- 1. (a) Define what it means for a function f defined on the positive integers to be *multiplicative*. [2]
 - (b) Prove that the divisor function τ (defined as $\tau(n)$ being the number of divisors of n) is multiplicative. [7]
 - (c) Prove that if f is a multiplicative function with $f(n) \neq 0$ for all $n \in \mathbb{N}$, then so is 1/f. [2]
 - (d) Prove that the Euler product for the Dirichlet series for $1/\tau$ is

$$\prod_{p} \left(-p^s \log(1 - p^{-s}) \right).$$
[7]

(e) (not connected with (a)-(d) above). Let g be the function $g: \mathbb{R} \to \mathbb{Z}$ given by

$$g(x) = \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x}{3} \right\rfloor + \left\lfloor \frac{x}{6} \right\rfloor.$$

Describe explicitly, with justification, the following three sets:

- i. $\{x \in \mathbb{R} : g(x) = 3\};$ ii. $\{x \in \mathbb{R} : g(x) = 4\};$ iii. $\{x \in \mathbb{R} : g(x) = x\}.$ [7]
- 2. (a) Define the Legendre symbol $\left(\frac{a}{p}\right)$ for p an odd prime. Evaluate $\left(\frac{a}{7}\right)$ for all $a \in \{1, 2, 3, 4, 5, 6\}$. [3]
 - (b) State and prove Gauss's Lemma (which gives a formula for $\left(\frac{a}{p}\right)$, for p an odd prime). [7]
 - (c) Apply Gauss's Lemma to prove that $\binom{2}{p} = -1$ when p is a prime $\equiv 3 \pmod{8}$. [6]
 - (d) State without proof the Law of Quadratic Reciprocity.

(e) Apply quadratic reciprocity to find a 6-element set B such that $\left(\frac{7}{p}\right) = 1$ iff p is a prime with $p \equiv b \pmod{28}$ for some $b \in B$. [6]

[Continued overleaf...]

[3]

Number Theory

- 3. (a) Let p and q be distinct primes. Prove that if gcd(a, pq) = 1 then $a^{lcm(p-1,q-1)} \equiv 1 \pmod{pq}$. [5]
 - (b) Now let g be a primitive root $(\mod p)$ and h be a primitive root $(\mod q)$. Using g and h, apply the Chinese Remainder Theorem to specify an integer a whose order $(\mod pq)$ is $(\operatorname{exactly}) \operatorname{lcm}(p-1, q-1)$. [5]
 - (c) Now suppose that p is the larger of the primes p and q. Calculate $pq - 1 \pmod{p-1} \in \{0, 1, \dots, p-2\}$. Deduce that $p - 1 \nmid pq - 1$. [5]
 - (d) Use the above to show that there is an a with gcd(a, pq) = 1 and $a^{pq-1} \not\equiv 1 \pmod{pq}$. [5]
 - (e) Define a Carmichael number. Deduce from the above that a Carmichael number must have at least 3 prime factors. [5]
 [You may assume without proof that all Carmichael numbers are squarefree.]
- 4. (a) Suppose that $x^2 \equiv a \pmod{p^n}$ for some integers a and x with gcd(a, p) = 1, odd prime p and integer $n \ge 1$. Show, with proof, how to produce an integer x_1 such that $x_1 \equiv x \pmod{p^n}$ and $x_1^2 \equiv a \pmod{p^{2n}}$. [8]
 - (b) Starting with an integer a and an odd prime p satisfying $\left(\frac{a}{p}\right) = 1$, explain how part (a) can be used to solve $x^2 = a$ in the p-adic field \mathbb{Q}_p . [6]
 - (c) For an odd prime p, write $(p^2 1)/4$ as a p-adic integer in the form $b_0 + b_1 p$, where $b_0, b_1 \in \{0, 1, \dots, p-1\}$. [4] [You might find the identity $p^2 - 1 = p - 1 + (p - 1)p = 3p - 1 + (p - 3)p$ useful.]
 - (d) Use the identity $-\frac{1}{4} = \frac{(p^2-1)/4}{1-p^2}$ to write 1/4 as a *p*-adic integer in the form $a_0 + a_1 p + a_2 p^2 + \dots$, where $a_0, a_1, a_2, \dots \in \{0, 1, \dots, p-1\}$. [7]

[End of Paper]