
Mathematics 4: Number Theory Problem Sheet 5

Workshop 23 Nov 2012

Working with p-adic numbers

Recall that the standard form of a nonzero p-adic number a is a = pk(a0 + a1p + · · · +
anpn + . . . ), where k ∈ Z and all the ai are in {0, 1, 2, . . . , p − 1}, with a0 6= 0.

(1) (a) Write 5 as a p-adic number in standard form.
(You will need to do the cases p = 2, p = 3, p = 5 and p > 5 separately.)

(b) Write −5 as a p-adic number in standard form.

(2) Calculate 1/3 as a 5-adic number, and 1/5 as a 3-adic number.

(3) In Qp, which rational number is represented by the sum

2 + 3p + 5p2 + 2p3 + 3p4 + 5p5 + 2p6 + 3p7 + 5p8 + . . .?

[Note: While this will be a standard representation of a p-adic number only for
p > 5, it nevertheless gives a nonstandard representation of a p-adic number for
p = 2, 3 and 5.]

(4) For
√

7 = a0 + a13 + a23
2 + a33

3 + a43
4 + . . . in Q3, find a0, a1, a2, a3, a4 ∈ {0, 1, 2}.

(5) The field Qp(
√

p)
(a) Let p be prime. Show that there is no x ∈ Qp with x2 = p, and so Qp(

√
p) is

a quadratic extension of Qp.
(b) Show how to extend | · |p to Qp(

√
p) (i.e., to define | · |p on Qp(

√
p) so that it

still equals the original | · |p on Qp ⊂ Qp(
√

p).)
(c) Show that every nonzero element of Qp(

√
p) can be written in standard form

pk
(

a0 + a1p
1 + a2p

2 + · · ·+ aip
i + · · ·+ √

p(b0 + b1p
1 + b2p

2 + · · ·+ bip
i + . . . )

)

,

where k ∈ Z and all the ai are in {0, 1, 2, . . . , p − 1}, with a0 and b0 not both
0.
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Handin: due Friday, week 11, 30 Nov, before

12.10 lecture. Please hand it in at the lecture
The field Qp(

√
n)

You are expected to write clearly and legibly, giving thought to the presentation of your answer

as a document written in mathematical English.

(6) (a) Let p be an odd prime, and n > 0 be a fixed quadratic nonresidue mod p.
Show that there is no x ∈ Qp with x2 = n, and so Qp(

√
n) is a quadratic

extension of Qp.
(b) Show how to extend | · |p to Qp(

√
n) (i.e., to define | · |p on Qp(

√
n) so that it

still equals the original | · |p on Qp ⊂ Qp(
√

n).) To do this, apply the valuation
axioms ZER, HOM and MAX to show successively that

• |√n|p = 1;
• |a + b

√
n|p ≤ 1 for a, b ∈ Zp;

• For a, b ∈ Zp, we have |a2 − nb2|p = 1 unless |a|p < 1 and |b|p < 1;
• For a, b ∈ Zp, we have |a ± b

√
n|p = 1 unless |a|p < 1 and |b|p < 1;

• For a, b ∈ Zp not both divisible by p we have |pk(a + b
√

n)|p = p−k ;
(c) Show that every nonzero number in Qp(

√
n) can be written in the form

pk(A0 + A1p + A2p
2 + · · · + Aip

i + . . . ),

where k ∈ Z, and all Ai = ai + bi

√
n, where 0 ≤ ai ≤ p − 1, 0 ≤ bi ≤ p − 1,

with A0 6= 0.
(d) Let n′ be any other quadratic nonresidue of p. Show that

√
n′ ∈ Qp(

√
n).

(e) Show that Qp(
√

n) = Qp(
√

n′).

Further p-adic problems

(7) The field Qp(
√

np).
(a) Let p be an odd prime, and n > 0 be a fixed quadratic nonresidue mod p.

Show that there is no x ∈ Qp with x2 = np, and so Qp(
√

np) is a quadratic
extension of Qp.

(b) Show how to extend | · |p to Qp(
√

np).
(c) Show that every nonzero element of Qp(

√
np) can be written in standard form

pk
(

a0 + a1p + a2p
2 + · · ·+ √

np(b0 + b1p + b2p
2 + . . . )

)

,

where k ∈ Z and all the ai and bi are in {0, 1, 2, . . . , p− 1}, with a0 and b0 not
both 0.

(8) Qp has only three quadratic extensions.

Let p be an odd prime. Recall from lectures that a p-adic integer β = a0 + a1p +
a2p

2 + . . . not divisible by p2 (ie with β/p2 not a p-adic integer) is a square iff a0

is nonzero and a quadratic residue (mod p).
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(a) Let n ∈ {1, 2, . . . , p− 1} be a fixed quadratic nonresidue (mod p). Show that
x2 = β has a solution in one of the fields Qp, Qp(

√
n), Qp(

√
p) or Qp(

√
np).

(b) Deduce that there are at most 3 quadratic extensions of Qp.
(c) Prove that the fields in (a) are distinct, so that Qp has exactly 3 quadratic

extensions.

(9) Q2 has 7 quadratic extensions.

[Recall from lectures that a 2-adic integer not divisible by 4 is a square iff it is
congruent to 1 (mod 8).]
(a) Show that every unit in the 2-adic integers Z2 is congruent (mod 8) to some

u ∈ {1,−1, 3 − 3}.
(b) Show that every number in Q2 can be written in the form 2νus2 for some u as

in (a), ν ∈ Z and some unit s ∈ Z2.

(c) Deduce that there are exactly 7 quadratic extensions of Q2, namely Q2(
√

k)
for k = 2,−1,−2, 3, 6,−3 or −6.

(10) Given c ∈ Qp, c 6= 0, show that every c′ ∈ Qp sufficiently close to c (in fact, with
|c − c′|p < |c|p) has |c′|p = |c|p.

(11) Show that in Qp every ball B(a, r) := {x ∈ Qp : |x − a|p ≤ r} is both open (contains

a ball of positive radius around each point) and closed (contains all its limit points).

(12) Series in Qp whose terms tend to zero always converge!

Suppose that c1, c2, . . . , cn, · · · ∈ Qp with |cn|p → 0 as n → ∞. Show that the

partial sums sn = c1 + · · · + cn form a p-Cauchy sequence. Deduce that
∑

n cn

converges in Qp.
Conversely, show that the condition |cn|p → 0 (n → ∞) is necessary for conver-

gence of the series. [The proof of this last part is the same as for the real case.]

(13) Qp contains all the (p − 1)-th roots of unity.

Let p be an odd prime.
(a) Let g ∈ {1, 2, . . . , p − 1} be a primitive root (mod p). Show that there is a

p-adic number ω = g + a1p + a2p
2 + · · · such that ωp−1 = 1.

(b) (easy!) Deduce the fact that Qp contains p − 1 (p − 1)-th roots of unity.
(c) Show that every number in Qp has an alternative representation

∑

∞

i=−k
aip

i

for some k ∈ Z, where ai ∈ {0, 1, ω, ω2, . . . , ωp−2}.

(14) The 6-adic numbers.
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Define the ring Q6 of 6-adic numbers as for the p-adic numbers but with 6 re-
placing p. Show that Q6 not a field by finding a 6-adic number α 6= 0,−1 satisfying
α(α + 1) = 0.

[Suggestion: put α = 2+a1.6+a2.6
2+· · · , and show that you can solve α(α+1) =

0 (mod 6k) for k = 2, 3, . . . . (This shows too that the 6-adic integers don’t form
an integral domain.)]


