Workshop 26 Oct 2012

The aim of this workshop is to show that Carmichael numbers are squarefree and have at least 3 distinct prime factors.

(1) (Warm-up question.) Show that n > 1 is prime iff $a^{n-1} \equiv 1 \pmod{n}$ for $1 \le a \le n-1$.

Recall that a positive integer is said to be *squarefree* if it is not divisible by the square of any prime number.

Recall too that a *Carmichael number* is a composite number n with the property that for every integer a coprime to n we have $a^{n-1} \equiv 1 \pmod{n}$.

- (2) Proving that Carmichael numbers are squarefree.
 - (a) Show that a given nonsquarefree number n can be written in the form $n = p^{\ell}N$ for some prime p and integers N and ℓ with $\ell \ge 2$ and gcd(p, N) = 1.
 - (b) Show that $(1+pN)^{n-1} \not\equiv 1 \pmod{p^2}$.
 - (c) Deduce that Carmichael numbers are squarefree.
- (3) Proving that Carmichael numbers have at least 3 distinct prime factors.
 - (a) Let p and q be distinct primes. Prove that if gcd(a, pq) = 1 then $a^{lcm(p-1,q-1)} \equiv 1 \pmod{pq}$.
 - (b) Now let g be a primitive root $(\mod p)$ and h be a primitive root $(\mod q)$. Using g and h, apply the Chinese Remainder Theorem to specify an integer a whose order $(\mod pq)$ is (exactly) $\operatorname{lcm}(p-1, q-1)$.
 - (c) Now suppose that p is the larger of the primes p and q. Calculate $pq - 1 \pmod{p - 1} \in \{0, 1, \dots, p - 2\}$. Deduce that $p - 1 \nmid pq - 1$.
 - (d) Use the above to show that there is an *a* with gcd(a, pq) = 1 and $a^{pq-1} \not\equiv 1 \pmod{pq}$.
 - (e) Deduce from the above that a Carmichael number must have at least 3 distinct prime factors.
- (4) (Cool-down question.) Suppose that $a, k, \ell, m, n \in \mathbb{N}$ with $a^k \equiv 1 \pmod{m}$ and $a^\ell \equiv 1 \pmod{n}$. Prove that
 - (a) $a^{\operatorname{lcm}(k,\ell)} \equiv 1 \pmod{\operatorname{lcm}(m,n)};$
 - (b) $a^{\operatorname{gcd}(k,\ell)} \equiv 1 \pmod{\operatorname{gcd}(m,n)}$.

Handin: due Friday, week 7, 2 Nov, before 12.10 lecture. Please hand it in at the lecture The squarefree part of n

You are expected to write clearly and legibly, giving thought to the presentation of your answer as a document written in mathematical English.

- (5) (a) Show that every positive integer n can be written uniquely in the form $n = n_1 n_2^2$, where n_1 is squarefree.
 - Let us denote n_1 by g(n), the squarefree part of n.
 - (b) Prove that g(n) is a multiplicative function.
 - (c) Find the Euler product for $D_g(s)$.
 - (d) Prove that $D_g(s) = \zeta(2s)\zeta(s-1)/\zeta(2s-2)$.

Problems on congruences

- (6) Let m_1, \ldots, m_n be pairwise relatively prime. Show that as x runs through the integers $x = 1, 2, 3, \ldots, m_1 m_2 \cdots m_n$, the *n*-tuples $(x \mod m_1, x \mod m_2, \ldots, x \mod m_n)$ run through all *n*-tuples in $\prod_{i=1}^n \{0, 1, \ldots, m_i 1\}$.
- (7) Show that the equation $x^y \equiv 2 \pmod{19}$ has a solution in integers $\{x, y\}$ iff x is congruent to a primitive root mod 19. Deduce that then y is uniquely specified mod 18.
- (8) Wilson's Theorem. This states that, for a prime p, we have (p-1)! ≡ -1 (mod p). Prove Wilson's Theorem in (at least!) two different ways.
 [Suggestions: (i) Factorize x^{p-1} 1 over F_p. (ii) Try to pair up a ∈ {1,..., p-1} with its multiplicative inverse.]
- (9) (a) Find a primitive root for the prime 23.
 - (b) How many such primitive roots are there?
 - (c) Find them all.
 - (d) Find all the quadratic residues and all the quadratic non-residues mod 23.
- (10) Solve the equation $x^6 = 7$ in \mathbb{F}_{19} , i.e. the equation $x^6 \equiv 7 \pmod{19}$ for $x \in \{0, 1, \dots, 18\}$.
- (11) (a) Let an integer n > 1 be given, and let p be its smallest prime factor. Show that there can be at most p-1 consecutive positive integers coprime to n.
 - (b) Show further that the number p-1 in (a) cannot be decreased, by exhibiting p-1 consecutive positive integers coprime n.
 - (c) What is gcd(p-1, n)?
 - (d) Show that $2^n \not\equiv 1 \pmod{n}$.

Problems on arithmetic functions

- (12) (a) Let a divisor d of n be given. Among the integers $k = 1, 2, \ldots, n$ show that $\varphi(n/d)$ of them have gcd(k, n) = d.

