
9. Some Analytic Results about primes and the divisor function

9.1. The Prime Number Theorem. How frequent are the primes? At the end of the
eighteenth century, Gauss and Legendre suggested giving up looking for a formula for the
nth prime, and proposed instead estimating the number of primes up to x. So, define the
prime-counting function π(x) by

π(x) =
∑

p≤x
p prime

1.

Gauss conjectured on computational evidence that π(x) ∼ x
log x

. This was proved by

independently by Hadamard and de la Vallée Poussin in 1896, and became known as

Theorem 9.1 (The Prime Number Theorem). We have π(x) ∼ x
log x

as x → ∞.

It turns out to be more convenient to work with

θ(x) =
∑

p≤x
p prime

log p,

which is called Chebyshev’s θ-function. In terms of this function it can be shown (not
difficult) that the Prime Number Theorem is equivalent to the statement θ(x) ∼ x (x→
∞).

We won’t prove PNT here, but instead a weaker version, and in terms of θ(x):

Theorem 9.2. As x→ ∞ we have

(log 2)x+ o(x) < θ(x) < (2 log 2)x+ o(x),

so that

0.6931x+ o(x) < θ(x) < 1.3863x+ o(x).

9.2. Proof of Theorem 9.2.

9.2.1. The upper bound.

Proposition 9.3. We have θ(x) < (2 log 2)x+O(log2 x).

Proof. Consider
(

2n
n

)

. By the Binomial Theorem, it is less than (1 + 1)2n = 4n. Also, it is
divisible by all primes p with n < p ≤ 2n, so

4n >

(

2n

n

)

≥
∏

n<p≤2n

p = eθ(2n)−θ(n).

Hence θ(2n) − θ(n) ≤ 2n log 2.
Now if 2n ≤ x < 2n+ 2 (i.e., n ≤ x/2 < n+ 1) then θ(x/2) = θ(n) and

θ(x) ≤ θ(2n) + log(2n+ 1) ≤ θ(2n) + log(x+ 1),
35
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so that, for each x,

θ(x) − θ(x/2) ≤ θ(2n) + log(x+ 1) − θ(n)

≤ 2n log 2 + log(x+ 1)

≤ x log 2 + log(x+ 1).

So (standard telescoping argument for x, x/2, x/22, . . . , x/2k where x/2k−1 ≥ 2, x/2k < 2,
θ(x/2k) = 0):

θ(x) =
(

θ(x) − θ
(x

2

))

+
(

θ
(x

2

)

− θ
( x

22

))

+
(

θ
( x

22

)

− θ
( x

23

))

+ . . .
(

θ
( x

2k−1

)

− θ
( x

2k

))

≤ log 2
(

x+
x

2
+ · · ·+ x

2k−1

)

+ k log(x+ 1)

≤ 2x log 2 + ⌊log2 x⌋ log(x+ 1)

≤ 2x log 2 +O(log2 x).

�

9.2.2. The lower bound. To obtain an inequality in the other direction, we look at

dn = lcm(1, 2, . . . , n) = e
P

pm≤x log p.

Define

ψ(x) =
∑

pm≤x
p prime

log p;

(i.e., log p to be counted m times if pm is the highest power of p that is ≤ x). So dn = eψ(n).

Lemma 9.4. We have ψ(x) < θ(x) + 2x1/2 log x+O(log2 x).

Proof. Now

ψ(x) =
∑

p≤x
log x+

∑

p2≤x
log x+

∑

p3≤x
log x+ . . .

= θ(x) + θ(x1/2) + θ(x1/3) + · · ·+ θ(x1/k),

where k is greatest such that x1/k ≥ 2, i.e., k = ⌊log2 x⌋

< θ(x) + log2 x θ(x
1/2)

< θ(x) + 2x1/2 log x+O(log2 x), using Prop. 9.3.

�

Curious note: this k is the same one as in the proof of Prop. 9.3, though they have
apparently different definitions.

