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0. Reference books

There are no books I know of that contain all the material of the course. however, there
are many texts on Number Theory in the library. Here are a small selection of them.

• Course in p-adic analysis by Alain M. Robert, Springer GTM 2000.
Library: QA241 Rob.

• A friendly introduction to number theory by J. H. Silverman, Prentice Hall, 2001.
QA241 Sil

• Introduction to the theory of numbers by G.H. Hardy and E.M. Wright.
QA241 Har.

• Introduction to the theory of numbers by Ivan Niven and Herbert S. Zuckerman.
QA241 Niv.

• Introduction to number theory by Lo-keng Hua Springer-Verlag, 1982.
QA241 Hua

1. The integer part (= floor) function

Definition 1. For x ∈ R, ⌊x⌋ denotes the floor, or integer part of x. It is defined as the
largest integer ≤ x.

So we have ⌊x⌋ ≤ x < ⌊x⌋ + 1. The graph of ⌊x⌋ is a ‘staircase’ function, constant on
[n, n+ 1) and a jump of 1 at n, for each n ∈ Z.

Note that for x > 0, ⌊x⌋ is the number of positive integers ≤ x. Alternative notation
is [x]. It looks like a trivial function, but it satisfies some surprising identities (as well as
some not-so-surprising ones!)

Proposition 1.1. For x ∈ R and n ∈ N we have

(i) ⌊k + x⌋ = k + ⌊x⌋ for k ∈ Z, x ∈ R.
(ii)

⌊

ℓ
n

+ δ
⌋

=
⌊

ℓ
n

⌋

for ℓ ∈ N and 0 ≤ δ < 1
n
.

(iii)

⌊x⌋ +

⌊

x+
1

n

⌋

+

⌊

x+
2

n

⌋

+ · · ·+
⌊

x+
n− 1

n

⌋

= ⌊nx⌋ .

Proof. (i) and (ii) are easy. For (iii), note that if it is true for x then, using (i), it is true
for x+ k, k ∈ Z (k is added to both sides), so we can assume that 0 ≤ x < 1.
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Now write x = ℓ
n

+ δ (0 ≤ δ < 1
n
) for ℓ/n the largest rational with denominator n that

is ≤ x. Then 0 ≤ ℓ < n and for j = 0, 1, . . . , n− 1
⌊

x+
j

n

⌋

=

⌊

ℓ

n
+ δ +

j

n

⌋

=

⌊

ℓ+ j

n

⌋

(using (ii))

=

{

1 if j ≥ n− ℓ;

0 otherwise.

So the LHS of (iii) sums to ℓ. But its RHS is ⌊nx⌋ = ⌊ℓ+ nδ⌋ = ℓ, as nδ < 1. Hence
RHS=LHS. �

Proposition 1.2. Let r1, . . . , rk ∈ R. Then

k
∑

i=1

⌊ri⌋ ≤
⌊

k
∑

i=1

ri

⌋

≤
k
∑

i=1

⌊ri⌋ + k − 1.

Proof. If it’s true for all ri ∈ [0, 1) then it’s true for all ri (just add an integer N to some ri,

which adds N to ⌊ri⌋ and N to
⌊

∑k
i=1 ri

⌋

. Do this for each i.). So we can assume that all

ri ∈ [0, 1), giving all ⌊ri⌋ = 0 and 0 ≤∑k
i=1 ri < k and hence 0 ≤

⌊

∑k
i=1 ri

⌋

≤ k − 1. �

These two inequalities are both best possible of their type, since the left one has equality
when all the ri are integers, and the right one has equality when all the ri are in [k−1

k
, 1).

Corollary 1.3. Let n = n1 + · · · + nk, where the ni are in N0 = N ∪ {0}. Then the
multinomial coefficient

(

n

n1, . . . , nk

)

=
n!

n1!n2! . . . nk!
= B

say, is an integer.

Proof. From Problem Sheet 1, Q8(a) we know that for each prime p the power of p that

divides n! is
∑∞

j=1

⌊

n
pj

⌋

, a finite sum. So the power of p dividing B is

∞
∑

j=1

⌊

n

pj

⌋

−
k
∑

i=1

∞
∑

j=1

⌊

ni
pj

⌋

=

∞
∑

j=1

(

⌊

n

pj

⌋

−
k
∑

i=1

⌊

ni
pj

⌋

)

≥ 0,

by the above Proposition, on putting ri = ni/p
j. Thus B is divisible by a nonnegative

power of p for every prime p, so must be an integer. �

Another way to prove that this number is an integer is to show that it is the coefficient
of xn1

1 . . . xnk

k in the expansion of (x1 + · · ·+ xk)
n.

Say that p, q ∈ N are coprime (or relatively prime) if gcd(p, q) = 1.
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Proposition 1.4. Let p and q be two coprime odd positive integers. Then

p−1

2
∑

k=1

⌊

kq

p

⌋

+

q−1

2
∑

ℓ=1

⌊

ℓp

q

⌋

=
p− 1

2
· q − 1

2
.

We shall see later that this result will be used in the proof of the Law of Quadratic
Reciprocity.

Proof. Consider the rectangle with corners (0, 0), (p/2, 0), (0, q/2) and (p/2, q/2). (Suggest
you draw it, along with its diagonal from (0, 0) to (p/2, q/2), and the horizontal axis the
k-axis, the vertical axis the ℓ-axis. The diagonal is then the line with equation ℓ = kq/p.)
We count the number of integer lattice points (k, ℓ) strictly inside this rectangle in two
different ways. First we note that these points form a rectangle with corners

(1, 1), (
p− 1

2
, 1), (1,

q − 1

2
), (

p− 1

2
,
q − 1

2
),

so that there are p−1
2

· q−1
2

of them in all.
On the other hand, we count separately those below and above the diagonal. Below the

diagonal we have, for k = 1, . . . p−1
2

that
⌊

kq
p

⌋

is the number of points (k, ℓ) with 1 ≤ ℓ ≤ kq
p
,

i.e., below the diagonal, in the kth column. So the total is
∑

p−1

2

k=1

⌊

kq
p

⌋

.

To count the number of lattice points above the diagonal, we flip the diagram over,
reversing the rôles of p and q, and of k and ℓ. Then we get that the number of points above

the diagonal is
∑

q−1

2

ℓ=1

⌊

ℓp
q

⌋

. It remains to check that there are no lattice points actually on

the diagonal. For if the integer lattice point (k, ℓ) were on the diagonal ℓ = kq/p we would
have ℓp = kq so that, as p and q are coprime, p | k. But k < p, so this is impossible. �

As an exercise, can you state and prove the variant of this result in the case that p and
q, while still odd, need not be coprime?

One should also be aware of the following variants of ⌊x⌋:
• The ceiling of x, ⌈x⌉, is the least integer ≥ x. Note that ⌈x⌉ = −⌊−x⌋.
• The nearest integer to x (no standard notation) can be defined either as

⌊

x+ 1
2

⌋

,

where then the nearest integer to 1
2

is 1, or as ⌈x − 1
2
⌉, where then the nearest

integer to 1
2

is 0.

2. Congruences

Recall that x ≡ a (mod m) means that m | (x − a), or that x = a + km for some
k ∈ Z. Recall too that if a, b ∈ Z then there are a′, b′ ∈ Z such that aa′ + bb′ = gcd(a, b).
The numbers a′, b′ can be found using the Extended Euclidean Algorithm, which you may
recall from your First Year. In particular, when gcd(a, b) = 1 there are a′, b′ ∈ Z such that
aa′ + bb′ = 1. Then aa′ ≡ 1 (mod b), so that a′ is the inverse of a (mod b).
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2.1. Chinese Remainder Theorem.

Theorem 2.1 (Chinese Remainder Theorem). Given m1, . . . , mk ∈ N with gcd(mi, mj) =
1 (i 6= j) (“pairwise coprime”), and a1, . . . , ak ∈ Z, then the system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk)

has a solution x ∈ Z.

Proof. In fact x can be constructed explicitly. For i = 1, . . . , k define m′
i to be the inverse

(mod mi) of m1 . . .mi−1mi+1 . . .mk, so that

m1 . . . mi−1m
′
imi+1 . . .mk ≡ 1 (mod mi).

Then x =
∑k

i=1 aim1 . . .mi−1m
′
imi+1 . . . mk ≡ ai (mod mi) for i = 1, . . . , k, because every

term except the ith is divisible by mi. �

Then, if x0 is one solution to this set of congruences, it’s easy to see (how?) that the
general solution is x = x0 + ℓm1 · · ·mk for any integer ℓ. In particular, there is always
a choice of ℓ giving a unique solution x in the range 0 ≤ x < m1 · · ·mk of the set of
congruences.

Q. If the mi not pairwise coprime, what is the condition on the ai’s so that the set of
congruences above again has a solution x?

One answer: factorize each mi as a product of prime powers:

mi =
∏

j

p
rji

j ,

where the pj ’s are the prime factors of
∏

imi, and the rji are all ≥ 0. Then replace
the congruence x ≡ ai (mod mi) by the set of congruences x ≡ ai (mod p

rji

j ) for each j
(justify!). Next, collect together all the congruences whose modulus is a power of the same
prime, say (changing notation!) x ≡ a1 (mod pn1), . . . , x ≡ aℓ (mod pnℓ). Then if these
congruences are pairwise consistent, we need only take the one with the largest modulus
(pnℓ say). So we end up taking just one congruence for each p, and so the moduli we
take are all pairwise coprime. (Two congruences x ≡ a1 (mod pm) and x ≡ a2 (mod pn)
with m ≤ n (note: same p in both) are pairwise consistent if a2 ≡ a1 (mod pm).) If some
such pair of congruences are not consistent, then that pair of congruences, and hence the
original set of congruences, has no solution.

An example of an inconsistent pair of congruences is x ≡ 0 (mod 2), x ≡ 1 (mod 4).

Lemma 2.2. (i) The congruence ax ≡ b (mod m) has a solution x ∈ Z if and only if
gcd(a,m) | b; in this case the number of solutions x is gcd(a,m).

(ii) If xa ≡ 1 (mod m) and xb ≡ 1 (mod m) then xgcd(a,b) ≡ 1 (mod m).
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Proof. (i) Put g = gcd(a,m). Then b = ax+ km shows that g | b. Conversely, if g | b
then a

g
x ≡ b

g
(mod m

g
) and gcd(a

g
, m
g
) = 1 (justify!). So a

g
has an inverse (mod m

g
)

and x ≡ b
g
·
(

a
g

)−1

(mod m
g
).

The g different solutions to ax ≡ b (mod m) are then x0+k
m
g

for k = 0, 1, . . . , g−
1, for any solution x0 of a

g
x ≡ b

g
(mod m

g
).

(ii) We have gcd(a, b) = aa′ + bb′ say, by the Extended Euclidean algorithm, so

xgcd(a,b) = xaa
′+bb′ = (xa)a

′ · (xb)b′ ≡ 1 (mod m).

�

2.2. Solving equations in Fp. We now restrict our congruences to a prime modulus p, and
consider the solutions of equations f(x) = 0 for f(x) ∈ Fp[x] and x ∈ Fp. Since Fp = Z/(p),
this is equivalent, for f(x) ∈ Z[x], of solving f(x) ≡ 0 (mod p) for x ∈ {0, 1, 2, . . . , p− 1}.
Theorem 2.3. A nonzero polynomial f ∈ Fp[x] of degree n has at most n roots x in Fp.

Proof. Use induction: for n = 1, f(x) = ax + b say, with a 6= 0, whence f(x) = 0 has a
solution x = a−1b in Fp.

Now assume n ≥ 1 and that the result holds for n. Take f(x) ∈ Fp[x] of degree n + 1.
If f = 0 has no roots x ∈ Fp the the result is certainly true. Otherwise, suppose f(b) = 0
for some b ∈ Fp. Now divide x − b into f(x), (i.e., one step of the Euclidean algorithm
for polynomials) to get f(x) = (x − b)f1(x) + r say, where f1 is of degree n, and r ∈ Fp.
Putting x = b shows that r = 0. Hence f(x) = (x−b)f1(x), where f1 has, by the induction
hypothesis, at most n roots x ∈ Fp. So f has at most n + 1 roots x ∈ Fp, namely b
and those of f1 = 0. Hence the result is true for n + 1 and so, by induction, true for all
n ≥ 1. �

Note that the proof, and hence the result, holds equally well when Fp is replaced by any
field F . However, it does not hold when the coefficients of f lie in a ring with zero divisors.
For instance, on replacing F by the ring Z/8Z, the equation x2 − 1 ≡ 0 (mod 8) has four
solutions x = 1, 3, 5, 7 (mod 8).