 - (b) Deduce that $\sum_{d|n} \varphi(d) = n$. (c) Deduce that $\varphi(n) = \sum_{d|n} d\mu(n/d)$.
- (13) (a) Prove that $\sum_{d|n} \mu(d) = \Delta(n)$, the 1-detecting function.
 - (b) Let g be any function $\mathbb{R}_{\geq 0} \to \mathbb{R}$, and put $G(x) = \sum_{n \leq x} g(x/n)$, the sum being taken over all positive integers $n \leq x$. Prove that if $x \geq 1$ then g(x) = $\sum_{n \le x} \mu(n) G(x/n).$
- (14) (a) For which integers n is $\tau(n)$ odd? Here $\tau(n)$ is the number of (positive) divisors of n.
 - (b) Prove that $\sum_{k|n} \tau(k)^3 = \left(\sum_{k|n} \tau(k)\right)^2$. [Note that both sides of the equation are multiplicative functions of n.]
- (15) (a) An arithmetic function f(n) is said to be strongly multiplicative if f(nm) =f(n)f(m) for all $n,m \in \mathbb{N}$. Show that a strongly multiplicative function is completely determined by its values at primes.
 - (b) Show that if f(n) is a strongly multiplicative function then the Euler product of its Dirichlet function $D_f(s)$ is of the form $\prod_p \left(1 - \frac{f(p)}{p^s}\right)^{-1}$.
- (16) Strengthening Euler's Theorem. Suppose that n factorizes as $n = p_1^{f_1} \cdots p_k^{f_k}$. Show that then, for gcd(a, n) = 1, $a^N = 1 \pmod{n}$, where

$$N = \operatorname{lcm}(p_1^{f_1} - p_1^{f_1 - 1}, p_2^{f_2} - p_2^{f_2 - 1}, \dots, p_k^{f_k} - p_k^{f_k - 1})$$

For which n is this result no stronger than Euler's theorem $a^{\varphi(n)} = 1 \pmod{n}$?

(17) For two arithmetic functions A(n) and B(n) show that

$$\sum_{d|n} A(d)B(n/d) = \sum_{d|n} A(n/d)B(d)$$

- (18) (a) Find the Euler product for $D_{|\mu|}(s) = \sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^s}$. (b) Prove that $D_{|\mu|}(s) = \zeta(s)/\zeta(2s)$.
- (19) Let $\omega(n)$ denote the number of prime factors of n. Show that the function $e^{\omega(n)}$ is a multiplicative function.
- (20) Let f be any arithmetic function. (a) Show that $\sum_{n \le x} \sum_{k \mid n} f(k) = \sum_{n < x} f(n) \left\lfloor \frac{x}{n} \right\rfloor$.

- (b) Now put $F(x) = \sum_{n \le x} f(n)$. Deduce that $\sum_{n \le x} f(n) \lfloor \frac{x}{n} \rfloor = \sum_{n \le x} F\left(\frac{x}{n}\right)$.
- (21) (a) Prove that for $x \ge 1$ we have $\sum_{n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1$. (b) (Harder) Deduce that for all $x \ge \overline{1}$ we have

$$\left|\sum_{n \le x} \frac{\mu(n)}{n}\right| \le 1$$

- (22) The Dirichlet series $D_f(s)$ of a certain arithmetic function f(n) has Euler product $\prod_p \left(1 - \frac{1}{p^s} + \frac{1}{p^{2s}} \right).$
 - (a) Show that $f(n) \neq 0$ iff n is "cube-free", and give a precise definition of this term.
 - (b) Find an explicit description of f(n).
 - (c) Find the Euler product for $D_{|f|}(s) = \sum_{n=1}^{\infty} \frac{|f(n)|}{n^s}$. (d) Prove that $D_{|f|}(2s) = D_{|f|}(s)D_f(s)$.

Problems around primality testing

(23) Fast exponentiation: Computing a^r by the SX method.

Let $a \in \mathbb{Z}, r \in \mathbb{N}$. Write r in binary as $r = b_k b_{k-1} \cdots b_1 b_0$, with all $b_i \in \{0, 1\}$. From the binary string $b_k b_{k-1} \cdots b_1 b_0$ produce a string of S's and X's by replacing each 0 by S and each 1 by SX. Now, starting with A = 1 and working from left to right, interpret S as $A \to A^2$ (i.e. replace A by A^2), and X as $A \to Aa$ (multiply A by a).

Prove that the result of this algorithm is indeed a^r .

This algorithm is particularly useful for exponentiation $(\mod n)$, but it works for any associative multiplication on any set. Note that the leading S does nothing, so can be omitted.]

- (24) Compute $2^{90} \pmod{91}$ by the SX method. What does this tell you about 91? [Maple: convert(n, binary);]
- (25) (a) Show that if n is not a pseudoprime to base bb' where gcd(b, b') = 1 then it is not a pseudoprime either to base b or to base b'.
 - (b) Show that if n is not a pseudoprime to base b^k where k > 1 then it is not a pseudoprime to base b.
 - [Thus it's always enough to use the pseudoprime test with prime bases.]
 - (c) Repeat (a) and (b) with 'pseudoprime' replaced by 'strong pseudoprime'.

- (26) Show that the Carmichael number 561 is not a strong pseudoprime to base 2, but that 2047 is. Show, however, that 2047 is not a strong pseudoprime to base 3.[Useful Maple: with(numtheory);?phi,?mod]
- (27) (a) Prove that if 6k + 1, 12k + 1 and 18k + 1 are all prime, then their product is a Carmichael number. [Use Q 16]
 - (b) Show that the first few values of k for which (a) gives Carmichael numbers are k = 1, 6, 35, 45, What is the next such value of k?
 [This is the integer sequence A046025- via "integer sequences", found e.g., by Google]
 [Maple ?isprime]

 $/home/chris/NTh/wkp3_12.tex$