We can now prove

Proposition 9.5. We have θ(x) ≥ x log 2 +O(x1/2 log x).
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Proof. Consider the polynomial p(t) = (t(1− t))n on the interval [0, 1]. As t(1− t) ≤ 1
4

on
that interval (calculus!), we have

0 ≤ p(t) ≤ 1

4n
on [0, 1].

Writing p(t) =
∑2n

k=0 akt
k ∈ Z[t], then

1

4n
≥

∫ 1

0

p(t)dt =
2n
∑

k=0

ak
k + 1

=
N

d2n+1

≥ 1

d2n+1

,

for some N ∈ N, on putting the fractions over a common denominator. Hence we have
successively

d2n+1 ≥ 4n

ψ(2n+ 1) ≥ 2n log 2 on taking logs

θ(2n+ 1) ≥ 2n log 2 − 2 log(2n+ 1)
√

2n+ 1 by Lemma 9.4

θ(x) ≥ x log 2 +O(x1/2 log x).

�

Combining Propositions 9.3 and 9.5, we certainly obtain Theorem 9.2.

9.3. Some standard estimates.

Lemma 9.6. For t > −1 we have log(1 + t) ≤ t, with equality iff t = 0.
For n ∈ N we have n log(1 + 1

n
) < 1.

Proof. The first inequality comes from observing that the tangent y = t to the graph of
y = log(1+t) at t = 0 lies above the graph, touching it only at t = 0. The second inequality
comes from putting t = 1/n in the first inequality. �

Lemma 9.7 (Weak Stirling Formula). For n ∈ N we have

n logn− n < log(n!) ≤ n logn.

Proof. Now for j ≥ 2 we have

log j = j log j − (j − 1) log(j − 1) − (j − 1) log

(

1 +
1

j − 1

)

= j log j − (j − 1) log(j − 1) − δj,
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where 0 < δj < 1, using Lemma 9.6 for n = j − 1. So, on summing for j = 2, . . . , n we get

log(n!) =

n
∑

j=2

log j

=
n

∑

j=2

j log j − (j − 1) log(j − 1) − δj

= n logn−
n

∑

j=2

δj

= n logn− ∆,

where 0 < ∆ < n, since 1 log 1 = 0 and all the other j log j terms apart from n log n
telescope. �

Proposition 9.8. We have

∑

n≤x

1

n
= log x+ γ +O

(

1

x

)

,

where γ = 0.577 . . . , the Euler-Mascheroni constant.

Proof. Draw the graph of y = 1/t for t from 0+ to N+1, where N = ⌊x⌋. On each interval
[n, n + 1] draw a rectangle of height 1/n, so that these rectangles for n = 1, 2, . . . , N
completely cover the area under the curve from t = 1 to t = N + 1. The pie-shaped pieces
of the rectangles above the curve, when moved to the left to lie above the interval [0, 1], are
non-intersecting, and more than half-fill the 1 × 1 square on that interval. Say their total
area is γn. Then, as n→ ∞, γn clearly tends to a limit γ, the Euler-Mascheroni constant.

The sum of the areas of the rectangles above [n, n + 1] for n = 1, 2, . . . , N is clearly
∑N

n=1 1/n (the total area of the parts of the rectangles below the curve). On the other

hand, it is
∫ N+1

1
dx
x

= log(N + 1) (the total area of the parts of the rectangles below the
curve), plus γn (the total area of the parts of the rectangles above the curve). Hence

∑

n≤x

1

n
=

N
∑

n=1

1/n = log(N + 1) + γn.

Since log(N + 1) − log x = O
(

1
x

)

and γ − γn = O
(

1
x

)

(check!), we have the result. �

9.4. More estimates of sums of functions over primes. Let us put Px =
∏

p≤x
1

1−p−1 .

Then

Proposition 9.9. We have Px > log x.

Proof. We have

Px =
∏

p≤x

(

1 +
1

p
+

1

p2
+ · · ·+ 1

pn
+ . . .

)

.
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On multiplying these series together, we obtain a sum of terms that includes all fractions
1
n
, where n ≤ x. This is simply because all prime factors of such n are at most x. Hence

Px >
∑

n≤x

1

n
> log x,

by Prop. 9.8. �

Corollary 9.10. There are infinitely many primes.