Question. Where in the above proof was the fact that we were working over a field used?

2.3. F×
p is cyclic! Denote by F×

p the multiplicative group Fp \ {0}, using the field multi-
plication (and forgetting about its addition).

We need some group theory at this stage. Recall that the exponent of a finite group G
is the least e ∈ N such that ge = 1 for each g ∈ G.

Let Cr denote the cyclic group with r elements: Cr = {1, g, g2, . . . , gr−1 | gr = 1}. Here

Proposition 2.4. Let G be a finite abelian group with #G elements. If G is noncyclic
then its exponent is < #G.

Proof. For the proof, recall the Fundamental Theorem of Abelian Groups, which tells us
that any such G is isomorphic to a product

Cn1
× Cn2

× Cn3
× · · · × Cnk−1

× Cnk
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of cyclic groups, for some k ∈ N and integers n1, . . . , nk all > 1 and such that n1 | n2,
n2 | n3, . . . , nk−1 | nk. Hence all ni’s divide nk and so nk is the exponent of G. However,
#G = n1n2 . . . nk, which is greater than nk as k > 1. �

Proposition 2.5. For p an odd prime, the group F×
p is cyclic (of size p− 1 of course).

Proof. Suppose F×
p were noncyclic. Then, by the previous Proposition, there would exist

an exponent e < p − 1 such that xe = 1 for each x ∈ F×
p . But then the equation xe = 1

would have more than e solutions in Fp, contradicting Theorem 2.3. �

A generator g of the cyclic group F×
p (p an odd prime) is called a primitive root (mod p).

Then we can write F×
p = 〈g〉.

2.4. Number of primitive roots. Given a prime p, how many possible choices are there
for a generator g of F×

p ? To answer this, we need to define Euler’s ϕ-function. Given
a positive integer n, ϕ(n) is defined as the cardinality of the set {k : 1 ≤ k ≤ n and
gcd(k, n) = 1}.

So for instance ϕ(1) = 1, ϕ(6) = 2 and ϕ(p) = p− 1 for p prime.

Proposition 2.6. For p an odd prime, there are ϕ(p− 1) primitive roots (mod p).

Proof. Take one primitive root g. Then gk is again a primitive root iff (gk)ℓ = g in F×
p for

some ℓ, i.e., gkℓ−1 = 1. But gn = 1 iff (p − 1) | n. So gk is a primitive root iff kℓ− 1 ≡ 0
(mod p− 1). This is impossible (why?) if gcd(k, p− 1) > 1, while if gcd(k, p− 1) = 1 then
the extended Euclidean algorithm will give us ℓ. �

2.5. Quadratic residues and nonresidues. Take p an odd prime, and r ∈ F×
p . If the

equation x2 = r has a solution x ∈ F×
p then r is called a quadratic residue (mod p). If

there is no such solution x, then r is called a quadratic nonresidue (mod p).

Proposition 2.7. Take p an odd prime, and g a primitive root (mod p). Then the
quadratic residues (mod p) are the even powers of g, while the quadratic nonresidues
(mod p) are the odd powers of g. (So there are p−1

2
of each.)

In particular,
(

gk

p

)

= (−1)k.

Proof. Suppose r ∈ F×
p , with r = gk say. If k is even then r = (gk/2)2, so that r is a

quadratic residue (mod p). Conversely, if x = gℓ, x2 = r, then g2ℓ−k = 1, so that 2ℓ − k
is a multiple of p− 1, which is even. So k is even. �

2.6. The Legendre symbol. Let p be an odd prime, and r ∈ F×
p . Then the Legendre

symbol is defined as

(

r

p

)

=

{

1 if r is a quadratic residue;

−1 if r is a quadratic nonresidue.
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Note that, on putting r = gk we see that
(

gk

p

)

= (−1)k =

{

1 if k is even;

−1 if k is odd.

Next, recall Fermat’s Theorem: that rp−1 = 1 for all r ∈ F×
p . This is simply a conse-

quence of F×
p being a group of size (order) p− 1. (We know that g#G = 1 for each g in a

finite group G.)

Proposition 2.8 (Euler’s Criterion). For p an odd prime and r ∈ F×
p we have in F×

p that
(

r

p

)

= r
p−1

2 . (1)

Proof. If r = gk then for k even

r
p−1

2 = gk
p−1

2 = (gp−1)k/2 = 1k/2 = 1,

while if k is odd, k p−1
2

is not a multiple of p−1, so r
p−1

2 6= 1. However, rp−1 = 1 by Fermat,

so r
p−1

2 = ±1 and hence r
p−1

2 = −1. So, by Proposition 2.7, we have (1), as required. �

In particular (r = −1), for p an odd prime, we have
(−1

p

)

= (−1)(p−1)/2 =

{

1, if p ≡ 1 (mod 4)

−1, if p ≡ −1 (mod 4).

Lemma 2.9. Let p be an odd prime, and a, b be integers not divisible by p. We have

(1) a ≡ b (mod p) implies that
(

a
p

)

=
(

b
p

)

;

(2)
(

ab
p

)

=
(

a
p

)(

b
p

)

;

(3)
(

a2

p

)

= 1,
(

a2b
p

)

=
(

b
p

)

.

Proof. Let g be a primitive root (mod p). Then
(

gk

p

)

= (−1)k, from which the results

follow easily. �

2.7. Taking nth roots in F×
p . Take an odd prime p and g a fixed primitive root (mod p).

Then for any B ∈ F×
p we define the index (old-fashioned word) or discrete logarithm (current

jargon) of B, written indB or logpB, as the integer b ∈ {0, 1, . . . , p−2} such that B = gb in
Fp. Clearly the function logp depends not only on p but also on the choice of the primitive
root g.

Proposition 2.10. Given n ∈ N and B ∈ F×
p , the equation Xn = B in F×

p has a solution
X ∈ F×

p iff gcd(n, p− 1) | logpB.
When gcd(n, p− 1) | logpB then the number of distinct solutions X of Xn = B in F×

p is
gcd(n, p− 1).
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Proof. Write B = gb, X = gx, so that gnx = gb, giving nx ≡ b (mod p − 1). Now apply
Lemma 2.2(i) to this congruence. �

For large primes p, the problem of finding the discrete logarithm logpB of B appears
to be an intractable problem, called the Discrete Logarithm Problem. Many techniques in
Cryptography depend on this supposed fact. See e.g.,
http://en.wikipedia.org/wiki/Discrete logarithm

3. Arithmetic functions

3.1. Arithmetic functions. These are functions f : N → N or Z or maybe C, usually
having some arithmetic significance. An important subclass of such functions are the
multiplicative functions: such an f is multiplicative if

f(nn′) = f(n)f(n′)

for all n, n′ ∈ N with n and n′ coprime (gcd(n, n′) = 1).

Proposition 3.1. If f is multiplicative and n1, . . . , nk are pairwise coprime (gcd(ni, nj) =
1 for all i 6= j) then

f(n1n2 . . . nk) = f(n1)f(n2) . . . f(nk).

This is readily proved by induction.

Corollary 3.2. If n factorises into distinct prime powers as n = pe11 . . . pek

k then

f(n) = f(pe11 ) . . . f(pek

k ).

So multiplicative functions are completely determined by their values on prime powers.
Some examples of multiplicative functions are

• The ‘1-detecting’ function ∆(n), equal to 1 at n = 1 and 0 elsewhere – obviously
multiplicative;

• τ(n) =
∑

d|n 1, the number of divisors of n;

• σ(n) =
∑

d|n d, the sum of the divisors of n.

Proposition 3.3. The functions τ(n) and σ(n) are both multiplicative.

Proof. Take n and n′ coprime, with ℓ1, . . . , ℓτ(n) the divisors of n, and ℓ′1, . . . , ℓ
′
τ(n′) the

divisors of n′. Then all the τ(n)τ(n′) numbers ℓiℓ
′
j are all divisors of nn′. Conversely, if m

divides nn′ then m = ℓℓ′, where ℓ | n and ℓ′ | n′. (Write m as a product of prime powers,
and then ℓ will be the product of the prime powers where the prime divides n, while ℓ′

will be the product of the prime powers where the prime divides n′. Note that n and n′,
being coprime, have no prime factors in common.) So ℓ is some ℓi and ℓ′ is some ℓ′j , so all
factors of nn′ are of the form ℓiℓ

′
j . Thus τ(nn′) = τ(n)τ(n′), and

σ(nn′) =
∑

i,j

ℓiℓ
′
j =

(

∑

i

ℓj

)(

∑

j

ℓ′j

)

= σ(n)σ(n′).

�
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Given an arithmetic function f , define its ‘sum over divisors’ function F (n) =
∑

d|n f(d).

Proposition 3.4. If f is multiplicative, and n =
∏

p p
ep then

F (n) =
∏

p|n

(

1 + f(p) + f(p2) + · · ·+ f(pep)
)

. (2)

Further, F is also multiplicative.

Proof. Expanding the RHS of (2), a typical term is
∏

p|n f(pe
′
p), where 0 ≤ e′p ≤ ep. But, by

the multiplicivity of f , this is simply f(d), where d =
∏

d|n p
e′p is a divisor of n. Conversely,

every divisor of n is of this form, for some choice of exponents e′p. Hence the RHS of (2)
is equal to

∑

d|n f(d), which is F (n).

Next, taking n and n′ coprime, we see that (2) immediately implies that F (n)F (n′) =
F (nn′), i.e., that F is multiplicative. �

Proposition 3.5. Euler’s ϕ-function ϕ(m) is multiplicative.

Proof. Take n and n′ coprime, and let

{i : 1 ≤ i ≤ n, gcd(i, n) = 1} = {a1 < a2 < · · · < aϕ(n)},
the reduced residue classes mod n. Similarly, let

{j : 1 ≤ j ≤ n′, gcd(j, n′) = 1} = {a′1 < a′2 < · · · < a′ϕ(n′)}.

If x ∈ {1, 2, . . . , nn′} and gcd(x, nn′) = 1 then certainly gcd(x, n) = gcd(x, n′) = 1, so that

x ≡ ai (mod n) x ≡ a′j (mod n′) (3)

for some pair ai, a
′
j. Conversely, given such a pair ai, a

′
j we can solve (3) using the CRT to

get a solution x ∈ {1, 2, . . . , nn′} with gcd(x, nn′) = 1. Thus we have a bijection between
such x and such pairs ai, a

′
j. Hence

#{such x} = ϕ(nn′) = #{ai, a′j} = ϕ(n)ϕ(n′).

�

In passing, mention

Proposition 3.6 (Euler’s Theorem). If a, n ∈ N and gcd(a, n) = 1 then aϕ(n) ≡ 1
(mod n).

Proof. This is because the reduced residue classes mod n form a multiplicative group
(Z/nZ)× of size(order) ϕ(n). So, in this group, aϕ(n) = 1. �

Note that on putting n = p prime we retrieve Fermat’s Little Theorem ap−1 ≡ 1 (mod p).
[In fact the exponent of the group (Z/nZ)× is usually smaller than ϕ(n). To give the

exponent, we need to define a new function ψ on prime powers by ψ = ϕ on odd prime
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powers, and at 2 and 4, while ψ(2e) = 1
2
ϕ(2e) if e ≥ 3. Then the exponent of (Z/nZ)× is

lcmp:pep ||n ψ(pep). This follows from the isomorphism

(Z/nZ)× ∼=
∏

p:pep ||n
(Z/pepZ)×

and the fact that (Z/pepZ)× has exponent ψ(pep).]

Proposition 3.7. We have ϕ(n) = n
∏

p|n

(

1 − 1
p

)

.

Proof. Now ϕ(pk) = pk − pk−1 (why?), which = pk
(

1 − 1
p

)

, so the result follows from

Corollary 3.2. �

The Möbius function µ(n) is defined as

µ(n) =

{

0 if p2 | n for some prime p;

(−1)k if n = p1p2 . . . pk for distinct primes pi.

In particular, µ(1) = 1 and µ(p) = −1 for a prime p. It is immediate from the definition
that µ is multiplicative. Then, applying (2), we see that

∑

d|n µ(d) = ∆(n).

Integers with µ(n) = ±1 are called squarefree.
The Möbius function arises in many kinds of inversion formulae. The fundamental one

is the following.

Proposition 3.8 (Möbius inversion). If F (n) =
∑

d|n f(d) (n ∈ N) then for all n ∈ N

we have f(n) =
∑

d|n µ(n/d)F (d).

Proof. Simplify
∑

d|n µ(n/d)F (d) =
∑

d|n µ(n/d)
∑

k|d f(k) (n ∈ N) by interchanging the

order of summation to make
∑

k|n the outer sum. But a simpler proof is given below. �

3.2. Dirichlet series. For an arithmetic function f , define its Dirichlet series Df(s) by

Df(s) =

∞
∑

n=1

f(n)

ns
.

