Workshop 23 Nov 2012

Working with *p*-adic numbers

Recall that the standard form of a nonzero p-adic number a is $a = p^k(a_0 + a_1p + \cdots + a_np^n + \ldots)$, where $k \in \mathbb{Z}$ and all the a_i are in $\{0, 1, 2, \ldots, p-1\}$, with $a_0 \neq 0$.

- (1) (a) Write 5 as a p-adic number in standard form.
 - (You will need to do the cases p = 2, p = 3, p = 5 and p > 5 separately.)
 - (b) Write -5 as a *p*-adic number in standard form.
- (2) Calculate 1/3 as a 5-adic number, and 1/5 as a 3-adic number.
- (3) In \mathbb{Q}_p , which rational number is represented by the sum

$$2 + 3p + 5p^{2} + 2p^{3} + 3p^{4} + 5p^{5} + 2p^{6} + 3p^{7} + 5p^{8} + \dots?$$

[Note: While this will be a standard representation of a *p*-adic number only for p > 5, it nevertheless gives a nonstandard representation of a *p*-adic number for p = 2, 3 and 5.]

- (4) For $\sqrt{7} = a_0 + a_1 + a_2 + a_3 + a_3 + a_4 + \dots$ in \mathbb{Q}_3 , find $a_0, a_1, a_2, a_3, a_4 \in \{0, 1, 2\}$.
- (5) The field $\mathbb{Q}_p(\sqrt{p})$
 - (a) Let p be prime. Show that there is no $x \in \mathbb{Q}_p$ with $x^2 = p$, and so $\mathbb{Q}_p(\sqrt{p})$ is a quadratic extension of \mathbb{Q}_p .
 - (b) Show how to extend $|\cdot|_p$ to $\mathbb{Q}_p(\sqrt{p})$ (i.e., to define $|\cdot|_p$ on $\mathbb{Q}_p(\sqrt{p})$ so that it still equals the original $|\cdot|_p$ on $\mathbb{Q}_p \subset \mathbb{Q}_p(\sqrt{p})$.)
 - (c) Show that every nonzero element of $\mathbb{Q}_p(\sqrt{p})$ can be written in standard form

$$p^{k} (a_{0} + a_{1}p^{1} + a_{2}p^{2} + \dots + a_{i}p^{i} + \dots + \sqrt{p}(b_{0} + b_{1}p^{1} + b_{2}p^{2} + \dots + b_{i}p^{i} + \dots)),$$

where $k \in \mathbb{Z}$ and all the a_i are in $\{0, 1, 2, \dots, p-1\}$, with a_0 and b_0 not both 0.

Handin: due Friday, week 11, 30 Nov, before 12.10 lecture. Please hand it in at the lecture The field $\mathbb{Q}_p(\sqrt{n})$

You are expected to write clearly and legibly, giving thought to the presentation of your answer as a document written in mathematical English.

- (6) (a) Let p be an odd prime, and n > 0 be a fixed quadratic nonresidue mod p. Show that there is no $x \in \mathbb{Q}_p$ with $x^2 = n$, and so $\mathbb{Q}_p(\sqrt{n})$ is a quadratic extension of \mathbb{Q}_p .
 - (b) Show how to extend $|\cdot|_p$ to $\mathbb{Q}_p(\sqrt{n})$ (i.e., to define $|\cdot|_p$ on $\mathbb{Q}_p(\sqrt{n})$ so that it still equals the original $|\cdot|_p$ on $\mathbb{Q}_p \subset \mathbb{Q}_p(\sqrt{n})$.) To do this, apply the valuation axioms ZER, HOM and MAX to show successively that
 - $|\sqrt{n}|_p = 1;$
 - $|a + b\sqrt{n}|_p \le 1$ for $a, b \in \mathbb{Z}_p$;
 - For $a, b \in \mathbb{Z}_p$, we have $|a^2 nb^2|_p = 1$ unless $|a|_p < 1$ and $|b|_p < 1$;
 - For $a, b \in \mathbb{Z}_p$, we have $|a \pm b\sqrt{n}|_p = 1$ unless $|a|_p < 1$ and $|b|_p < 1$;
 - For $a, b \in \mathbb{Z}_p$ not both divisible by p we have $|p^k(a+b\sqrt{n})|_p = p^{-k}$;
 - (c) Show that every nonzero number in $\mathbb{Q}_p(\sqrt{n})$ can be written in the form

$$p^{k}(A_{0} + A_{1}p + A_{2}p^{2} + \dots + A_{i}p^{i} + \dots),$$

where $k \in \mathbb{Z}$, and all $A_i = a_i + b_i \sqrt{n}$, where $0 \le a_i \le p - 1, 0 \le b_i \le p - 1$, with $A_0 \ne 0$.

