1. (a) Find the general integer solution (x, y, z) to the equation

$$5x + 7y + 9z = 11.$$

[6]

[7]

(b) Define what is meant by an *arithmetic* function, and also what is meant by a *multiplicative* function. A certain multiplicative function has f(1) = 1 and for $k \ge 1$ takes the value k at all prime powers p^k .

What is f(144)?

For which values of n is f(n) prime?

(c) For the function f in part (b), show that the Dirichlet series $D_f(s)$ has Euler product

$$\prod_{p} \frac{1 - p^{-s} + p^{-2s}}{(1 - p^{-s})^2}.$$

[You may find the formal identity $\sum_{k=1}^{\infty} kx^n = \frac{x}{(1-x)^2}$ useful.] [6]

(d) Given any real number x and positive integer n, prove that $\lfloor \frac{|x|}{n} \rfloor = \lfloor \frac{x}{n} \rfloor$. Deduce that for any real number y and positive integers n and m, one has

$$\lfloor \frac{\lfloor \frac{y}{m} \rfloor}{n} \rfloor = \lfloor \frac{\lfloor \frac{y}{n} \rfloor}{m} \rfloor.$$
[6]

- 2. Let p be a fixed odd prime.
 - (a) What does it mean for g to be a *primitive root* (mod p)? Taking q to be a fixed primitive root (mod p), describe all the primitive roots $(\mod p)$ in terms of q. Justify your answer. How many primitive roots \pmod{p} are there? [9]
 - (b) Taking g as in part (a), and $n \in \{0, 1, \dots, p-2\}$, write down a necessary and sufficient condition for $x = q^n$ to be a root of $x^5 \equiv 1 \pmod{p}$. (This condition should depend on n and p only, not on q.) How many such roots x of this equation are there? [The answer may depend on p.]
 - (c) Prove that every prime factor q of $2^p 1$ satisfies the congruence

$$2^{\gcd(p,q-1)} \equiv 1 \pmod{q}.$$

Deduce that q must be of the form q = 2kp + 1.

[9]

[7]

[2]

[7]

[Continued overleaf...]

- 3. (a) Given an odd prime p and an integer $a \in \{1, 2, \dots, p-1\}$
 - Define what it means for a to be a *quadratic residue* (mod p);
 - Define the Legendre symbol $\left(\frac{a}{p}\right)$.
 - (b) State without proof the Law of Quadratic Reciprocity. Use it to evaluate (43/97). [8]
 [Standard properties of the Legendre symbol may be used without proof, provided that they are clearly stated.]
 - (c) Apply the Law of Quadratic Reciprocity to prove that for a prime p > 3

$$\left(\frac{3}{p}\right) = \varepsilon \varepsilon',$$

where $\varepsilon, \varepsilon' \in \{-1, 1\}$ with $p \equiv \varepsilon \pmod{3}$ and $p \equiv \varepsilon' \pmod{4}$. [8]

(d) Apply the Law of Quadratic Reciprocity to prove that for a prime p>5

$$\left(\frac{5}{p}\right) = |2(p \mod 5) - 5| - 2,$$

where $p \mod 5 \in \{1, 2, 3, 4\}.$

- 4. (a) State the defining properties of a nonarchimedean valuation $|\cdot|$ on a field F. Use these properties to prove that |1| = 1 and that |-1| = 1. [7]
 - (b) Prove that for any positive integer m the number $(m+1)^m 1$ is divisible by m^2 . Deduce that $16 \mid (5^4 1)$. [4]
 - (c) Calculate the expansions of -1/16 and of 15/16 as 5-adic numbers in standard form. [6]
 - (d) For a fixed odd prime p having g as a primitive root, prove that for any integer $k \ge 0$ one has $g^{p^{k+1}} \equiv g^{p^k} \pmod{p^{k+1}}$. Deduce that $g^{p^{k'}} \equiv g^{p^k} \pmod{p^k}$ for all $k' \ge k$, and that the sequence $\{g^{p^k}\}_{k\in\mathbb{N}}$ tends to a limit, ℓ say, in \mathbb{Q}_p . Prove that $\ell^{p-1} = 1$ in \mathbb{Q}_p . [8]

[End of Paper]