Here s ∈ C is a parameter. Typically, such series converge for ℜs > 1, and can be
meromorphically continued to the whole complex plane. However, we will not be concerned
with analytic properties of Dirichlet series here, but will regard them only as generating
functions for arithmetic functions, and will manipulate them formally, without regard to
convergence.

The most important example is for f(n) = 1 (n ∈ N), which gives the Riemann zeta
function ζ(s) =

∑∞
n=1

1
ns . Also, taking f(n) = n (n ∈ N) gives ζ(s− 1). (Check!).

Proposition 3.9. If f is multiplicative then

Df(s) =
∏

p

(

1 +
f(p)

ps
+
f(p2)

p2s
+ · · · + f(pk)

pks
+ . . .

)

=
∏

p

Df,p(s), (4)

say.
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Proof. Expanding the RHS of (4), a typical term is

f(pe11 )f(pe22 ) . . . f(per
r )

pe11 p
e2
2 . . . per

r

=
f(n)

ns

for n =
∏r

i=1 p
ei

i , using the fact that f is multiplicative. �

Such a product formula Df(s) =
∏

pDf,p(s) over all primes p is called an Euler product

for Df(s).
For example

ζ(s) =
∏

p

(

1 +
1

ps
+

1

p2s
+ · · ·+ 1

pks
+ . . .

)

=
∏

p

(

1

1 − p−s

)

,

on summing the Geometric Progression (GP). Hence also

1

ζ(s)
=
∏

p

(

1 − p−s
)

=

∞
∑

n=1

µ(n)

ns
= Dµ(s),

on expanding out the product.

Proposition 3.10. We have
(

∑

k

ak
ks

)

·
(

∑

ℓ

bℓ
ℓs

)

=

(

∑

n

cn
ns

)

,

where cn =
∑

k|n akbn/k.

Proof. On multiplying out the LHS, a typical term is

ak
ks

· bℓ
ℓs

=
akbn/k
ns

,

where kℓ = n. So all pairs k, ℓ with kℓ = n contribute to the numerator of the term with
denominator ns. �

Corollary 3.11. We have DF (s) = Df(s)ζ(s).

Proof. Apply the Proposition with ak = f(k) and bℓ = 1. �

Corollary 3.12 ( Möbius inversion again). We have f(n) =
∑

d|n µ(n/d)F (d) for all
n ∈ N.

Proof. From Corollary 3.11 we have

Df (s) = DF (s) · 1

ζ(s)
=

(

∑

k

F (k)

ks

)

·
(

∑

ℓ

µ(ℓ)

ℓs

)

=

(

∑

n

cn
ns

)

,

where cn =
∑

k|n F (k)µ(n/k). But Df (s) =
∑∞

n=1
f(n)
ns , so, on comparing coefficients,

f(n) =
∑

k|n F (k)µ(n/k). �

We now compute the Dirichlet series for a few standard functions. [Part (a) is already
proved above.]
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Proposition 3.13. We have

(a) Dµ(s) = 1
ζ(s)

;

(b) Dϕ(s) = ζ(s−1)
ζ(s)

;

(c) Dτ (s) = ζ(s)2;
(d) Dσ(s) = ζ(s− 1)ζ(s).

Proof. (b) Now

Dϕ(s) =
∏

p

(

1 +
ϕ(p)

ps
+
ϕ(p2)

p2s
+ · · · + ϕ(pk)

pks
+ . . .

)

=
∏

p

(

1 +
p− 1

ps
+
p2 − p

p2s
+ · · ·+ pk − pk−1

pks
+ . . .

)

=
∏

p

(

1 +
p− 1

ps
· 1

1 − p1−s

)

, on summing the GP

=
∏

p

(

1 − p−s

1 − p−(s−1)

)

, on simplification

=
ζ(s− 1)

ζ(s)
.

(c) Now

Dτ (s) =
∏

p

(

1 +
τ(p)

ps
+
τ(p2)

p2s
+ · · ·+ τ(pk)

pks
+ . . .

)

=
∏

p

(

1 +
2

ps
+

3

p2s
+ · · · + k + 1

pks
+ . . .

)

=
∏

p

1

(1 − p−s)2 using (1 − x)−2 =

∞
∑

k=0

(k + 1)xk

= ζ(s)2

(d) This can be done by the same method as (b) or (c) – a good exercise! But, given
that we know the answer, we can work backwards more quickly:

ζ(s− 1)ζ(s) =

(

∑

k

k

ks

)

·
(

∑

ℓ

1

ℓs

)

=
∑

n

∑

k|n k · 1
ns

= Dσ(s),

using Prop. 3.10
�

3.3. Perfect numbers. A positive integer n is called perfect if it is the sum of its proper
(i.e., excluding n itself) divisors. Thus σ(n) = 2n for n perfect.
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Proposition 3.14. An even number n is perfect iff it of the form n = 2p−1(2p − 1) for
some prime p with the property that 2p − 1 is also prime.

Prime numbers of the form 2p − 1 are called Mersenne primes. (Unsolved problem: are
there infinitely many such primes?)

It is easy to check that σ(2p−1(2p− 1)) = 2p(2p− 1) when 2p− 1 is prime. The converse
is more difficult — I leave this as a tricky exercise: you need to show that if k ≥ 2 and
2k−1p1 . . . pℓ is perfect then ℓ = 1 and p1 = 2k−1. (It’s easy to prove that if 2k−1 is prime
then so is k.)

It is an unsolved problem as to whether there are any odd perfect numbers. See e.g.,
http://en.wikipedia.org/wiki/Perfect number for lots on this problem.

4. Primality testing

4.1. Introduction. Factorisation is concerned with the problem of developing efficient
algorithms to express a given positive integer n > 1 as a product of powers of distinct
primes. With primality testing, however, the goal is more modest: given n, decide whether
or not it is prime. If n does turn out to be prime, then of course you’ve (trivially) factorised
it, but if you show that it is not prime (i.e., composite), then in general you have learnt
nothing about its factorisation (apart from the fact that it’s not a prime!).

One way of testing a number n for primality is the following: suppose a certain theorem,
Theorem X say, whose statement depends on a number n, is true when n is prime. Then
if Theorem X is false for a particular n, then n cannot be prime. For instance, we know
(Fermat) that an−1 ≡ 1 (mod n) when n is prime and n ∤ a. So if for such an a we have
an−1 6≡ 1 (mod n), then n is not prime. This test is called the Pseudoprime Test to base
a. Moreover, a composite number n that passes this test is called a Pseudoprime to base
a.

(It would be good if we could find a Theorem Y that was true iff n was prime, and was
moreover easy to test. Then we would know that if the theorem was true for n then n
was prime. A result of this type is the following (also on a problem sheet): n is prime iff
an−1 ≡ 1 (mod n) for a = 1, 2, . . . , n− 1. This is, however, not easy to test; it is certainly
no easier than testing whether n is divisible by a for a = 1, . . . , n.)

4.2. Proving primality of n when n− 1 can be factored. In general, primality tests
can only tell you that a number n either ‘is composite’, or ‘can’t tell’. They cannot confirm
that n is prime. However, under the special circumstance that we can factor n−1, primality
can be proved:

Theorem 4.1 ( Lucas Test, as strengthened by Kraitchik and Lehmer). Let n > 1 have
the property that for every prime factor q of n− 1 there is an integer a such that an−1 ≡ 1
(mod n) but a(n−1)/q 6≡ 1 (mod n). Then n is prime.

Proof. Define the subgroup G of (Z/nZ)× to be the subgroup generated by all such a’s.
Clearly the exponent of G is a divisor of n − 1. But it can’t be a proper divisor of
n − 1, for then it would divide some (n − 1)/q say, which is impossible as a(n−1)/q 6≡ 1
(mod n) for the a corresponding to that q. Hence G has exponent n − 1. But then
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n− 1 ≤ #G ≤ #(Z/nZ)× = ϕ(n). Hence ϕ(n) = n− 1, which immediately implies that n
is prime. �

Corollary 4.2 (Pepin’s Test, 1877). Let Fk = 22k

+ 1, the kth Fermat number, where

k ≥ 1. Then Fk is prime iff 3
Fk−1

2 ≡ −1 (mod Fk).

Proof. First suppose that 3
Fk−1

2 ≡ −1 (mod Fk). We apply the theorem with n = Fk. So

n − 1 = 22k

and q = 2 only, with a = 3. Then 3
Fk−1

2 6≡ 1 (mod Fk) and (on squaring)
3Fk−1 ≡ 1 (mod Fk), so all the conditions of the Theorem are satisfied.

Conversely, suppose that Fk is prime. Then, by Euler’s criterion and quadratic reci-
procity (see Chapter 5) we have

3
Fk−1

2 ≡
(

3

Fk

)

=

(

Fk
3

)

=

(

2

3

)

= −1,

as 2 is not a square (mod 3).
�

We can use this to show that F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537 are all
prime. It is known that Fk is composite for 5 ≤ k ≤ 32, although complete factorisations
of Fk are known only for 0 ≤ k ≤ 11, and there are no known factors of Fk for k = 20 or
24. Heuristics suggest that there may be no more k’s for which Fk is prime.

4.3. Carmichael numbers. A Carmichael number is a (composite) number n that is a
pseudoprime to every base a with 1 ≤ a ≤ n and gcd(a, n) = 1. Since it it immediate that
an−1 6≡ 1 (mod n) when gcd(a, n) > 1, we see that Carmichael numbers are pseudoprimes
to as many possible bases as any composite number could be. They are named after the
US mathematician Robert Carmichael (1879 – 1967).

[But even finding an a with gcd(a, n) > 1 gives you a factor of n. (Imagine that n is
around 10300 and is a product of three 100-digit primes – such a’s are going to be few and
far between!)]

For examples of Carmichael numbers, see problem sheet 3.

4.4. Strong pseudoprimes. Given n > 1 odd and an a such that an−1 ≡ 1 (mod n),
factorise n− 1 as n− 1 = 2fq, where q is odd, f ≥ 1 and consider the sequence

S = [aq, a2q, a4q, . . . , a2f q ≡ 1],

taken (mod n). If n is prime then, working left to right, either aq ≡ 1 (mod n), in which
case S consists entirely of 1’s, or the number before the first 1 must be −1. This is because
the number following any x in the sequence is x2, so if x2 ≡ 1 (mod n) for n prime,
then x ≡ ±1 (mod n). (Why?) A composite number n that has this property, (i.e., is a
pseudoprime to base a and for which either S consists entirely of 1’s or the number before
the first 1 in S is −1) is called a strong pseudoprime to base a.

Clearly, if n is a prime or pseudoprime but not a strong pseudoprime, then this stronger
test proves that n isn’t prime. This is called the Miller-Rabin Strong Pseudoprime Test.

Perhaps surprisingly:
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Theorem 4.3. If n is a pseudoprime to base a but not a strong pseudoprime to base a, with
say a2tq ≡ 1 (mod n) but a2t−1q 6≡ ±1 (mod n), then n factors nontrivially as n = g1g2,

where g1 = gcd(a2t−1q − 1, n) and g2 = gcd(a2t−1q + 1, n).

Proof. For then we have, for n − 1 = 2fq and some t ≤ f , that a2tq ≡ 1 (mod n) but

a2t−1q 6≡ ±1 (mod n). Now a2tq − 1 = AB ≡ 0 (mod n), where A = (a2t−1q − 1) and
B = (a2t−1q + 1), and neither A nor B is divisible by n. Hence g1 is a nontrivial (6= 1 or n)
factor of n. Since g1 | n, we have

gcd(g1, g2) = gcd(n, g1, g2) = gcd(n, g1, g2 − g1) = gcd(n, g1, 2) = 1,

the last step because n is odd. Hence any prime dividing n can divide at most one of g1

and g2. So from n =
∏

p p
ep, say, and n | AB, we see that each prime power pep dividing n

divides precisely one of A or B, and so divides precisely one of g1 or g2. Hence g1g2 = n.
�

Example. Take n = 31621, a pseudoprime to base a = 2. We have n − 1 = 22 · 7905,
27905 ≡ 31313 (mod n) and 215810 ≡ 231620 ≡ 1 (mod n), so n is not a strong pseudoprime
to base 2. Then g1 = gcd(n, 31312) = 103 and g2 = gcd(n, 31314) = 307, giving n =
103 · 307.

Note that if n = n1n2 where n1 and n2 are coprime integers, then by the Chinese
Remainder Theorem we can solve each of the four sets of equations

x ≡ ±1 (mod n1) x ≡ ±1 (mod n2)

to get four distinct solutions of x2 ≡ 1 (mod n). For instance, for n = 35 get x = ±1 or
±6. For the example n = 31621 above, we have 31313 ≡ 1 (mod 103) and 31313 ≡ −1
(mod 307), so that four distinct solutions of x2 ≡ 1 (mod 31621) are ±1 and ±31313.

So what is happening when the strong pseudoprime test detects n as being composite
is that some x ∈ S is a solution to x2 ≡ 1 (mod n) with x 6≡ ±1 (mod n) because x ≡ 1
(mod n1) and x ≡ −1 (mod n2) for some coprime n1, n2 with n1n2 = n. And then both
gcd(x − 1, n) (divisible by n1) and gcd(x+ 1, n) (divisible by n2) are nontrivial factors of
n.

4.5. Strong pseudoprimes to the smallest prime bases. It is known that

• 2047 is the smallest strong pseudoprime to base 2;
• 1373653 is the smallest strong pseudoprime to both bases 2, 3;
• 25326001 is the smallest strong pseudoprime to all bases 2, 3, 5;
• 3215031751 is the smallest strong pseudoprime to all bases 2, 3, 5, 7;
• 2152302898747 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11;
• 3474749660383 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11, 13;
• 341550071728321 is the smallest strong pseudoprime to all bases 2, 3, 5, 7, 11, 13,

17.

(In fact 341550071728321 is also a strong pseudoprime to base 19.)
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Hence any odd n < 341550071728321 that passes the strong pseudoprime test for all
bases 2, 3, 5, 7, 11, 13, 17 must be prime. So this provides a cast-iron primality test for
all such n.

4.6. Primality testing in ‘polynomial time’. In 2002 the Indian mathematicians Agrawal,
Kayal and Saxena invented an algorithm, based on the study of the polynomial ring
(Z/nZ)[x], that was able to decide whether a given n was prime in time O((logn)6+ε).
(Here the constant implied by the ‘O’ depends on ε and so could go to infinity as ε → 0.)
(Search for ‘AKS algorithm’ on web.)

4.7. The Lucas-Lehmer primality test for Mersenne numbers. Given an odd prime
p, let Mp = 2p − 1, a Mersenne number (and a Mersenne prime iff it is prime). [It is an
easy exercise to prove that if p is composite, then so is Mp.]

Define a sequence S1, S2, . . . , Sn, . . . by S1 = 4 and Sn+1 = S2
n − 2 for n = 1, 2, . . . . so

we have

S1 = 4, S2 = 14, S3 = 194, S4 = 37634, S5 = 1416317954, . . . .

There is a very fast test for determining whether or not Mp is prime.

Theorem 4.4 ( Lucas-Lehmer Test). For an odd prime p, the Mersenne number Mp is
prime iff Mp divides Sp−1.

So M3 = 7 is prime as 7 | S2, M5 = 31 is prime as 31 | S4,. . . . In this way get Mp prime
for p = 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, . . . (47th) 43112609.
There may be others between the 41st and 47th. [as at October 2012.]

For the proof, we need two lemmas.

Lemma 4.5. Put ω = 2 +
√

3 and ω1 = 2 −
√

3. Then ωω1 = 1 (immediate) and

Sn = ω2n−1

+ ω2n−1

1

for n = 1, 2, . . . .

The proof is a very easy induction exercise.

Lemma 4.6. Let r be a prime ≡ 1 (mod 3) and ≡ −1 (mod 8) (i.e., ≡ 7 (mod 24)).
Then

ω
r+1

2 ≡ −1 (mod r).

(So it’s equal to a+ b
√

3 where a ≡ −1 (mod r) and b ≡ 0 (mod r).)

Proof. Put

τ =
1 +

√
3√

2
and τ1 =

1 −
√

3√
2

.
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Then we immediately get ττ1 = −1, τ 2 = ω and τ 2
1 = ω1. Next, from τ

√
2 = 1 +

√
3 we

have (τ
√

2)r = (1 +
√

3)r, so that

τ r2
r−1

2

√
2 = 1 +

r−1
∑

j=1

(

r

j

)

(
√

3)j + 3
r−1

2

√
3

≡ 1 + 3
r−1

2

√
3 (mod r), (5)

as r |
(

r
j

)

. Since r ≡ −1 (mod 8) we have

2
r−1

2 ≡
(

2

r

)

= (−1)
r2−1

8 ≡ 1 (mod r),

using Euler’s Criterion, and Prop. 5.3. Further, since r ≡ 1 (mod 3) and r ≡ −1 (mod 4)
we have

3
r−1

2 ≡
(

3

r

)

=
(r

3

)

(−1)
r−1

2
· 3−1

2 =

(

1

3

)

· (−1) ≡ −1 (mod r),

using Euler’s Criterion again, and also Quadratic Reciprocity (Th. 5.1). So, from (5), we
have successively

τ r
√

2 ≡ 1 −
√

3 (mod r)

τ r ≡ τ1 (mod r)

τ r+1 ≡ ττ1 = −1 (mod r)

ω
r+1

2 ≡ −1 (mod r),

the last step using τ 2 = ω. �

Proof of Theorem 4.4. Mp prime ⇒ Mp | Sp−1. Assume Mp prime. Apply Lemma 4.6
with r = Mp, which is allowed as Mp ≡ −1 (mod 8) and Mp ≡ (−1)p−1 ≡ 1 (mod 3). So

ω
Mp+1

2 = ω2p−1 ≡ −1 (mod Mp) (6)

and, using Lemma 4.5, including ω−1
1 = ω, we have

Sp−1 = ω2p−2

+ ω2p−2

1 = ω2p−2

1

(

(

ω−1
1

)2p−2

ω2p−2

+ 1
)

= ω2p−2

1

(

ω2p−1

+ 1
)

≡ 0 (mod Mp),

(7)
the last step using (6).

Mp | Sp−1 ⇒ Mp prime. Assume Mp | Sp−1 but Mp composite. We aim for a
contradiction. Then Mp will have a prime divisor q (say) with q2 ≤Mp.

Now consider the multiplicative group G =

(

Z[
√

3]
(q)

)×
of units of the ring

Z[
√

3]
(q)

. Then

G has coset representatives consisting of numbers a + b
√

3 with a, b ∈ {0, 1, 2, . . . , q − 1}
that are also invertible (mod q). So G is a group of size (order) at most q2 − 1, with
multiplication defined modulo q. From ω(ω1 + q

√
3) ≡ 1 (mod q) we see that ω = 2 +

√
3

is invertible, and so ω ∈ G. [Strictly speaking, the coset ω (mod q) ∈ G.]
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Now, using Mp | Sp−1 we see that (7) holds even when Mp is composite, so we have

successively that ω2p−1

+ 1 ≡ 0 (mod Mp), ω
2p−1 ≡ −1 (mod q) and ω2p ≡ 1 (mod q).

Hence the order of ω in G is 2p. Then 2p | #G ≤ q2−1 ≤ Mp−1 = 2p−2, a contradiction.
Hence Mp must be prime.

�

In practice, to test Mp for primality using Theorem 4.4, one doesn’t need to com-
pute Sj(j = 1, 2, . . . , p − 1), but only the much smaller (though still large!) numbers
Sj (mod Mp)(j = 1, 2, . . . , p− 1).

A good source of information on Mersenne numbers is
http://primes.utm.edu/mersenne/index.html

5. Quadratic Reciprocity

5.1. Introduction. Recall that the Legendre symbol
(

a
p

)

is defined for an odd prime p

and integer a coprime to p as
(

a

p

)

=

{

1 if a is a quadratic residue (mod p);

−1 otherwise;

Recall too that for a, b coprime to p
(

ab

p

)

=

(

a

p

)(

b

p

)

(easily proved by writing a, b as powers of a primitive root), and that, by Euler’s Criterion,
(−1

p

)

= (−1)(p−1)/2 =

{

1, if p ≡ 1 (mod 4)

−1, if p ≡ −1 (mod 4).

Theorem 5.1 ( Law of Quadratic Reciprocity (Legendre, Gauss)). For distinct odd primes
p and q we have

(

p

q

)(

q

p

)

= (−1)
p−1

2
· q−1

2 .

(Thus
(

p
q

)

=
(

q
p

)

unless p and q are both ≡ −1 (mod 4), in which case
(

p
q

)

= −
(

q
p

)

.)

There are now 240 recorded proofs of this (not all different), including six by Gauss –
see
http://www.rzuser.uni-heidelberg.de/∼hb3/rchrono.html.
We’ll give one of Gauss’s proofs, using

Lemma 5.2 ( Gauss’s Lemma). For an odd prime p, put p′ = p−1
2

, and let a be an integer
coprime to p. Consider the sequence

a, 2a, 3a, ..., p′a,
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reduced mod p to lie in (−p
2
, p

2
). Then

(

a
p

)

= (−1)ν, where ν is the number of negative

numbers in this sequence.

Proof. Now all of a, 2a, 3a, ..., p′a are ≡ (mod p) to one of ±1,±2, . . . ,±p′. Further,

• no two are equal, as ia ≡ ja (mod p) ⇒ i ≡ j (mod p);
• none is minus another, as ia ≡ −ja (mod p) ⇒ i+ j ≡ 0 (mod p).

So they must be ±1,±2, . . . ,±p′, with each of 1, 2, . . . , p′ occurring with a definite sign.
Hence

a · 2a · 3a · . . . · p′a ≡ (±1) · (±2) · . . . · (±p′) (mod p),

giving

ap
′

(p′)! ≡ (−1)ν(p′)! (mod p),

and so, as (p′)! is coprime to p, that

ap
′ ≡ (−1)ν (mod p).

Finally, using Euler’s criterion (Prop. 2.8), we have
(

a

p

)

≡ ap
′ ≡ (−1)ν (mod p).

Hence
(

a
p

)

= (−1)ν . �

We can use Gauss’s Lemma to evaluate
(

2
p

)

.

Proposition 5.3. For p an odd prime we have
(

2
p

)

= (−1)
p2−1

8 .

(This is equal to 1 when p ≡ ±1 (mod 8), and to −1 when p ≡ ±3 (mod 8).)

Proof. There are four similar cases, depending on p (mod 8). We give the details for p ≡ 3
(mod 8), p = 8ℓ + 3 say. Then p′ = 4ℓ + 1, and, taking a = 2 in Gauss’s Lemma, we see
that for the sequence

2, 4, 6, . . . , 4ℓ, 4ℓ+ 2, . . . , 8ℓ+ 2

that this becomes

2, 4, 6, . . . , 4ℓ,−(4ℓ+ 1),−(4ℓ− 1), . . . ,−3,−1

when reduced (mod p) into the range (−p
2
, p

2
). This clearly has 2ℓ positive members, and

hence ν = p′ − 2ℓ = 2ℓ+ 1 negative members. Hence
(

2
p

)

= (−1)2ℓ+1 = −1. �

Doing the other three cases would be a good exercise!

We now use Gauss’s Lemma with a = q to prove the Law of Quadratic Reciprocity.
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Proof of Theorem 5.1. Take distinct odd primes p and q. For k = 1, 2, . . . , p′ write (one
step of the Euclidean algorithm)

kq = qkp+ rk (8)

say, where 1 ≤ rk ≤ p− 1 and

qk =

⌊

kq

p

⌋

. (9)

Now, working in Fp we have

{q, 2q, . . . , p′q} = {r1, r2, . . . , rp′} = {a1, a2, . . . , at} ∪ {−b1,−b2, . . . ,−bν},

as in Gauss’s Lemma. So the ai’s are in (0, p
2
) and the −bi’s are in (−p

2
, 0). (In fact

t = p′ − ν, but not needed.) Now put

a =

t
∑

i=1

ai, b =

ν
∑

i=1

bi.