- (d) Let n' be any other quadratic nonresidue of p. Show that $\sqrt{n'} \in \mathbb{Q}_p(\sqrt{n})$.
- (e) Show that $\mathbb{Q}_p(\sqrt{n}) = \mathbb{Q}_p(\sqrt{n'}).$

Further *p*-adic problems

- (7) The field $\mathbb{Q}_p(\sqrt{np})$.
 - (a) Let p be an odd prime, and n > 0 be a fixed quadratic nonresidue mod p. Show that there is no $x \in \mathbb{Q}_p$ with $x^2 = np$, and so $\mathbb{Q}_p(\sqrt{np})$ is a quadratic extension of \mathbb{Q}_p .
 - (b) Show how to extend $|\cdot|_p$ to $\mathbb{Q}_p(\sqrt{np})$.
 - (c) Show that every nonzero element of $\mathbb{Q}_p(\sqrt{np})$ can be written in standard form

$$p^{k}(a_{0}+a_{1}p+a_{2}p^{2}+\cdots+\sqrt{np}(b_{0}+b_{1}p+b_{2}p^{2}+\dots)),$$

where $k \in \mathbb{Z}$ and all the a_i and b_i are in $\{0, 1, 2, \ldots, p-1\}$, with a_0 and b_0 not both 0.

(8) \mathbb{Q}_p has only three quadratic extensions.

Let p be an odd prime. Recall from lectures that a p-adic integer $\beta = a_0 + a_1p + a_2p^2 + \ldots$ not divisible by p^2 (ie with β/p^2 not a p-adic integer) is a square iff a_0 is nonzero and a quadratic residue (mod p).

- (a) Let $n \in \{1, 2, ..., p-1\}$ be a fixed quadratic nonresidue (mod p). Show that $x^2 = \beta$ has a solution in one of the fields $\mathbb{Q}_p, \mathbb{Q}_p(\sqrt{n}), \mathbb{Q}_p(\sqrt{p})$ or $\mathbb{Q}_p(\sqrt{np})$.
- (b) Deduce that there are at most 3 quadratic extensions of \mathbb{Q}_p .
- (c) Prove that the fields in (a) are distinct, so that \mathbb{Q}_p has exactly 3 quadratic extensions.
- (9) \mathbb{Q}_2 has 7 quadratic extensions.

[Recall from lectures that a 2-adic integer not divisible by 4 is a square iff it is congruent to 1 (mod 8).]

- (a) Show that every unit in the 2-adic integers \mathbb{Z}_2 is congruent (mod 8) to some $u \in \{1, -1, 3-3\}$.
- (b) Show that every number in \mathbb{Q}_2 can be written in the form $2^{\nu}us^2$ for some u as in (a), $\nu \in \mathbb{Z}$ and some unit $s \in \mathbb{Z}_2$.
- (c) Deduce that there are exactly 7 quadratic extensions of \mathbb{Q}_2 , namely $\mathbb{Q}_2(\sqrt{k})$ for k = 2, -1, -2, 3, 6, -3 or -6.
- (10) Given $c \in \mathbb{Q}_p$, $c \neq 0$, show that every $c' \in \mathbb{Q}_p$ sufficiently close to c (in fact, with $|c c'|_p < |c|_p$) has $|c'|_p = |c|_p$.
- (11) Show that in \mathbb{Q}_p every ball $B(a, r) := \{x \in \mathbb{Q}_p : |x a|_p \le r\}$ is both open (contains a ball of positive radius around each point) and closed (contains all its limit points).
- (12) Series in \mathbb{Q}_p whose terms tend to zero always converge! Suppose that $c_1, c_2, \ldots, c_n, \cdots \in \mathbb{Q}_p$ with $|c_n|_p \to 0$ as $n \to \infty$. Show that the partial sums $s_n = c_1 + \cdots + c_n$ form a p-Cauchy sequence. Deduce that $\sum_n c_n$ converges in \mathbb{Q}_p .

Conversely, show that the condition $|c_n|_p \to 0 \ (n \to \infty)$ is necessary for convergence of the series. [The proof of this last part is the same as for the real case.]

(13) \mathbb{Q}_p contains all the (p-1)-th roots of unity.

Let p be an odd prime.

- (a) Let $g \in \{1, 2, ..., p-1\}$ be a primitive root (mod p). Show that there is a p-adic number $\omega = g + a_1 p + a_2 p^2 + \cdots$ such that $\omega^{p-1} = 1$.
- (b) (easy!) Deduce the fact that \mathbb{Q}_p contains p-1 (p-1)-th roots of unity.
- (c) Show that every number in \mathbb{Q}_p^{-} has an alternative representation $\sum_{i=-k}^{\infty} a_i p^i$ for some $k \in \mathbb{Z}$, where $a_i \in \{0, 1, \omega, \omega^2, \dots, \omega^{p-2}\}$.

(14) The 6-adic numbers.

Define the ring \mathbb{Q}_6 of 6-adic numbers as for the *p*-adic numbers but with 6 replacing *p*. Show that \mathbb{Q}_6 not a field by finding a 6-adic number $\alpha \neq 0, -1$ satisfying $\alpha(\alpha + 1) = 0$.

[Suggestion: put $\alpha = 2 + a_1.6 + a_2.6^2 + \cdots$, and show that you can solve $\alpha(\alpha + 1) = 0 \pmod{6^k}$ for $k = 2, 3, \ldots$ (This shows too that the 6-adic integers don't form an integral domain.)]