Mathematics 4: Number Theory Problem Sheet 3

Workshop 26 Oct 2012

The aim of this workshop is to show that Carmichael numbers are squarefree
and have at least 3 distinct prime factors.

(1) (Warm-up question.) Show that n > 1 is prime iff ¢! =1 (mod n) for 1 < a <
n— 1.

Recall that a positive integer is said to be squarefree if it is not divisible by the
square of any prime number.

Recall too that a Carmichael number is a composite number n with the property
that for every integer a coprime to n we have a" ! =1 (mod n).

(2) Proving that Carmichael numbers are squarefree.
(a) Show that a given nonsquarefree number n can be written in the form n = p*N
for some prime p and integers N and ¢ with ¢ > 2 and ged(p, N) = 1.
(b) Show that (1+ pN)"~1 #1 (mod p?).
(c¢) Deduce that Carmichael numbers are squarefree.

(3) Proving that Carmichael numbers have at least 3 distinct prime factors.

(a) Let p and ¢ be distinct primes. Prove that if ged(a, pg) = 1 then a@'*m®—1a—1) =
1 (mod pq).

(b) Now let g be a primitive root (mod p) and h be a primitive root (mod g).
Using g and h, apply the Chinese Remainder Theorem to specify an integer a
whose order (mod pq) is (exactly) lem(p — 1,q — 1).

(c) Now suppose that p is the larger of the primes p and q.

Calculate pg — 1 (mod p —1) € {0,1,...,p— 2}.
Deduce that p — 1t pg — 1.

(d) Use the above to show that there is an a with ged(a,pg) = 1 and a??™! # 1
(mod pq).

(e) Deduce from the above that a Carmichael number must have at least 3 distinct
prime factors.

(4) (Cool-down question.) Suppose that a,k,¢,m,n € N with a* =1 (mod m) and
a* =1 (mod n). Prove that
(a) a*™*®9 =1 (mod lem(m,n));

(b) atd®H =1 (mod ged(m,n)).



Handin: due Friday, week 7, 2 Nov, before 12.10
lecture. Please hand it in at the lecture

The squarefree part of n

You are expected to write clearly and legibly, giving thought to the presentation of your answer
as a document written in mathematical English.
(5) (a) Show that every positive integer n can be written uniquely in the form n =
nin3, where n, is squarefree.
Let us denote n; by g(n), the squarefree part of n.
(b) Prove that g(n) is a multiplicative function.
(c) Find the Euler product for D,(s).
(d) Prove that Dy(s) = ((2s)((s—1)/¢(2s — 2).

Problems on congruences

(6) Let my,...,m, be pairwise relatively prime. Show that as x runs through the
integers x = 1,2,3,...,mymy---m,, the n-tuples (z mod my,x mod my,...,x
mod m,,) run through all n-tuples in [;_,{0,1,...,m; — 1}.

(7) Show that the equation z¥ = 2 (mod 19) has a solution in integers {z,y} iff x is
congruent to a primitive root mod 19. Deduce that then y is uniquely specified
mod 18.

(8) Wilson’s Theorem. This states that, for a prime p, we have (p —1)! = —1 (mod p).
Prove Wilson’s Theorem in (at least!) two different ways.
[Suggestions: (i) Factorize 2/~ —1 over F,. (ii) Try to pairupa € {1,...,p—1}

with its multiplicative inverse.|

(9) (a) Find a primitive root for the prime 23.

(b) How many such primitive roots are there?

(c¢) Find them all.

(d) Find all the quadratic residues and all the quadratic non-residues mod 23.

(10) Solve the equation 2% = 7 in Fy, i.e. the equation 2° = 7 (mod 19) for z €
0,1,...,18}.

(11) (a) Let an integer n > 1 be given, and let p be its smallest prime factor. Show
that there can be at most p — 1 consecutive positive integers coprime to n.
(b) Show further that the number p — 1 in (a) cannot be decreased, by exhibiting
p — 1 consecutive positive integers coprime n.
(c) What is ged(p — 1,n)?
(d) Show that 2" # 1 (mod n).



Problems on arithmetic functions

(12) (a) Let a divisor d of n be given. Among the integers k = 1,2,...,n show that
p(n/d) of them have ged(k,n) = d.
(b) Deduce that 3, »(d) = n.
(¢) Deduce that p(n) = 3_,, du(n/d).