Proposition 9.11. We have
∑

p≤x

1

p
> log log x− 1.

Proof. We have

logPx =
∑

p≤x
log

(

1 +
1

p
+

1

p2
+

1

p3
+ · · · + 1

pk
+ . . .

)

<
∑

p≤x

1

p
+

∑

p≤x

1

p(p− 1)
,

on applying Lemma 9.6 with t = 1
p
+ 1

p2
+ 1

p3
+ · · ·+ 1

pk + . . . , and summing the GP, starting

with the 1/p2 term,

<
∑

p≤x

1

p
+

∞
∑

n=1

1

(n+ 1)n

=
∑

p≤x

1

p
+

∞
∑

n=1

(

1

n
− 1

n + 1

)

=
∑

p≤x

1

p
+ 1,

because of the telescoping of
∑∞

n=1

(

1
n
− 1

n+1

)

. Hence

∑

p≤x

1

p
> logPx − 1 > log log x− 1,

using Prop. 9.9. �

Proposition 9.12. We have

∑

p≤x

log p

p
= log x+O(1) as x→ ∞.
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Proof. Now from Problem Sheet 1, Q8, we have

n! =
∏

p≤n
p⌊

n
p⌋+

j

n

p2

k

+...
,

so that (taking logs)

log(n!) =
∑

p≤n

(⌊

n

p

⌋

+

⌊

n

p2

⌋

+

⌊

n

p3

⌋

+ . . .

)

log p

=
∑

p≤n

⌊

n

p

⌋

log p+ Sn,

where

Sn : =
∑

p≤n

(⌊

n

p2

⌋

+

⌊

n

p3

⌋

+ . . .

)

log p

≤
∑

p≤n

(

n

p2
+
n

p3
+ . . .

)

log p

= n
∑

p≤n

log p

p(p− 1)

< n

∞
∑

k=1

log(k + 1)

(k + 1)k

= nc,

for some positive constant c, since the last sum is convergent. Hence nc > Sn > 0. Also,
for n = ⌊x⌋ we have

n
∑

p≤x

log p

p
≥

∑

p≤x

⌊

n

p

⌋

log p

>
∑

p≤x

(

n

p
− 1

)

log p

= n
∑

p≤x

log p

p
− θ(x).

Hence

n
∑

p≤x

log p

p
≥

∑

p≤x

⌊

n

p

⌋

log p > n
∑

p≤x

log p

p
− O(x),
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since θ(x) = O(x), by Theorem 9.2. Now add the inequality nc > Sn > 0 to the above
inequality, to obtain

n
∑

p≤x

log p

p
+ nc > log(n!) > n

∑

p≤x

log p

p
−O(x).

Dividing by n, and using the fact that log(n!)
n

= logn−O(1) from Prop. 9.7, we have

∑

p≤x

log p

p
+O (1) > log n− O (1) >

∑

p≤x

log p

p
−O (1) .

Hence
∑

p≤x

log p

p
= log x+O(1).

�

9.5. The average size of the divisor function τ(n). The following result is a way of
saying that an integer n has logn + 2γ − 1 divisors, on average. Recall that τ(n) is the
number of (positive) divisors of n.

Proposition 9.13. We have, as x→ ∞, that
∑

n≤x
τ(n) = x log x+ (2γ − 1)x+O

(√
x
)

.

Proof. Now
∑

n≤x
τ(n) =

∑

n≤x

∑

ℓ|n
1

=
∑

ℓ≤x

∑

n=kℓ
k≤x

ℓ

1

=
∑

ℓ≤x

⌊x

ℓ

⌋

,

on recalling that ⌊y⌋ is the number of positive integers ≤ y,

= 2
∑

ℓ≤√
x

⌊x

ℓ

⌋

−
⌊√

x
⌋2

by Q10, Problem Sheet 1

= 2
∑

ℓ≤√
x

x

ℓ
− x+O(

√
x)

= 2x

(

log
√
x+ γ +O

(

1√
x

))

− x+ O(
√
x) using Prop. 9.8

= x log x+ (2γ − 1)x+O(
√
x).

�


