sum_{p^2 \le x} \log x + \sum_{p^3 \le x} \log x + \dots$$
$$= \theta(x) + \theta(x^{1/2}) + \theta(x^{1/3}) + \dots + \theta(x^{1/k})$$

where k is greatest such that $x^{1/k} \ge 2$, i.e., $k = \lfloor \log_2 x \rfloor$

$$< \theta(x) + \log_2 x \, \theta(x^{1/2})$$

 $< \theta(x) + 2x^{1/2} \log x + O(\log^2 x),$ using Prop. 9.3.

Curious note: this k is the same one as in the proof of Prop. 9.3, though they have apparently different definitions.

We can now prove

Proposition 9.5. We have $\theta(x) \ge x \log 2 + O(x^{1/2} \log x)$.

Proof. Consider the polynomial $p(t) = (t(1-t))^n$ on the interval [0,1]. As $t(1-t) \leq \frac{1}{4}$ on that interval (calculus!), we have

$$0 \le p(t) \le \frac{1}{4^n}$$
 on $[0, 1]$.

Writing $p(t) = \sum_{k=0}^{2n} a_k t^k \in \mathbb{Z}[t]$, then

$$\frac{1}{4^n} \ge \int_0^1 p(t)dt = \sum_{k=0}^{2n} \frac{a_k}{k+1} = \frac{N}{d_{2n+1}} \ge \frac{1}{d_{2n+1}},$$

for some $N \in \mathbb{N}$, on putting the fractions over a common denominator. Hence we have successively

$$d_{2n+1} \ge 4^n$$

$$\psi(2n+1) \ge 2n \log 2 \qquad \text{on taking logs}$$

$$\theta(2n+1) \ge 2n \log 2 - 2 \log(2n+1)\sqrt{2n+1} \qquad \text{by Lemma 9.4}$$

$$\theta(x) \ge x \log 2 + O(x^{1/2} \log x).$$

Combining Propositions 9.3 and 9.5, we certainly obtain Theorem 9.2.

9.3. Some standard estimates.

Lemma 9.6. For t > -1 we have $\log(1+t) \le t$, with equality iff t = 0. For $n \in \mathbb{N}$ we have $n \log(1 + \frac{1}{n}) < 1$.

Proof. The first inequality comes from observing that the tangent y = t to the graph of $y = \log(1+t)$ at t = 0 lies above the graph, touching it only at t = 0. The second inequality comes from putting t = 1/n in the first inequality.

Lemma 9.7 (Weak Stirling Formula). For $n \in \mathbb{N}$ we have

$$n\log n - n < \log(n!) \le n\log n.$$

Proof. Now for $j \ge 2$ we have

$$\log j = j \log j - (j-1) \log(j-1) - (j-1) \log\left(1 + \frac{1}{j-1}\right)$$
$$= j \log j - (j-1) \log(j-1) - \delta_j,$$

where $0 < \delta_j < 1$, using Lemma 9.6 for n = j - 1. So, on summing for j = 2, ..., n we get

$$\log(n!) = \sum_{j=2}^{n} \log j$$
$$= \sum_{j=2}^{n} j \log j - (j-1) \log(j-1) - \delta_j$$
$$= n \log n - \sum_{j=2}^{n} \delta_j$$
$$= n \log n - \Delta,$$

where $0 < \Delta < n$, since $1 \log 1 = 0$ and all the other $j \log j$ terms apart from $n \log n$ telescope.

Proposition 9.8. We have

$$\sum_{n \le x} \frac{1}{n} = \log x + \gamma + O\left(\frac{1}{x}\right),$$

where $\gamma = 0.577...$, the Euler-Mascheroni constant.

Proof. Draw the graph of y = 1/t for t from 0+ to N+1, where $N = \lfloor x \rfloor$. On each interval [n, n+1] draw a rectangle of height 1/n, so that these rectangles for n = 1, 2, ..., N completely cover the area under the curve from t = 1 to t = N + 1. The pie-shaped pieces of the rectangles above the curve, when moved to the left to lie above the interval [0, 1], are non-intersecting, and more than half-fill the 1×1 square on that interval. Say their total area is γ_n . Then, as $n \to \infty$, γ_n clearly tends to a limit γ , the Euler-Mascheroni constant.

The sum of the areas of the rectangles above [n, n + 1] for n = 1, 2, ..., N is clearly $\sum_{n=1}^{N} 1/n$ (the total area of the parts of the rectangles below the curve). On the other hand, it is $\int_{1}^{N+1} \frac{dx}{x} = \log(N+1)$ (the total area of the parts of the rectangles below the curve), plus γ_n (the total area of the parts of the rectangles above the curve). Hence

$$\sum_{n \le x} \frac{1}{n} = \sum_{n=1}^{N} 1/n = \log(N+1) + \gamma_n.$$

Since $\log(N+1) - \log x = O\left(\frac{1}{x}\right)$ and $\gamma - \gamma_n = O\left(\frac{1}{x}\right)$ (check!), we have the result.

9.4. More estimates of sums of functions over primes. Let us put $\mathcal{P}_x = \prod_{p \leq x} \frac{1}{1-p^{-1}}$. Then

Proposition 9.9. We have $\mathcal{P}_x > \log x$.