So, by the definition of the ai’s and −bi’s we have

p′
∑

k=1

rk = a− b+ νp. (10)

Now, in the proof of Gauss’s Lemma we saw that

{a1, a2, . . . , at} ∪ {b1, b2, . . . , bν} = {1, 2, . . . , p′},

so that
p2 − 1

8
= 1 + 2 + · · ·+ p′ = a + b. (11)

and

p2 − 1

8
q =

p′
∑

k=1

kq

= p

p′
∑

k=1

qk +

p′
∑

k=1

rk (using (8))

= p

p′
∑

k=1

qk + a− b+ νp, (using (10).) (12)

Next, on subtracting (12) from (11) we get

p2 − 1

8
(q − 1) = p

p′
∑

k=1

qk − 2b+ νp.
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Reducing this modulo 2 we have 0 ≡
∑p′

k=1 qk − ν (mod 2), or ν ≡
∑p′

k=1 qk (mod 2). Thus
Gauss’s Lemma gives

(

q

p

)

= (−1)ν = (−1)
Pp′

k=1
qk = (−1)

Pp′

k=1⌊ kq

p ⌋,

using (9).
Now, reversing the rôles of p and q we immediately get

(

p

q

)

= (−1)
Pq′

ℓ=1⌊ ℓp

q ⌋,

where of course q′ = (q − 1)/2, and we’ve replaced the dummy variable k by ℓ. So
(

q

p

)(

p

q

)

= (−1)

n

Pp′

k=1 ⌊ kq
p ⌋+

Pq′

ℓ=1⌊ ℓp
q ⌋

o

,

which equals (−1)p
′q′, by Prop. 1.4. �

6. Representation of integers as sums of two squares

Which n ∈ Z can be represented as a sum n = x2 + y2 for x, y ∈ Z? Obviously need
n ≥ 0. Can clearly assume that x and y are nonnegative. We have 0 = 02 +02, 1 = 12 +02,
2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, but no such representation for n = 3, 6 or 7.

Important note: (2k)2 ≡ 0 (mod 4), and (2k + 1)2 = 8
(

k+1
2

)

+ 1 ≡ 1 (mod 8) (and so
certainly ≡ 1 (mod 4)).

6.1. The case n = p, prime. Which primes are the sum of two squares?

Theorem 6.1. An odd prime p is a sum of two squares (of integers) iff p ≡ 1 (mod 4).

Proof. As x2, y2 ≡ 0 or 1 (mod 4), so x2+y2 ≡ 0 or 1 or 2 (mod 4). Assuming p = x2+y2,
then as p is odd, we have p ≡ 1 (mod 4).

Conversely, assume p ≡ 1 (mod 4), and, knowing that then
(

−1
p

)

= 1, take r ∈ N with

r2 ≡ −1 (mod p). Define f(u, v) = u+ rv and K = ⌊√p⌋. Note that

K <
√
p < K + 1, (13)

as
√
p 6∈ Z. Consider all pairs (u, v) with 0 ≤ u ≤ K and 0 ≤ v ≤ K. There are (K+1)2 > p

such pairs, and so the multiset of all f(u, v) for such u, v has, by the Pigeonhole Principle,
two such pairs (u1, v1) 6= (u2, v2) for which f(u1, v1) ≡ f(u2, v2) (mod p). Hence

u1 + rv1 ≡ u2 + rv2 (mod p)

u1 − u2 ≡ −r(v1 − v2) (mod p)

a ≡ −rb (mod p),

say, where a = u1−v1 and b = v1−v2 are not both 0. Hence a2 ≡ −b2 (mod p) as r2 ≡ −1
(mod p), so that p | (a2 + b2). But |a| ≤ K, |b| ≤ K, giving

0 < a2 + b2 ≤ 2K2 < 2p.
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So a2 + b2 = p. �

6.2. The general case. We now look at what happens if a prime ≡ −1 (mod 4) divides
a sum of two squares.

Proposition 6.2. Let q ≡ 3 (mod 4) be prime, and q | (x2 + y2). Then q | x and q | y, so
that q2 | (x2 + y2).

Proof. Assume that it is not the case that both x and y are divisible by q, say q ∤ x. Then

from x2 + y2 ≡ 0 (mod q) we get (yx−1)2 ≡ −1 (mod q), contradicting
(

−1
q

)

= −1. �

Proposition 6.3. If n is a sum of two squares and m is a sum of two squares then so is
nm.

Proof. If n = a2 + b2 and m = c2 + d2 then

nm = (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

�

(This identity comes from complex numbers:

(a+ ib)(c + id) = ac− bd+ i(ad + bc)

gives
|a+ ib|2 · |c+ id|2 = |ac− bd + i(ad+ bc)|2

and hence the identity.)

Corollary 6.4. If n = A2
∏

i ni where A, ni ∈ Z and each ni is a sum of two squares, then
so is n.

Proof. Use induction on i to get n/A2 =
∏

i ni = a2 + b2 say. Then n = (Aa)2 + (Ab)2. �

We can now state and prove our main result.

Theorem 6.5 ( Fermat). Write n in factorised form as

n = 2f2
∏

p≡1 (mod 4)

pfp

∏

q≡−1 (mod 4)

qgq ,

where (of course) all the p’s and q’s are prime. Then n can be written as the sum of two
squares of integers iff all the gq’s are even.

Proof. If all the gq are even then n = A2×(product of some p’s) and also ×2 if f2 is odd.
So we have n = A2 ×

∏

i(a
2
i + b2i ) by Theorem 6.1 (using also 2 = 12 +12 if f2 odd). Hence,

by Corollary 6.4, n is the sum of two squares.
Conversely, suppose q | n = a2 + b2, where q ≡ −1 (mod 4) is prime. Let qk be the

highest power of q dividing both a and b, so say a = qka1, b = qkb1. Then
n

q2k
= a2

1 + b21.

Now q ∤ n
q2k , as otherwise q would divide both a1 and b1, by Prop. 6.2. Hence q2k is the

highest power of q dividing n, i.e., gq = 2k is even. Hence all the gq’s are even. �
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6.3. Related results.

Proposition 6.6. If an integer n is the sum of two squares of rationals then it’s the sum
of two squares of integers.

Proof. Suppose that

n =
(a

b

)2

+
( c

d

)2

for some rational numbers a/b and c/d. Then

n(bd)2 = (da)2 + (bc)2.

Hence, by Thm 6.5, for every prime q ≡ −1 (mod 4) with qi||n(bd)2, i must be even. But
then if qℓ||bd then qi−2ℓ||n, with i − 2ℓ even. Hence, by Thm 6.5 (in the other direction),
n is the sum of two squares of integers. �

Corollary 6.7. A rational number n/m is the sum of two squares of rationals iff nm is
the sum of two squares of integers.

Proof. If nm = a2 + b2 for a, b ∈ Z then

n

m
=
( a

m

)2

+

(

b

m

)2

.

Conversely, if
n

m
=
(a

b

)2

+
( c

d

)2

then

nm =
(am

b

)2

+
(cm

d

)2

.

Hence, by Prop. 6.6, nm is the sum of two squares of integers. �

6.4. Finding all ways of expressing a rational as a sum of two rational squares.

Now let h be a rational number that can be written as the sum of two squares of rationals.
We can then describe all such ways of writing h.

Theorem 6.8. Suppose that h ∈ Q is the sum of two rational squares: h = s2 + t2, where
s, t ∈ Q. Then the general solution of h = x2 + y2 in rationals x, y is

x =
s(u2 − v2) − 2uvt

u2 + v2
y = −

(

t(u2 − v2) + 2uvs

u2 + v2

)

, (14)

where u, v ∈ Z not both zero.

Proof. We are looking for all points (x, y) ∈ Q2 on the circle x2 + y2 = h. If (x, y) is such a
point, then for x 6= s the chord through (s, t) and (x, y) has rational slope (t− y)/(s− x).

Conversely, take a chord through (s, t) of rational slope r, which has equation y =
r(x− s) + t. Then for the intersection point (x, y) of the chord and the circle we have

x2 + (r(x− s) + t)2 = h,
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which simplifies to

x2(1 + r2) + 2rx(t− rs) + (r2 − 1)s2 − 2rst = 0,

using the fact that t2 − h = −s2. This factorises as

(x− s)((1 + r2)x+ 2rt+ s(1 − r2)) = 0.

For x 6= s we have

x =
s(r2 − 1) − 2rt

1 + r2

and

y = t+ r(x− s)

= −
(

t(r2 − 1) + 2sr

1 + r2

)

,

on simplification. Finally, substituting r = u/v gives (14). Note that v = 0 in (14) (i.e.,
r = ∞) gives the point (r,−s). �

Corollary 6.9. The general integer solution x, y, z of the equation x2 + y2 = nz2 is

(x, y, z) = (a(u2 − v2) − 2uvb, b(u2 − v2) + 2uva, u2 + v2),

where n = a2 + b2, with a, b, u, v ∈ Z, and u, v arbitrary.

(If n is not the sum of two squares, then the equation has no nonzero solution, by Prop.
6.6.)

In particular, for n = 1 = 12 +02, we see that the general integer solution to Pythagoras’
equation x2 + y2 = z2 is

(x, y, z) = (u2 − v2, 2uv, u2 + v2).

For a socalled primitive solution — one with gcd(x, y) = 1 – choose u, v with gcd(u, v) = 1
and not both odd.

The same method works for Ax2 +By2 + Cz2 = 0.

6.5. Sums of three squares, sums of four squares.

Proposition 6.10. No number of the form 4a(8k + 7), where a is a nonnegative integer,
is the sum of three squares (of integers).

Proof. Use induction on a. For a = 0: Now n2 ≡ 0, 1 or 4 (mod 8), so a sum of three
squares is ≡ 1 or 1 or 2 or 3 or 4 or 5 or 6 (mod 8), but 6≡ 7 (mod 8).

Assume result true for some integer a ≥ 0. If 4a+1(8k + 7) = n2
1 + n2

2 + n2
3 then all the

ni must be even, and so = 4(n′2
1 + n′2

2 + n′2
3 ) say. But then 4a(8k + 7) = n′2

1 + n′2
2 + n′2

3 ,
contrary to the induction hypothesis. �

In fact (won’t prove)

Theorem 6.11 (Legendre 1798, Gauss). All positive integers except those of the form
4a(8k + 7) are the sum of three squares.
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Assuming this result, we can show

Corollary 6.12 (Lagrange 1770). Every positive integer is the sum of four squares.

Proof. The only case we need to consider is n = 4a(8k + 7). But then n − (2a)2 =
4a(8k + 6) = 22k+1(4k + 3), which (being exactly divisible by an odd power of 2) is not of
the form 4a

′

(8k′ + 7), so is the sum of three squares. �

7. Fermat’s method of descent

Around 1640, Fermat developed a method for showing that an equation had no integer
solutions. In essence, the method is as follows: assume that the equation does have a
solution. Pick the ‘smallest’ (suitably defined) one. Use the assumed solution to construct
a smaller solution, contradicting the fact that the one you started with was the smallest.
This contradiction proves that there is in fact no solution. The technique is called Fermat’s
method of descent. It is, in fact, a form of strong induction. (Why?)

We illustrate the method with one example:

Theorem 7.1. The equation

x4 + y4 = z2 (15)

has no solution in positive integers x, y, z.

Corollary 7.2 (Fermat’s Last Theorem for exponent 4). The equation x4 + y4 = z4 has
no solution in positive integers x, y, z.

Proof of Theorem 7.1. (From H. Davenport, The higher arithmetic. An introduction to the
theory of numbers, Longmans 1952, p.162). Suppose that (15) has such a solution. Assume
we have a solution with |z| minimal. We can clearly assume that z is positive and 6= 1,
i.e., that z > 1. If d = gcd(x, y) > 1 we can divide by d4, replacing x by x/d, y by y/d and
z by z/d2 in (15), obtaining a solution with |z| smaller. So we must have gcd(x, y) = 1.

Now from Corollary 6.9 we know that

X2 + Y 2 = Z2

has general solution (with gcd(X, Y ) = 1), possibly after interchanging X and Y of

X = p2 − q2 Y = 2pq Z = p2 + q2,

where p, q ∈ N and gcd(p, q) = 1, so

x2 = p2 − q2 y2 = 2pq z = p2 + q2.

As a square is ≡ 0 or 1 (mod 4), and x is odd (because gcd(x, y) = 1), we see that p is
odd and q is even, say q = 2r. So

x2 = p2 − (2r)2
(y

2

)2

= pr.

Since gcd(p, r) = 1 and pr is a square, we have p = v2 and r = w2 say, so

x2 + (2w2)2 = v4.
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Note that, as gcd(p, q) = 1, we have gcd(x, q) = 1 = gcd(x, 2w2). Hence applying Corollary
6.9 again

x = p2
1 − q2

1 2w2 = 2p1q1 v2 = p2
1 + q2

1 ,

where gcd(p1, q1) = 1 and not both are odd. Say p1 odd, q1 even. Thus w2 = p1q1, giving
p1 = v2

1, q1 = r2
1, say. Hence

v2(= p2
1 + q2

1) = v4
1 + r4

1,

which is another solution of (15)! But

v2 = p =
√

z − q2 <
√
z,

giving v < z1/4, so certainly v < z (as z > 1), contradicting the minimality of z. �

8. p-adic numbers

8.1. Motivation: Solving x2 ≡ a (mod pn). Take an odd prime p, and an integer a

coprime to p. Then, as we know, x2 ≡ a (mod p) has a solution x ∈ Z iff
(

a
p

)

= 1. In

this case we can suppose that b20 ≡ a (mod p). We claim that then x2 ≡ a (mod pn) has
a solution x for all n ∈ N.

