
Mathematics 4: Number Theory Problem Sheet 3

Workshop 26 Oct 2012

The aim of this workshop is to show that Carmichael numbers are squarefree

and have at least 3 distinct prime factors.

(1) (Warm-up question.) Show that n > 1 is prime iff an−1 ≡ 1 (mod n) for 1 ≤ a ≤
n − 1.

Recall that a positive integer is said to be squarefree if it is not divisible by the
square of any prime number.

Recall too that a Carmichael number is a composite number n with the property
that for every integer a coprime to n we have an−1 ≡ 1 (mod n).

(2) Proving that Carmichael numbers are squarefree.

(a) Show that a given nonsquarefree number n can be written in the form n = pℓN
for some prime p and integers N and ℓ with ℓ ≥ 2 and gcd(p, N) = 1.

(b) Show that (1 + pN)n−1 6≡ 1 (mod p2).
(c) Deduce that Carmichael numbers are squarefree.

(3) Proving that Carmichael numbers have at least 3 distinct prime factors.

(a) Let p and q be distinct primes. Prove that if gcd(a, pq) = 1 then alcm(p−1,q−1) ≡
1 (mod pq).

(b) Now let g be a primitive root (mod p) and h be a primitive root (mod q).
Using g and h, apply the Chinese Remainder Theorem to specify an integer a
whose order (mod pq) is (exactly) lcm(p − 1, q − 1).

(c) Now suppose that p is the larger of the primes p and q.
Calculate pq − 1 (mod p − 1) ∈ {0, 1, . . . , p − 2}.
Deduce that p − 1 ∤ pq − 1.

(d) Use the above to show that there is an a with gcd(a, pq) = 1 and apq−1 6≡ 1
(mod pq).

(e) Deduce from the above that a Carmichael number must have at least 3 distinct
prime factors.

(4) (Cool-down question.) Suppose that a, k, ℓ, m, n ∈ N with ak ≡ 1 (mod m) and
aℓ ≡ 1 (mod n). Prove that
(a) alcm(k,ℓ) ≡ 1 (mod lcm(m, n));
(b) agcd(k,ℓ) ≡ 1 (mod gcd(m, n)).
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Handin: due Friday, week 7, 2 Nov, before 12.10

lecture. Please hand it in at the lecture
The squarefree part of n

You are expected to write clearly and legibly, giving thought to the presentation of your answer

as a document written in mathematical English.

(5) (a) Show that every positive integer n can be written uniquely in the form n =
n1n

2
2, where n1 is squarefree.

Let us denote n1 by g(n), the squarefree part of n.
(b) Prove that g(n) is a multiplicative function.
(c) Find the Euler product for Dg(s).
(d) Prove that Dg(s) = ζ(2s)ζ(s− 1)/ζ(2s − 2).

Problems on congruences

(6) Let m1, . . . , mn be pairwise relatively prime. Show that as x runs through the
integers x = 1, 2, 3, . . . , m1m2 · · ·mn, the n-tuples (x mod m1, x mod m2, . . . , x
mod mn) run through all n-tuples in

∏n

i=1{0, 1, . . . , mi − 1}.

(7) Show that the equation xy ≡ 2 (mod 19) has a solution in integers {x, y} iff x is
congruent to a primitive root mod 19. Deduce that then y is uniquely specified
mod 18.

(8) Wilson’s Theorem. This states that, for a prime p, we have (p− 1)! ≡ −1 (mod p).
Prove Wilson’s Theorem in (at least!) two different ways.
[Suggestions: (i) Factorize xp−1 −1 over Fp. (ii) Try to pair up a ∈ {1, . . . , p−1}

with its multiplicative inverse.]

(9) (a) Find a primitive root for the prime 23.
(b) How many such primitive roots are there?
(c) Find them all.
(d) Find all the quadratic residues and all the quadratic non-residues mod 23.

(10) Solve the equation x6 = 7 in F19, i.e. the equation x6 ≡ 7 (mod 19) for x ∈
{0, 1, . . . , 18}.

(11) (a) Let an integer n > 1 be given, and let p be its smallest prime factor. Show
that there can be at most p − 1 consecutive positive integers coprime to n.

(b) Show further that the number p − 1 in (a) cannot be decreased, by exhibiting
p − 1 consecutive positive integers coprime n.

(c) What is gcd(p − 1, n)?
(d) Show that 2n 6≡ 1 (mod n).
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Problems on arithmetic functions

(12) (a) Let a divisor d of n be given. Among the integers k = 1, 2, . . . , n show that
ϕ(n/d) of them have gcd(k, n) = d.

(b) Deduce that
∑

d|n ϕ(d) = n.

(c) Deduce that ϕ(n) =
∑

d|n dµ(n/d).

(13) (a) Prove that
∑

d|n µ(d) = ∆(n), the 1-detecting function.