Proof. We have

$$\mathcal{P}_x = \prod_{p \le x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^n} + \dots \right).$$

On multiplying these series together, we obtain a sum of terms that includes all fractions $\frac{1}{n}$, where $n \leq x$. This is simply because all prime factors of such n are at most x. Hence

$$\mathcal{P}_x > \sum_{n \le x} \frac{1}{n} > \log x,$$

by Prop. 9.8.

Corollary 9.10. There are infinitely many primes.

Proposition 9.11. We have

$$\sum_{p \le x} \frac{1}{p} > \log \log x - 1.$$

Proof. We have

$$\log \mathcal{P}_x = \sum_{p \le x} \log \left(1 + \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^k} + \dots \right)$$
$$< \sum_{p \le x} \frac{1}{p} + \sum_{p \le x} \frac{1}{p(p-1)},$$

on applying Lemma 9.6 with $t = \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \cdots + \frac{1}{p^k} + \ldots$, and summing the GP, starting with the $1/p^2$ term,

$$<\sum_{p\leq x} \frac{1}{p} + \sum_{n=1}^{\infty} \frac{1}{(n+1)n}$$
$$=\sum_{p\leq x} \frac{1}{p} + \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$=\sum_{p\leq x} \frac{1}{p} + 1,$$

because of the telescoping of $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$. Hence

$$\sum_{p \le x} \frac{1}{p} > \log \mathcal{P}_x - 1 > \log \log x - 1,$$

using Prop. 9.9.

Proposition 9.12. We have

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1) \qquad \text{as } x \to \infty.$$

Proof. Now from Problem Sheet 1, Q8, we have

$$n! = \prod_{p \le n} p^{\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \dots},$$

so that (taking logs)

$$\log(n!) = \sum_{p \le n} \left(\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots \right) \log p$$
$$= \sum_{p \le n} \left\lfloor \frac{n}{p} \right\rfloor \log p + S_n,$$

where

$$S_n := \sum_{p \le n} \left(\left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots \right) \log p$$
$$\leq \sum_{p \le n} \left(\frac{n}{p^2} + \frac{n}{p^3} + \dots \right) \log p$$
$$= n \sum_{p \le n} \frac{\log p}{p(p-1)}$$
$$< n \sum_{k=1}^{\infty} \frac{\log(k+1)}{(k+1)k}$$
$$= nc,$$

for some positive constant c, since the last sum is convergent. Hence $nc > S_n > 0$. Also, for $n = \lfloor x \rfloor$ we have

$$\begin{split} n \sum_{p \le x} \frac{\log p}{p} &\ge \sum_{p \le x} \left\lfloor \frac{n}{p} \right\rfloor \log p \\ &> \sum_{p \le x} \left(\frac{n}{p} - 1 \right) \log p \\ &= n \sum_{p \le x} \frac{\log p}{p} - \theta(x). \end{split}$$

Hence

$$n\sum_{p\leq x}\frac{\log p}{p}\geq \sum_{p\leq x}\left\lfloor\frac{n}{p}\right\rfloor\log p>n\sum_{p\leq x}\frac{\log p}{p}-O(x),$$

since $\theta(x) = O(x)$, by Theorem 9.2. Now add the inequality $nc > S_n > 0$ to the above inequality, to obtain

$$n\sum_{p\leq x}\frac{\log p}{p} + nc > \log(n!) > n\sum_{p\leq x}\frac{\log p}{p} - O(x).$$

Dividing by n, and using the fact that $\frac{\log(n!)}{n} = \log n - O(1)$ from Prop. 9.7, we have

$$\sum_{p \le x} \frac{\log p}{p} + O(1) > \log n - O(1) > \sum_{p \le x} \frac{\log p}{p} - O(1).$$

Hence

 $\sum_{p \le x} \frac{\log p}{p} = \log x + O(1).$

9.5. The average size of the divisor function $\tau(n)$. The following result is a way of saying that an integer n has $\log n + 2\gamma - 1$ divisors, on average. Recall that $\tau(n)$ is the number of (positive) divisors of n.

Proposition 9.13. We have, as $x \to \infty$, that

$$\sum_{n \le x} \tau(n) = x \log x + (2\gamma - 1)x + O\left(\sqrt{x}\right).$$

Proof. Now

$$\sum_{n \le x} \tau(n) = \sum_{n \le x} \sum_{\substack{\ell \mid n}} 1$$
$$= \sum_{\substack{\ell \le x}} \sum_{\substack{n = k\ell \\ k \le \frac{x}{\ell}}} 1$$
$$= \sum_{\substack{\ell \le x}} \left\lfloor \frac{x}{\ell} \right\rfloor,$$

on recalling that $\lfloor y \rfloor$ is the number of positive integers $\leq y$,

$$= 2 \sum_{\ell \le \sqrt{x}} \left\lfloor \frac{x}{\ell} \right\rfloor - \left\lfloor \sqrt{x} \right\rfloor^2$$
by Q10, Problem Sheet 1
$$= 2 \sum_{\ell \le \sqrt{x}} \frac{x}{\ell} - x + O(\sqrt{x})$$
$$= 2x \left(\log \sqrt{x} + \gamma + O\left(\frac{1}{\sqrt{x}}\right) \right) - x + O(\sqrt{x})$$
using Prop. 9.8
$$= x \log x + (2\gamma - 1)x + O(\sqrt{x}).$$