Assume that we have a solution x of x2 ≡ a (mod pn) for some n ≥ 1. Then x is
coprime to p, so that we can find x1 ≡ 1

2
(x+ a/x) (mod p2n). (This is the standard

Newton-Raphson iterative method x1 = x − f(x)/f ′(x) for solving f(x) = 0, applied to
the polynomial f(x) = x2 − a, but (mod p2n) instead of in R or C.) Then

x1 − x = −1

2

(

x− a

x

)

= − 1

2x

(

x2 − a
)

≡ 0 (mod pn),

and

x2
1 − a =

1

4

(

x2 + 2a+
a2

x2

)

− a

=
1

4

(

x− a

x

)2

=
1

4x2
(x2 − a)2

≡ 0 (mod p2n)

Thus, starting with x0 such that x2
0 ≡ a (mod p20

), we get successively x1 with x2
1 ≡ a

(mod p21

), x2 with x2
2 ≡ a (mod p22

),. . . , xk with x2
k ≡ a (mod p2k

),. . . , with xk+1 ≡ xk
(mod p2k

). So, writing the xi in base p, we obtain

x0 = b0

x1 = b0 + b1p say, specified (mod p2)

x2 = b0 + b1p+ b2p
2 + b3p

3 say, specified (mod p4)

x3 = b0 + b1p+ b2p
2 + b3p

3 + b4p
4 + b5p

5 + b6p
6 + b7p

7 say, specified (mod p8),
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and so on.
So, in any sense, is x∞ =

∑∞
i=1 bip

i a root of x2 ≡ a (mod p∞)? It turns out that, yes,
it is: x∞ is a root of x2 = a in the field Qp of p-adic numbers.

8.2. Valuations. In order to define the fields Qp of p-adic numbers for primes p, we first
need to discuss valuations.

A valuation | · | on a field F is a map from F to the nonnegative real numbers satisfying

For each x ∈ F |x| = 0 iff x = 0; (ZERo)

For each x, y ∈ F |xy| = |x| · |y|; (HOMomorphism)

For each x, y ∈ F |x+ y| ≤ |x| + |y|. (TRIangle)

If in addition

For each x, y ∈ F |x+ y| ≤ max(|x|, |y|), (MAXimum)

then | · | is called a nonarchimedean valuation. A valuation that is not nonarchimedean,
i.e., for which there exist x, y ∈ F such that |x+ y| > max(|x|, |y|), is called archimedean.
For instance the standard absolute value on R is archimedean because 2 = |2| = |1 + 1| >
max(|1|, |1|) = 1.

Note that MAX is stronger than TRI in the sense that if MAX is true than TRI is
certainly true. So to show that a valuation is nonarchimedean we only need to check that
ZER, HOM and MAX hold.

Proposition 8.1. For any valuation | · | on a field F we have |1| = | − 1| = 1 and for
n ∈ N (defined as the sum of n copies of the identity of F ) we have | − n| = |n| and
|1/n| = 1/|n|. Further, for n,m ∈ N we have |n/m| = |n|/|m|.
Proof. We have |1| = |12| = |1|2, using HOM, so that |1| = 0 or 1. But |1| 6= 0 by ZER, so
|1| = 1.

Also 1 = |1| = |(−1)2| = | − 1|2 by HOM, so that | − 1| = 1 since | − 1| > 0.
Further, | − n| = |(−1)n| = | − 1| · |n| = 1 · |n| = |n|, and from n · (1/n) = 1 we get

|n| · |1/n| = |1| = 1, so that |1/n| = 1/|n|.
Finally, from n/m = n · (1/m) we get |n/m| = |n| · |1/m| = |n|/|m|. �

8.3. Nonarchimedean valuations. From now on we restrict our attention to nonar-
chimedean valuations.

Proposition 8.2 (Principle of Domination). Suppose that we have a nonarchimedean val-
uation | · | on a field F , and that x, y ∈ F with |x| 6= |y|. Then

|x+ y| = max(|x|, |y|).
Note the equal sign in this statement!

Proof. Put s = x + y, and assume w.l.g. that |x| < |y|. Then |s| ≤ max(|x|, |y|) = |y|,
while

|y| = |s− x| ≤ max(|s|, | − x|) = max(|s|, |x|) = |s|,
since otherwise we’d have |y| ≤ |x|. Hence |s| = |y| = max(|x|, |y|). �
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Corollary 8.3. Suppose that x1, . . . , xn ∈ F , with | · | nonarchimedean. Then

|x1 + . . . ,+xn| ≤ max(|x1|, . . . , |xn|),
with equality if |x1| > max(|x2, . . . , |xn|).

Proof. Use induction, with the help of MAX, for the inequality. For the equality, put
x1 = y and x2 + · · · + xn = x in the Principle of Domination. �

Corollary 8.4. For | · | nonarchimedean and n ∈ Z we have |n| ≤ 1.

Proof. Apply the Corollary above with all xi = 1. Then use | − n| = |n|. �

Lemma 8.5. If | · | is a nonarchimedean valuation on F , then so is | · |α for any α > 0.

Proof. It’s easily checked that ZER, HOM and MAX still hold when the valuation we start
with is taken to the α-th power. �

[ The same does not apply to TRI – we need 0 < α ≤ 1 for TRI to still always hold.]

8.4. Nonarchimedean valuations on Q.

Corollary 8.6. If | · | is a nonarchimedean valuation on Q with |n| = 1 for all n ∈ N then
| · | is trivial, i.e., |x| = 0 if x = 0 while |x| = 1 if x 6= 0.

Proof. We then have |x| = 0 by ZER, while |n/m| = |n|/|m| = 1/1 = 1. �

We’ll ignore trivial valuations from now on.

Proposition 8.7. If | · | is a nonarchimedean valuation on Q with |n| < 1 for some n ∈ N,
then there is a prime p such that {n ∈ N : |n| < 1} = {n ∈ N : p divides n}.

Proof. Take the smallest positive integer n1 such that |n1| < 1. We know that n1 > 1. If
n1 is composite, say n1 = n2n3 with 1 < n2, n3 < n1, then, by the minimality of n1, we
have |n2| = |n3| = 1, so that |n1| = |n2| · |n3| = 1 · 1 = 1 by HOM, a contradiction. Hence
n1 is prime, = p say.

Then for any n with |n| < 1 we can, by the division algorithm, write n = qp + r where
0 ≤ r < p. But then |r| = |n − qp| ≤ max(|n|, | − qp|) = max(|n|, | − 1| · |q| · |p|) < 1,
as | − 1| = 1, |q| ≤ 1 and |p| < 1. By the minimality of p we must have r = 0, so that
p | n. �

Next, we show that there is indeed a valuation on Q corresponding to each prime p.
We define | · |p by |0| = 0, |p|p = 1/p and |n| = 1 for n ∈ Z and coprime to p, and
|pkn/m|p = p−k for n and m coprime to p. We call this the p-adic valuation on Q.

Proposition 8.8. The p-adic valuation on Q is indeed a valuation.

Proof. The definition of | · |p ensures that ZER and HOM hold. It remains only to check
that MAX holds.
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Let x = pkn/m and y = pk
′

n′/m′,where n,m, n′m′ are all coprime to p. Suppose w.l.g.
that k ≤ k′. Then |x|p = |pk|p · |n|p/|m|p = p−k as |n|p = |m|p = 1 and |p|p = 1/p. Similarly
|y|p = p−k

′ ≤ |x|p. Hence

|x+ y|p =

∣

∣

∣

∣

pk(nm′ + pk
′−kn′m)

mm′

∣

∣

∣

∣

p

=
p−k|nm′ + pk

′−kn′m|p
|mm′|p

≤ p−k = max(|x|p, |y|p).

as |m|p = |m′|p = 1 and |nm′ + pk
′−kn′m|p ≤ 1, since nm′ + pk

′−kn′m ∈ Z. �

[Note that the choice of |p|p = 1/p is not particularly important, as by replacing | · |p by
its α-th power as in Lemma 8.5 we can make |p|p equal any number we like in the interval
(0, 1). But we do need to fix on a definite value!]

8.5. The p-adic completion Qp of Q. We first recall how to construct the real field R
from Q, using Cauchy sequences. Take the ordinary absolute value | · | on Q, and define
a Cauchy sequence to be a sequence (an) = a1, a2, . . . , an, . . . of rational numbers with the
property that for each ε > 0 there is an N > 0 such that |an−an′ | < ε for all n, n′ > N . We
define an equivalence relation on these Cauchy sequences by saying that two such sequences
(an) and (bn) are equivalent if the interlaced sequence a1, b1, a2, b2, . . . , an, bn, . . . is also a
Cauchy sequence. [Essentially, this means that the sequences tend to the same limit, but as
we haven’t yet constructed R, where (in general) the limit lies, we can’t say that.] Having
checked that this is indeed an equivalence relation on these Cauchy sequences, we define
R to be the set of all equivalence classes of such Cauchy sequences. We represent each
equivalence class by a convenient equivalence class representative; one way to do this is
by the standard decimal expansion. So, the class π will be represented by the Cauchy
sequence 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . , which we write as 3.14159 . . . . Further, we
can make R into a field by defining the sum and product of two Cauchy sequences in the
obvious way, and also the reciprocal of a sequence, provided the sequence doesn’t tend to
0.

[The general unique decimal representation of a real number a is

a = ±10k(d0 + d110−1 + d210−2 + · · ·+ dn10−n + . . . ),

where k ∈ Z, and the digits di are in {0, 1, 2, . . . , 9}, with d0 6= 0. Also, it is forbidden that
the di’s are all = 9 from some point on, as otherwise we get non-unique representations,
e.g., 1 = 100(1.00000 . . . ) = 10−1(9.99999 . . . ).]

We do the same kind of construction to define the p-adic completion Qp of Q, except
that we replace the ordinary absolute value by | · |p in the method to obtain p-Cauchy
sequences. To see what we should take as the equivalence class representatives, we need
the following result.

Lemma 8.9. Any rational number m/n with |m/n|p = 1 can be p-adically approximated
arbitrarily closely by a positive integer. That is, for any k ∈ N there is an N ∈ N such
that |m/n−N |p ≤ p−k.
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Proof. We can assume that |n|p = 1 and |m|p ≤ 1. We simply take N = mn′, where
nn′ ≡ 1 (mod pk). Then the numerator of m/n − N is an integer that is divisible by
pk. �

An immediate consequence of this result is that any rational number (i.e., dropping
the |m/n|p = 1 condition) can be approximated arbitrarily closely by a positive integer
times a power of p. Thus one can show that any p-Cauchy sequence is equivalent to one
containing only those kind of numbers. We write the positive integer N in base p, so that
pkN = pk(a0+a1p+a2p

2+· · ·+arpr) say, where the ai are base-p digits ∈ {0, 1, 2, . . . , p−1},
and where we can clearly assume that a0 6= 0 (as otherwise we could increase k by 1). We
define Qp, the p-adic numbers, to be the set of all equivalence classes of p-Cauchy sequences
of elements of Q. Then we have the following.

Theorem 8.10. Every nonzero element (i.e., equivalence class) in Qp has an equivalence
class representative of the form

pka0, p
k(a0 + a1p), p

k(a0 + a1p + a2p
2), . . . , pk(a0 + a1p+ a2p

2 + · · · + aip
i), . . . ,

which we write simply as

pk(a0 + a1p+ a2p
2 + · · · + aip

i + . . . ) [= pk(
∞
∑

i=0

aip
i)].

Here, the ai are all in ∈ {0, 1, 2, . . . , p− 1}, with a0 6= 0.

Thus we can regard p-adic numbers as these infinite sums pk(
∑∞

i=0 aip
i). We define

the unary operations of negation and reciprocal, and the binary operations of addition and
multiplication in the natural way, namely: apply the operation to the (rational) elements of
the p-Cauchy sequence representing that number, and then choose a standard equivalence
class representative (i.e., pk(

∑∞
i=0 aip

i) with all ai ∈ {0, 1, 2, . . . , p − 1}, a0 6= 0) for the
result. When we do this, we have

Theorem 8.11. With these operations, Qp is a field, the field of p-adic numbers, and
the p-adic valuation | · |p can be extended from Q to Qp by defining |a|p = p−k when
a = pk(

∑∞
i=0 aip

i). Again, the ai are all in ∈ {0, 1, 2, . . . , p− 1}, with a0 6= 0.

We shall skip over the tedious details that need to be checked to prove these two theo-
rems.