(b) Let g be any function R≥0 → R, and put G(x) =
∑

n≤x g(x/n), the sum
being taken over all positive integers n ≤ x. Prove that if x ≥ 1 then g(x) =
∑

n≤x µ(n)G(x/n).

(14) (a) For which integers n is τ(n) odd? Here τ(n) is the number of (positive) divisors
of n.

(b) Prove that
∑

k|n τ(k)3 =
(

∑

k|n τ(k)
)2

.

[Note that both sides of the equation are multiplicative functions of n.]

(15) (a) An arithmetic function f(n) is said to be strongly multiplicative if f(nm) =
f(n)f(m) for all n, m ∈ N. Show that a strongly multiplicative function is
completely determined by its values at primes.

(b) Show that if f(n) is a strongly multiplicative function then the Euler product

of its Dirichlet function Df(s) is of the form
∏

p

(

1 − f(p)
ps

)−1

.

(16) Strengthening Euler’s Theorem. Suppose that n factorizes as n = pf1

1 · · · pfk

k . Show
that then, for gcd(a, n) = 1, aN = 1 (mod n), where

N = lcm(pf1

1 − pf1−1
1 , pf2

2 − pf2−1
2 , . . . , pfk

k − pfk−1
k ).

For which n is this result no stronger than Euler’s theorem aϕ(n) = 1 (mod n)?

(17) For two arithmetic functions A(n) and B(n) show that
∑

d|n

A(d)B(n/d) =
∑

d|n

A(n/d)B(d).

(18) (a) Find the Euler product for D|µ|(s) =
∑∞

n=1
|µ(n)|

ns .
(b) Prove that D|µ|(s) = ζ(s)/ζ(2s).

(19) Let ω(n) denote the number of prime factors of n. Show that the function eω(n) is
a multiplicative function.

(20) Let f be any arithmetic function.
(a) Show that

∑

n≤x

∑

k|n f(k) =
∑

n≤x f(n)
⌊

x
n

⌋

.
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(b) Now put F (x) =
∑

n≤x f(n). Deduce that
∑

n≤x f(n)
⌊

x
n

⌋

=
∑

n≤x F
(

x
n

)

.

(21) (a) Prove that for x ≥ 1 we have
∑

n≤x µ(n)
⌊

x
n

⌋

= 1.
(b) (Harder) Deduce that for all x ≥ 1 we have

∣

∣

∣

∣

∣

∑

n≤x

µ(n)

n

∣

∣

∣

∣

∣

≤ 1.

(22) The Dirichlet series Df(s) of a certain arithmetic function f(n) has Euler product
∏

p

(

1 − 1
ps + 1

p2s

)

.

(a) Show that f(n) 6= 0 iff n is “cube-free”, and give a precise definition of this
term.

(b) Find an explicit description of f(n).

(c) Find the Euler product for D|f |(s) =
∑∞

n=1
|f(n)|

ns .
(d) Prove that D|f |(2s) = D|f |(s)Df(s).

Problems around primality testing

(23) Fast exponentiation: Computing ar by the SX method.

Let a ∈ Z, r ∈ N. Write r in binary as r = bkbk−1 · · · b1b0, with all bi ∈ {0, 1}.
From the binary string bkbk−1 · · · b1b0 produce a string of S’s and X’s by replacing
each 0 by S and each 1 by SX. Now, starting with A = 1 and working from left to
right, interpret S as A → A2 (i.e. replace A by A2), and X as A → Aa (multiply
A by a).

Prove that the result of this algorithm is indeed ar.
[This algorithm is particularly useful for exponentiation (mod n), but it works

for any associative multiplication on any set. Note that the leading S does nothing,
so can be omitted.]

(24) Compute 290 (mod 91) by the SX method. What does this tell you about 91?
[Maple: convert(n,binary);]

(25) (a) Show that if n is not a pseudoprime to base bb′ where gcd(b, b′) = 1 then it is
not a pseudoprime either to base b or to base b′.

(b) Show that if n is not a pseudoprime to base bk where k > 1 then it is not a
pseudoprime to base b.
[Thus it’s always enough to use the pseudoprime test with prime bases.]

(c) Repeat (a) and (b) with ‘pseudoprime’ replaced by ‘strong pseudoprime’.
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(26) Show that the Carmichael number 561 is not a strong pseudoprime to base 2, but
that 2047 is. Show, however, that 2047 is not a strong pseudoprime to base 3.

[Useful Maple: with(numtheory);?phi,?mod]

(27) (a) Prove that if 6k + 1, 12k + 1 and 18k + 1 are all prime, then their product is a
Carmichael number. [Use Q 16]

(b) Show that the first few values of k for which (a) gives Carmichael numbers are
k = 1, 6, 35, 45, . . . . What is the next such value of k?
[This is the integer sequence A046025– via “integer sequences”, found e.g., by
Google]
[Maple ?isprime]
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