(13) (a) Prove that ), u(d) = A(n), the 1-detecting function.
(b) Let g be any function Ry — R, and put G(z) = >, , g(x/n), the sum
being taken over all positive integers n < x. Prove that if > 1 then g(z) =

2 n<e (NG (/7).

(14) (a) For which integers n is 7(n) odd? Here 7(n) is the number of (positive) divisors
of n.

(b) Prove that Yy, (k)" = (S, (k) )

[Note that both sides of the equation are multiplicative functions of n.|

(15) (a) An arithmetic function f(n) is said to be strongly multiplicative if f(nm) =
f(n)f(m) for all n,m € N. Show that a strongly multiplicative function is
completely determined by its values at primes.

(b) Show that if f(n) is a strongly multiplicative function then the Euler product

-1
of its Dirichlet function Dy(s) is of the form [], (1 - %) :

(16) Strengthening Euler’s Theorem. Suppose that n factorizes as n = p{l = -p{’“. Show
that then, for ged(a,n) = 1, a™ =1 (mod n), where

N =lem(p{' —=p{* "pt* —p3 'l =T,
For which n is this result no stronger than Euler’s theorem a#™ = 1 (mod n)?
(17) For two arithmetic functions A(n) and B(n) show that
> A(d)B(n/d) = A(n/d)B(d).
dln dln

(18) (a) Find the Euler product for Dy, (s) =" ° lutn)|.
(b) Prove that D), (s) = ((s)/¢(2s).

(19) Let w(n) denote the number of prime factors of n. Show that the function e~ is
a multiplicative function.

(20) Let f be any arithmetic function.



(b) Now put F(x) = anx f(n). Deduce that anx f(n) L%J = anxF (%)

(21) (a) Prove that for z > 1 we have ) _ u(n) [Z] =1.
(b) (Harder) Deduce that for all > 1 we have

ZM

n<x

<1

(22) The Dirichlet series D¢(s) of a certain arithmetic function f(n) has Euler product
1,
I, (1 N pQS)'
a ow that f(n Ul n 1s “cube-iree”, and give a precise definition of this
Show that f 0 iff n is “cube-free”, and gi ise definiti f thi
term.
(b) Find an explicit description of f(n).
(c) Find the Euler product for Djs(s) = ° F(m)].
(d) Prove that D) (2s) = D)s(s)Dy(s).

Problems around primality testing

(23) Fast exponentiation: Computing a” by the SX method.

Let a € Z,r € N. Write r in binary as r = bgbx_1 - - - b1by, with all b; € {0, 1}.
From the binary string bpby_1 - - - biby produce a string of S’s and X’s by replacing
each 0 by S and each 1 by SX. Now, starting with A = 1 and working from left to
right, interpret S as A — A? (i.e. replace A by A?), and X as A — Aa (multiply
A by a).

Prove that the result of this algorithm is indeed a”.

[This algorithm is particularly useful for exponentiation (mod n), but it works
for any associative multiplication on any set. Note that the leading .S does nothing,
so can be omitted.]

(24) Compute 2 (mod 91) by the SX method. What does this tell you about 917?
[Maple: convert(n,binary) ;]

(25) (a) Show that if n is not a pseudoprime to base bb’ where ged (b, ') = 1 then it is
not a pseudoprime either to base b or to base bv'.

(b) Show that if n is not a pseudoprime to base b* where k > 1 then it is not a
pseudoprime to base b.
[Thus it’s always enough to use the pseudoprime test with prime bases.]

(c) Repeat (a) and (b) with ‘pseudoprime’ replaced by ‘strong pseudoprime’.
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(26) Show that the Carmichael number 561 is not a strong pseudoprime to base 2, but
that 2047 is. Show, however, that 2047 is not a strong pseudoprime to base 3.
[Useful Maple: with(numtheory) ;?phi, ?mod]

(27) (a) Prove that if 6k + 1,12k + 1 and 18k + 1 are all prime, then their product is a
Carmichael number. [Use Q) 16]

(b) Show that the first few values of k for which (a) gives Carmichael numbers are
k=1,6,35,45,.... What is the next such value of k7
[This is the integer sequence A046025— via “integer sequences”, found e.g., by
Google]
[Maple ?isprime]
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