Note that, like R, Qp is an uncountable field of characteristic 0 (quite unlike Fp, which
is a finite field of characteristic p).

We define a p-adic integer to be an p-adic number a with |a|p ≤ 1, and Zp to be the set
of all p-adic integers.

Proposition 8.12. With the arithmetic operations inherited from Qp, the set Zp is a ring.

Proof. This is simply because if a and a′ ∈ Zp, then |a|p ≤ 1 and |a′|p ≤ 1, so that

|a+ a′|p ≤ max(|a|p, |a′|p) ≤ 1 by MAX ;

|a · a′|p = |a|p · |a′|p ≤ 1 by HOM ,
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showing that Zp is closed under both addition and multiplication, and so is a ring. �

An p-adic number a is called a p-adic unit if |a|p = 1. Then k = 0 so that a =
∑∞

i=0 aip
i

with all ai ∈ {0, 1, 2, . . . , p− 1} and a0 6= 0. The set of all p-adic units is a multiplicative
subgroup of the multiplicative group Q×

p = Qp \ {0}. This is because if |a|p = 1 then
|1/a|p = 1/|a|p = 1, so that 1/a is also a unit.

8.6. Calculating in Qp.

8.6.1. Negation. If a = pk(
∑∞

i=0 aip
i), then

−a = pk

(

(p− a0) +

∞
∑

i=1

(p− 1 − ai)p
i

)

,

as can be checked by adding a to −a (and getting 0!). Note that from all ai ∈ {0, 1, 2, . . . , p−
1} and a0 6= 0 we have that the same applies to the digits of −a.

8.6.2. Reciprocals. If a = pk(
∑∞

i=0 aip
i), then

1

a
= p−k(a′0 + a′1p+ · · ·+ a′ip

i + . . . )

say, where for any i the first i digits a′0, a
′
1, . . . , a

′
i can be calculated as follows: Putting

a0 +a1p+ · · ·+aip
i = N , calculate N ′ ∈ N with N ′ < pi+1 such that NN ′ ≡ 1 (mod pi+1).

Then writing N ′ in base p as N ′ = a′0 + a′1p+ · · ·+ a′ip
i gives a′0, a

′
1, . . . , a

′
i.

8.6.3. Addition and multiplication. If a = pk(
∑∞

i=0 aip
i) and a′ = pk(

∑∞
i=0 a

′
ip
i) (same k)

then a+a′ = pk((a0 +a′0)+ (a1 +a′1)p+ · · ·+(ai+a′i)p
i+ . . . ), where then ‘carrying’ needs

to be performed to get the digits of a + a′ into {0, 1, 2, . . . , p − 1}. If a′ = pk
′

(
∑∞

i=0 a
′
ip
i)

with k′ < k then we can pad the expansion of a′ with initial zeros so that we can again
assume that k′ = k, at the expense of no longer having a′0 nonzero. Then addition can be
done as above.

Multiplication is similar: multiplying a = pk(
∑∞

i=0 aip
i) by a′ = pk

′

(
∑∞

i=0 a
′
ip
i) gives

a · a′ = pk+k
′

(a0a
′
0 + (a1a

′
0 + a0a

′
1)p+ · · ·+ (

i
∑

j=0

aja
′
i−j)p

i + . . . ),

where then this expression can be put into standard form by carrying.

8.7. Expressing rationals as p-adic numbers. Any nonzero rational can clearly be
written as ±pkm/n, where m,n are positive integers coprime to p (and to each other), and
k ∈ Z. It’s clearly enough to express ±m/n as a p-adic number a0 + a1p + . . . , as then
±pkm/n = pk(a0 + a1p+ . . . ).
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8.7.1. Representating −m/n, where 0 < m < n. We have the following result.

Proposition 8.13. Put e = ϕ(n). Suppose that m and n are coprime to p, with 0 < m < n,
and that the integer

m
pe − 1

n
is written as d0 + d1p+ · · ·+ de−1p

e−1

in base p. Then

−m
n

= d0 + d1p+ · · ·+ de−1p
e−1 + d0p

e + d1p
e+1 + · · ·+ de−1p

2e−1 + d0p
2e + d1p

2e+1 + . . . .

Proof. We know that pe−1
n

is an integer, by Euler’s Theorem. Hence

−m
n

=
mpe−1

n

1 − pe
= (d0 + d1p+ · · ·+ de−1p

e−1)(1 + pe + p2e + . . . ),

which gives the result. �

In the above proof, we needed m < n so that mpe−1
n

< pe, and so had a representation
d0 + d1p+ · · ·+ de−1p

e−1.

8.7.2. The case m/n, where 0 < m < n. For this case, first write −m/n = u/(1 − pe),
where, as above, u = m · pe−1

n
. Then

m

n
=

−u
1 − pe

= 1 +
pe − 1 − u

1 − pe
= 1 +

u′

1 − pe
,

where u′ = pe − 1− u and 0 ≤ u′ < pe. Thus we just have to add 1 to the repeating p-adic
integer u′ + u′pe + u′p2e + . . . .

Example What is 1/7 in Q5?
From 56 ≡ 1 (mod 7) (Fermat), and (56 − 1)/7 = 2232, we have

−1

7
=

2232

1 − 56

=
2 + 1 · 5 + 4 · 52 + 2 · 53 + 3 · 54

1 − 56

= (21423)(1 + 56 + 512 + . . . )

= 214230 214230 214230 214230 214230 . . . .

Hence
1

7
= 330214 230214 230214 230214 230214 230214 . . . ,

which is a way of writing 3 + 3 · 51 + 0 · 52 + 2 · 53 + . . . .

8.8. Taking square roots in Qp.
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8.8.1. The case of p odd. First consider a p-adic unit a = a0 + a1p + a2p
2 + · · · ∈ Zp,

where p is odd. Which such a have a square root in Qp? Well, if a = b2, where b =
b0 + b1p+ b2p

2 + · · · ∈ Zp, then, working modulo p we see that a0 ≡ b20 (mod p), so that a0

must be a quadratic residue (mod p). In this case the method in Section 8.1 will construct
b. Note that if at any stage you are trying to construct b (mod n) then you only need to
specify a (mod n), so that you can always work with rational integers rather than with
p-adic integers.

On the other hand, if a0 is a quadratic nonresidue, then a has no square root in Qp.

Example. Computing
√

6 in Q5. While the algorithm given in the introduction to
this chapter is a good way to compute square roots by computer, it is not easy to use
by hand. Here is a simple way to compute square roots digit-by-digit, by hand: Write√

6 = b0 + b1 · 51 + b2 · 52 + . . . . Then, squaring and working mod 5, we have b20 ≡ 1
(mod 5), so that b0 = 1 or 4. Take b0 = 1 (4 will give the other square root, which is minus
the one we’re computing.)

Next, working mod 52, we have

6 ≡ (1 + b1 · 5)2 (mod 52)

6 ≡ 1 + 10b1 (mod 52)

1 ≡ 2b1 (mod 5),

giving b1 = 3. Doing the same thing mod 53 we have

6 ≡ (1 + 3 · 5 + b2 · 52)2 (mod 53)

6 ≡ 162 + 32b2 · 52 (mod 53)

−250 ≡ 32b2 · 52 (mod 53)

0 ≡ 32b2 (mod 5),

giving b2 = 0. Continuing mod 54, we get b3 = 4, so that
√

6 = 1+3 ·5+0 ·52 +4 ·53 + . . . .

Next, consider a general p-adic number a = pk(a0 +a1p+ . . . ). If a = b2, then |a|p = |b|2p,
so that |b|p = |a|1/2p = p−k/2. But valuations of elements of Qp are integer powers of p, so
that if k is odd then b 6∈ Qp. But if k is even, there is no problem, and a will have a square
root b = pk/2(b0 + b1p + . . . ) ∈ Qp iff a0 is a quadratic residue (mod p).

8.8.2. The case of p even. Consider a 2-adic unit a = 1 + a12 + a22
2 + · · · ∈ Z2. If a = b2,

where b = b0 + b12
1 + b22

2 + · · · ∈ Z2, working modulo 8, we have b2 ≡ 1 (mod 8), so that
we must have a ≡ 1 (mod 8), giving a1 = a2 = 0. When this holds, the construction of
Section 8.1 will again construct b. On the other hand, if a 6≡ 1 (mod 8), then a has no
square root in Q2.

For a general 2-adic number a = 2k(1 + a12 + a22
2 + . . . ), we see that, similarly to the

case of p odd, a will have a square root in Q2 iff k is even and a1 = a2 = 0.
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8.9. The Local-Global Principle. The fields Qp (p prime) and R, and their finite ex-
tensions, are examples of local fields. These are complete fields, because they contain all
their limit points. On the other hand, Q and its finite extensions are called number fields
and are examples of global fields. [Other examples of global and local fields are the fields
F(x) of rational functions over a finite field F (global) and their completions with respect
to the valuations on them (local).] One associates to a global field the local fields obtained
by taking the completions of the field with respect to each valuation on that field.

Suppose that you are interested in whether an equation f(x, y) = 0 has a solution x, y
in rational numbers. Clearly, if the equation has no solution in R, or in some Qp, then,
since these fields contain Q, the equation has no solution on Q either.

For example, the equation x2 + y2 = −1 has no solution in Q because it has no solution
in R. The equation x2 + 3y2 = 2 has no solution in Q because it has no solution in Q3,
because 2 is a quadratic nonresidue of 3.

The Local-Global (or Hasse-Minkowski) Principle is said to hold for a class of equations
(over Q, say) if, whenever an equation in that class has a solution in each of its completions,
it has a solution in Q. This principle holds, in particular, for quadratic forms. Thus for
such forms in three variables, we have the following result.

Theorem 8.14. Let a, b, c be nonzero integers, squarefree, pairwise coprime and not all of
the same sign. Then the equation

ax2 + by2 + cz2 = 0 (16)

has a nonzero solution (x, y, z) ∈ Z3 iff
−bc is a quadratic residue of a; i.e. the equation x2 ≡ −bc (mod a) has a solution x;
−ca is a quadratic residue of b;
−ab is a quadratic residue of c.

(Won’t prove.) The first of these conditions is necessary and sufficient for (16) to have a
solution in Qp for each odd prime dividing a. Similarly for the other two conditions. The
condition that a, b, c are not all of the same sign is clearly necessary and sufficent that (16)
has a solution in R. But what about a condition for a solution in Q2?

8.9.1. Hilbert symbols. It turns out that we don’t need to consider solutions in Q2, because
if a quadratic form has no solution in Q then it has no solution in a positive, even number
(so, at least 2!) of its completions. Hence, if we’ve checked that it has a solution in all its
completions except one, it must in fact have a solution in all its completions, and so have
a solution in Q. This is best illustrated by using Hilbert symbols and Hilbert’s Reciprocity
Law.

For a, b ∈ Q the Hilbert symbol (a, b)p, where p is a prime or ∞, and Q∞ = R, is defined
by

(a, b)p =

{

1 if ax2 + by2 = z2 has a nonzero solution in Qp;

−1 otherwise.
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Hilbert’s Reciprocity Law says that
∏

p(a, b)p = 1 . (Won’t prove; it is, however, essentially

equivalent to the Law of Quadratic Reciprocity.) Hence, a finite, even number of (a, b)p (p
a prime or ∞) are equal to −1.

8.10. Nonisomorphism of Qp and Qq. When one writes rational numbers to any (inte-
ger) base b ≥ 2, and then forms the completion with respect to the usual absolute value
| · |, one obtains the real numbers R, (though maybe written in base b). Thus the field
obtained (R) is independent of b. Furthermore, b needn’t be prime.

However, when completing Q (in whatever base) with respect to the p-adic valuation
to obtain Qp, the field obtained does depend on p, as one might expect, since a different
valuation is being used for each p. One can, however, prove this directly:

Theorem 8.15. Take p and q to be two distinct primes. Then Qp and Qq are not isomor-
phic.

Proof. We can assume that p is odd. Suppose first that q is also odd. Let n be a quadratic
nonresidue (mod q). Then using the Chinese Remainder Theorem we can find k, ℓ ∈ N

with 1+kp = n+ℓq. Hence, for a = 1+kp we have
(

a
p

)

=
(

1
p

)

= 1 while
(

a
q

)

=
(

n
q

)

= −1.

Hence, by the results of Subsection 8.8 we see that
√
a ∈ Qp but

√
a 6∈ Qq. Thus, if there

were an isomorphism φ : Qp → Qq then we’d have

φ(
√
a)2 = φ(

√
a

2
) = φ(a) = φ(1 + 1 + · · · + 1) = a,

so that φ(
√
a) would be a square root of a in Qq, a contradiction.

Similarly, if q = 2 then we can find a = 1 + kp = 3 + 4ℓ, so that
√
a ∈ Qp again, but√

a 6∈ Q2. so the same argument applies. �

Note that for any integer b ≥ 2 one can, in fact, define the ring of b-adic numbers,
which consists of numbers pk(a0 + a1b + a2b

2 + · · · + aib
i + . . . ), where k ∈ Z and all

ai ∈ {0, 1, 2, . . . , b − 1}. However, if b is composite, this ring has nonzero zero divisors
(nonzero numbers a, a′ such that aa′ = 0), so is not a field. See problem sheet 5 for the
example b = 6.

9. Some Analytic Results about primes and the divisor function

9.1. The Prime Number Theorem. How frequent are the primes? At the end of the
eighteenth century, Gauss and Legendre suggested giving up looking for a formula for the
nth prime, and proposed instead estimating the number of primes up to x. So, define the
prime-counting function π(x) by

π(x) =
∑

p≤x
p prime

1.

Gauss conjectured on computational evidence that π(x) ∼ x
log x

. This was proved by
independently by Hadamard and de la Vallée Poussin in 1896, and became known as

Theorem 9.1 (The Prime Number Theorem). We have π(x) ∼ x
log x

as x → ∞.
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It turns out to be more convenient to work with

θ(x) =
∑

p≤x
p prime

log p,

which is called Chebyshev’s θ-function. In terms of this function it can be shown (not
difficult) that the Prime Number Theorem is equivalent to the statement θ(x) ∼ x (x→
∞).

We won’t prove PNT here, but instead a weaker version, and in terms of θ(x):

Theorem 9.2. As x→ ∞ we have

(log 2)x+ o(x) < θ(x) < (2 log 2)x+ o(x),

so that
0.6931x+ o(x) < θ(x) < 1.3863x+ o(x).

9.2. Proof of Theorem 9.2.

9.2.1. The upper bound.

Proposition 9.3. We have θ(x) < (2 log 2)x+O(log2 x).

Proof. Consider
(

2n
n

)

. By the Binomial Theorem, it is less than (1 + 1)2n = 4n. Also, it is
divisible by all primes p with n < p ≤ 2n, so

4n >

(

2n

n

)

≥
∏

n<p≤2n

p = eθ(2n)−θ(n).

Hence θ(2n) − θ(n) ≤ 2n log 2.
Now if 2n ≤ x < 2n+ 2 (i.e., n ≤ x/2 < n+ 1) then θ(x/2) = θ(n) and

θ(x) ≤ θ(2n) + log(2n+ 1) ≤ θ(2n) + log(x+ 1),

so that, for each x,

θ(x) − θ(x/2) ≤ θ(2n) + log(x+ 1) − θ(n)

≤ 2n log 2 + log(x+ 1)

≤ x log 2 + log(x+ 1).

So (standard telescoping argument for x, x/2, x/22, . . . , x/2k where x/2k−1 ≥ 2, x/2k < 2,
θ(x/2k) = 0):

θ(x) =
(

θ(x) − θ
(x

2

))

+
(

θ
(x

2

)

− θ
( x

22

))

+
(

θ
( x

22

)

− θ
( x

23

))

+ . . .
(

θ
( x

2k−1

)

− θ
( x

2k

))

≤ log 2
(

x+
x

2
+ · · ·+ x

2k−1

)

+ k log(x+ 1)

≤ 2x log 2 + ⌊log2 x⌋ log(x+ 1)

≤ 2x log 2 +O(log2 x).

�
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9.2.2. The lower bound. To obtain an inequality in the other direction, we look at

dn = lcm(1, 2, . . . , n) = e
P

pm≤n log p.

Define
ψ(x) =

∑

pm≤x
p prime

log p;

(i.e., log p to be counted m times if pm is the highest power of p that is ≤ x). So dn = eψ(n).

Lemma 9.4. We have ψ(x) < θ(x) + 2x1/2 log x+O(log2 x).

Proof. Now

ψ(x) =
∑

p≤x
log x+

∑

p2≤x
log x+

∑

p3≤x
log x+ . . .

= θ(x) + θ(x1/2) + θ(x1/3) + · · ·+ θ(x1/k),

where k is greatest such that x1/k ≥ 2, i.e., k = ⌊log2 x⌋

< θ(x) + log2 x θ(x
1/2)

< θ(x) + 2x1/2 log x+O(log2 x), using Prop. 9.3.

�

Curious note: this k is the same one as in the proof of Prop. 9.3, though they have
apparently different definitions.

We can now prove

Proposition 9.5. We have θ(x) ≥ x log 2 +O(x1/2 log x).

Proof. Consider the polynomial p(t) = (t(1− t))n on the interval [0, 1]. As t(1− t) ≤ 1
4

on
that interval (calculus!), we have

0 ≤ p(t) ≤ 1

4n
on [0, 1].

Writing p(t) =
∑2n

k=0 akt
k ∈ Z[t], then

1

4n
≥
∫ 1

0

p(t)dt =

2n
∑

k=0

ak
k + 1

=
N

d2n+1
≥ 1

d2n+1
,

for some N ∈ N, on putting the fractions over a common denominator. Hence we have
successively

d2n+1 ≥ 4n

ψ(2n+ 1) ≥ 2n log 2 on taking logs

θ(2n+ 1) ≥ 2n log 2 − 2 log(2n+ 1)
√

2n+ 1 by Lemma 9.4

θ(x) ≥ x log 2 +O(x1/2 log x).
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�

Combining Propositions 9.3 and 9.5, we certainly obtain Theorem 9.2.

9.3. Some standard estimates.

Lemma 9.6. For t > −1 we have log(1 + t) ≤ t, with equality iff t = 0.
For n ∈ N we have n log(1 + 1

n
) < 1.

Proof. The first inequality comes from observing that the tangent y = t to the graph of
y = log(1+t) at t = 0 lies above the graph, touching it only at t = 0. The second inequality
comes from putting t = 1/n in the first inequality. �

Lemma 9.7 (Weak Stirling Formula). For n ∈ N we have

n logn− n < log(n!) ≤ n logn.

Proof. Now for j ≥ 2 we have

log j = j log j − (j − 1) log(j − 1) − (j − 1) log

(

1 +
1

j − 1

)

= j log j − (j − 1) log(j − 1) − δj,

where 0 < δj < 1, using Lemma 9.6 for n = j − 1. So, on summing for j = 2, . . . , n we get

log(n!) =

n
∑

j=2

log j

=
n
∑

j=2

j log j − (j − 1) log(j − 1) − δj

= n logn−
n
∑

j=2

δj

= n logn− ∆,

where 0 < ∆ < n, since 1 log 1 = 0 and all the other j log j terms apart from n log n
telescope. �

Proposition 9.8. We have

∑

n≤x

1

n
= log x+ γ +O

(

1

x

)

,

where γ = 0.577 . . . , the Euler-Mascheroni constant.

Proof. Draw the graph of y = 1/t for t from 0+ to N+1, where N = ⌊x⌋. On each interval
[n, n + 1] draw a rectangle of height 1/n, so that these rectangles for n = 1, 2, . . . , N
completely cover the area under the curve from t = 1 to t = N + 1. The pie-shaped pieces
of the rectangles above the curve, when moved to the left to lie above the interval [0, 1], are
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non-intersecting, and more than half-fill the 1 × 1 square on that interval. Say their total
area is γn. Then, as n→ ∞, γn clearly tends to a limit γ, the Euler-Mascheroni constant.

The sum of the areas of the rectangles above [n, n + 1] for n = 1, 2, . . . , N is clearly
∑N

n=1 1/n (the total area of the parts of the rectangles below the curve). On the other

hand, it is
∫ N+1

1
dx
x

= log(N + 1) (the total area of the parts of the rectangles below the
curve), plus γn (the total area of the parts of the rectangles above the curve). Hence

∑

n≤x

1

n
=

N
∑

n=1

1/n = log(N + 1) + γn.

Since log(N + 1) − log x = O
(

1
x

)

and γ − γn = O
(

1
x

)

(check!), we have the result. �

9.4. More estimates of sums of functions over primes. Let us put Px =
∏

p≤x
1

1−p−1 .
Then

Proposition 9.9. We have Px > log x.

Proof. We have

Px =
∏

p≤x

(

1 +
1

p
+

1

p2
+ · · ·+ 1

pn
+ . . .

)

.

On multiplying these series together, we obtain a sum of terms that includes all fractions
1
n
, where n ≤ x. This is simply because all prime factors of such n are at most x. Hence

Px >
∑

n≤x

1

n
> log x,

by Prop. 9.8. �

Corollary 9.10. There are infinitely many primes.

Proposition 9.11. We have
∑

p≤x

1

p
> log log x− 1.

Proof. We have

logPx =
∑

p≤x
log

(

1 +
1

p
+

1

p2
+

1

p3
+ · · · + 1

pk
+ . . .

)

<
∑

p≤x

1

p
+
∑

p≤x

1

p(p− 1)
,
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on applying Lemma 9.6 with t = 1
p
+ 1

p2
+ 1

p3
+ · · ·+ 1

pk + . . . , and summing the GP, starting

with the 1/p2 term,

<
∑

p≤x

1

p
+

∞
∑

n=1

1

(n+ 1)n

=
∑

p≤x

1

p
+

∞
∑

n=1

(

1

n
− 1

n + 1

)

=
∑

p≤x

1

p
+ 1,

because of the telescoping of
∑∞

n=1

(

1
n
− 1

n+1

)

. Hence

∑

p≤x

1

p
> logPx − 1 > log log x− 1,

using Prop. 9.9. �

Proposition 9.12. We have

∑

p≤x

log p

p
= log x+O(1) as x→ ∞.

Proof. Now from Problem Sheet 1, Q8, we have

n! =
∏

p≤n
p⌊

n
p⌋+

j

n

p2

k

+...
,

so that (taking logs)

log(n!) =
∑

p≤n

(⌊

n

p

⌋

+

⌊

n

p2

⌋

+

⌊

n

p3

⌋

+ . . .

)

log p

=
∑

p≤n

⌊

n

p

⌋

log p+ Sn,
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where

Sn : =
∑

p≤n

(⌊

n

p2

⌋

+

⌊

n

p3

⌋

+ . . .

)

log p

≤
∑

p≤n

(

n

p2
+
n

p3
+ . . .

)

log p

= n
∑

p≤n

log p

p(p− 1)

< n

∞
∑

k=1

log(k + 1)

(k + 1)k

= nc,

for some positive constant c, since the last sum is convergent. Hence nc > Sn > 0. Also,
for n = ⌊x⌋ we have

n
∑

p≤x

log p

p
≥
∑

p≤x

⌊

n

p

⌋

log p

>
∑

p≤x

(

n

p
− 1

)

log p

= n
∑

p≤x

log p

p
− θ(x).

Hence

n
∑

p≤x

log p

p
≥
∑

p≤x

⌊

n

p

⌋

log p > n
∑

p≤x

log p

p
− O(x),

since θ(x) = O(x), by Theorem 9.2. Now add the inequality nc > Sn > 0 to the above
inequality, to obtain

n
∑

p≤x

log p

p
+ nc > log(n!) > n

∑

p≤x

log p

p
−O(x).

Dividing by n, and using the fact that log(n!)
n

= logn−O(1) from Prop. 9.7, we have

∑

p≤x

log p

p
+O (1) > log n− O (1) >

∑

p≤x

log p

p
−O (1) .

Hence
∑

p≤x

log p

p
= log x+O(1).

�
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9.5. The average size of the divisor function τ(n). The following result is a way of
saying that an integer n has logn + 2γ − 1 divisors, on average. Recall that τ(n) is the
number of (positive) divisors of n.

Proposition 9.13. We have, as x→ ∞, that
∑

n≤x
τ(n) = x log x+ (2γ − 1)x+O

(√
x
)

.

Proof. Now
∑

n≤x
τ(n) =

∑

n≤x

∑

ℓ|n
1

=
∑

ℓ≤x

∑

n=kℓ
k≤x

ℓ

1

=
∑

ℓ≤x

⌊x

ℓ

⌋

,

on recalling that ⌊y⌋ is the number of positive integers ≤ y,

= 2
∑

ℓ≤√
x

⌊x

ℓ

⌋

−
⌊√

x
⌋2

by Q10, Problem Sheet 1

= 2
∑

ℓ≤√
x

x

ℓ
− x+O(

√
x)

= 2x

(

log
√
x+ γ +O

(

1√
x

))

− x+ O(
√
x) using Prop. 9.8

= x log x+ (2γ − 1)x+O(
√
x).

�


