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Abstract

The problem of describing the set of all small Mahler measures of polynomials
with integer coefficients is a difficult one. One approach is to look for possible can-
didates among polynomials attached to combinatorial objects. In this paper we study
the Mahler measure of polynomials coming from non-bipartite graphs: we classify all
such graphs that have Mahler measure belowφ = (1 +

√
5)/2. The bound ofφ is

natural in that it is found to be the smallest limit point of the set of Mahler measures
of connected non-bipartite graphs. (The bipartite case wascovered in an earlier paper
by the second and third authors.)

2010 Mathematics Subject Classification:Primary 11R06, 05C50; Secondary 11C99.

1. Introduction

For a monic polynomialp(z) ∈ Z[z], its Mahler measure, writtenM(p), is defined by

M(p) =
∏

p(α)=0

max (1, |α|) , (1.1)

where multiple roots contribute to the product according totheir multiplicity. The descrip-
tion of all ‘small’ Mahler measures of polynomials inZ[z] is a notorious open problem: see
[Sm2] for a recent survey of results. Forp(z) irreducible and6= z or z − 1, Breusch [Br]
showed that unlessp(z) is a reciprocal polynomial (meaning thatzdeg(p)p(1/z) = p(z))
one hasM(p) ≥ 1.1796 . . . ; this constant was later improved ([Sm1]) to the best-possible
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oneM(z3 − z − 1) = 1.3247 . . . . The smallest-known Mahler measure greater than1 is
1.17628 . . . , the larger real root of what is now called ‘Lehmer’s polynomial’, the recipro-
cal polynomialL(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1 [L]. Is this the smallest
Mahler measure greater than1? This celebrated question remains unresolved, although sev-
eral interesting special cases have been settled [Sm2, MS3]. In view of Breusch’s result,
the hunt for small values ofM(p) > 1 can be restricted to reciprocal polynomials.

A fruitful way of studying certain algebraic objects is by associating them with combi-
natorial structures. Indeed Lehmer’s polynomial itself was discovered in this way:L(−z)
is the Alexander polynomial of a pretzel knot [R]. There is a natural way to attach re-
ciprocal polynomials to graphs, and it becomes an interesting question to ask about the
spectrum of possible Mahler measures for reciprocal polynomials that arise in this way (not
all reciprocal polynomials do, butL(z) is an example of one that does).

Let G be a finite graph, withn vertices. (For definitions of graph-theoretical terms,
see [B] or [GR].) The notion of theMahler measure of a graph was introduced in [MS1].
If χG(x) is the characteristic polynomial ofG, thenG has theassociated reciprocal poly-
nomial RG(z) = znχG(z + 1/z). The Mahler measure of a graphG, written M(G), is
defined to be the Mahler of measure of its associated reciprocal polynomial.

It is convenient to translate (1.1), withp = RG, into an equation involving the eigen-
values ofG:

M(G) =
∏

χ
G(λ)=0, |λ|>2

1
2

(
|λ| +

√
λ2 − 4

)
. (1.2)

Again one treats multiple roots according to multiplicity.As a shorthand, we shall say
simply that a graphG hassmall Mahler measure to mean thatM(G) < φ := (1 +

√
5)/2.

Bipartite graphs having small Mahler measure were classified in [MS1, Theorem 10.2]
(the word ‘bipartite’ was mistakenly omitted from the statement), and the remarks fol-
lowing it. If a graph is bipartite, then its roots are symmetric about the origin [CR], and
consequently having Mahler measure belowφ implies that the spectral radius is below
θ =

√
2 +

√
5 (with λ =

√
2 +

√
5 one has(λ +

√
λ2 − 4)/2 =

√
φ, and in the bipartite

case bothλ and−λ contribute to (1.2)). The set of connected graphs with largest eigen-
value in the interval(2, θ] is described completely in the survey paper of Cvetković and
Rowlinson [CvRo, Theorem 2.4], drawing on work of Brouwer and Neumaier [BN] and
Cvetković, Doob, and Gutman [CDG]. The work of [MS1] identifies the intersection of
this set of graphs with the set of those that have Mahler measure belowφ, and hence deals
with the bipartite case. But in the non-bipartite case, it ispossible for the spectral radius
to be larger, with the Mahler measure still belowφ. The current paper completes the clas-
sification of all graphs that have small Mahler measure by dealing with the non-bipartite
case.

Theorem 1.1. Every connected non-bipartite graph that has Mahler measure below φ =
(1 +

√
5)/2 is of one of the following types:

• an odd cycle;
• a ‘kite’ graph, shown in Figure 1;
• a ‘balloon’ graph, shown in Figure 2;
• one of eight sporadic examples, Spa, . . . , Sph, shown in Figure 3.
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Figure 1. The kite graphs:Ktn hasn vertices.
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Figure 2. The balloon graphs:Bl2n has2n vertices. The smallest balloon is also a kite.

Following [MS1], we shall call a graphcyclotomic if all its eigenvalues are in the in-
terval [−2, 2]. Equivalently,G is cyclotomic if and only ifM(G) = 1. Cyclotomic graphs
were classified by Smith [S]. In particular, he showed that the only connected cyclotomic
non-bipartite graphs are the odd cycles.

From Theorem 1.1 and [MS1, Theorem 10.2], it is easy to describe all (not necessarily
connected) non-bipartite graphs of small Mahler measure. See also the remark in [MS1],
following Theorem 10.2, concerning non-connected bipartite graphs of small Mahler mea-
sure.
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Figure 3. The sporadic graphsSpa, . . . ,Sph.
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Corollary 1.1. Every non-bipartite graph of small Mahler measure is of one of the follow-
ing types:

• A (not necessarily connected) bipartite graph of small Mahler measure, with one or
more additional connected components consisting of odd cycles;

• A graph with one connected component as given in Theorem 1.1, with any other
components cyclotomic;

• A graph with one connected component Bl8, one connected component the tree

s s s s s s s s

sHH s , with any other components cyclotomic.

As an immediate consequence of Theorem 1.1, and the computations involved in its
proof, we find the following lower bound on Mahler measures greater than1 for connected
non-bipartite graphs.

Corollary 1.2. Let G be a connected non-bipartite graph. Then either M(G) = 1 or
M(G) ≥ M(Bl8) = 1.35098 . . . , the larger real root of z10 − z9 − z6 + z5 − z4 − z + 1.

We note that ifH is an induced subgraph ofG, then by interlacing [GR, Theorem 9.1]
one hasM(H) ≤ M(G).

All computations were performed using either PARI [P] or Maple [M].

2. Proof of Theorem 1.1

The plan of the proof is as follows. After Smith’s result [S] we are reduced to consider-
ing non-cyclotomic graphs. We prove that all kites (§2.1) and balloons (§2.2) have small
Mahler measure. We record the results of some computations (§2.3) that deal with all small
examples. We list some special graphs whose Mahler measure is not small (§2.4): by in-
terlacing these examples cannot appear as induced subgraphs of graphs that have small
Mahler measure. We then prove that any connected graph that has small Mahler measure
and contains a triangle must be a kite (Lemma 2.6). To complete the proof, we show that all
remaining cases of connected, non-bipartite graphs that have small Mahler measure are in
fact balloons (Lemma 2.8). The paper ends with the proof of Corollary 1.1, and some open
problems.

2.1. All kites have small Mahler measure

The spectrum of a kite is no doubt well-known and in any event is not difficult to derive.
For completeness we give a short argument that the Mahler measure of a kite is small.

The graphKtn is a line graph [GR,§1.7], so has all eigenvalues in the interval[−2,∞)
[B, Proposition 3.7]. Deleting one of the vertices in the triangle leaves a cyclotomic graph,
as is seen from Smith’s classification [S]. ButKtn itself is not one of Smith’s graphs, so
does not have all eigenvalues in[−2, 2], and so by interlacing [GR, Theorem 9.1.1]Ktn
has a unique eigenvalue larger than2, and this is the only eigenvalue that contributes to the
Mahler measure via (1.2). (In the language of [MS1],Ktn is aSalem graph.) Let λn be the
largest eigenvalue ofKtn.
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n M(Ktn) M(Bl2n)

2 1.5061. . .
3 1.4012. . .
4 1.5061. . . 1.3509. . .
5 1.5823. . . 1.5064. . .
6 1.6054. . . 1.5783. . .
7 1.6134. . . 1.6020. . .
8 1.6162. . . 1.6113. . .
9 1.6173. . . 1.6151. . .

10 1.6177. . . 1.6168. . .

Table 1. Mahler measures of small kites and balloons.

As n increases, so doesλn, and indeed it strictly increases [GR, Theorem 8.8.1(b)].
Write λn = zn + 1/zn, with zn > 1; thenzn also strictly increases withn, and equals the
Mahler measure ofKtn. By [MS1, Lemma 4.3], using the explicit formula in the proofof
[MS1, Lemma 4.1],zn converges to a root ofz2 − z − 1 = 0, and it must be the positive
rootφ. Hencezn = M(Ktn) < φ for all n ≥ 4, and we see thatφ is a limit point of the set
of Mahler measures of non-bipartite graphs.

Using Lemma 4.1 of [MS1], we compute that the reciprocal polynomial ofKtn is

z2n − 2z3 + 1 − z4(2z + 1)
z2n−6 − 1

z2 − 1
.

See Table 1 for the first few values ofM(Ktn).

2.2. All balloons have small Mahler measure

Balloons cause more trouble than kites, as (apart from smallcases) they have two eigenval-
ues outside the interval[−2, 2]. As indicated in Table 1, the Mahler measures of balloons
initially decrease as the number of vertices grows, reaching a minimum forBl8, then appear
to increase towardsφ. This we now prove.

Computing the characteristic polynomial by expanding along the row corresponding to
the leaf, one readily computes that the reciprocal polynomial of Bl2n is

z2n−1 − 1

z − 1
.
(z4 − z2 − 1)z2n−1 − (z4 + z2 − 1)

z + 1
.

Removing cyclotomic factors from this reciprocal polynomial, and multiplying byz + 1,
gives(z4−z2−1)z2n−1−(z4 +z2−1) = Pn(z), say. To show thatBl2n has small Mahler
measure, we must show thatM(Pn) < φ. Forn < 5, we check this by direct computation.
It remains to deal withn ≥ 5.

Deleting the vertex of valency3 leaves a (disconnected) cyclotomic graph, so by in-
terlacing Pn has at most two roots outside the unit disc. Note thatPn(−

√
φ) < 0,

Pn(−1) = 0, P ′
n(−1) = 9 − 2n < 0 for n ≥ 5, Pn(

√
φ) < 0, Pn(∞) = +∞, so

that for n ≥ 5, Pn has a rootz−n in (−√
φ,−1) and a rootz+

n in (
√

φ,∞), and these
account for all possible roots outside the unit disc.
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FromPn(z) = 0, we get

log

∣∣∣∣
z4 + z2 − 1

z4 − z2 − 1

∣∣∣∣
log |z2| =

2n − 1

2
. (2.3)

Puttingz2 = (1 + x)φ in (2.3), the left-hand side becomes

g(x) :=
log

∣∣∣1 + 2(1+x)
x(xφ+φ+1/φ)

∣∣∣
log φ + log |1 + x| . (2.4)

The two rootsz−n andz+
n correspond to real roots of the equationg(x) = (2n − 1)/2:

call these−u′
n andun, say, wherez−n = −

√
(1 − u′

n)φ andz+
n =

√
(1 + un)φ. We easily

see thatg(x) is decreasing forx > 0: this is immediate from the fact that its numerator is
decreasing, while its denomiator is increasing. Sinceg(0.1) < 9/2, we see from (2.3) that
un ∈ (0, 0.1), for all n ≥ 5. We have

M(Pn) = φ
√

(1 + un)(1 − u′
n) = φ

√
1 + un − u′

n − unu′
n ,

which is less thanφ if u′
n > un. We now show that this is indeed the case.

Knowing thatg(x) is decreasing in(0,∞), andun ∈ (0, 0.1), it will be enough to show
thatg(−x) > g(x) for x ∈ (0, 0.1).

On rewriting the numerator ofg(x) in (2.4) as

log |1/x| + C + log |1 + xR(x)| , (2.5)

where

C = log
2φ

φ + 2
≈ −0.11157 and R(x) =

(4φ + 3)x + 7φ + 5

(4φ + 2)x + 6φ + 2
,

one readily checks that

g(−x) − g(x) ∼ 2x

(log φ)2
log

∣∣∣∣
1

x

∣∣∣∣
asx → 0+, and simple estimates involving approximations to the logarithm function show
that this positive main term dominates in the interval(0, 0.1), as desired.

2.3. Details of some computations

A consequence of interlacing is that any connected graph that has small Mahler measure can
be ‘grown’ from smaller connected examples by adding vertices. For non-bipartite graphs
this process proceeds as follows. The complete list of connected, non-bipartite graphs that
have three vertices (and Mahler measure belowφ) is very short: just the triangle. Consider
all possible ways of adding a new vertex to produce a connected non-bipartite graph with4
vertices; keep only those that have Mahler measure belowφ, and keep only one representa-
tive of each isomorphism class. Grow similarly to get a list of 5-vertex graphs, now adding
to this list the5-cycle (which cannot be grown from a triangle). One can proceed in this
way for larger and larger graphs, until computational limitations prevent further growing.
In particular, growing up to8 vertices is a trivial matter, and it establishes the following
Lemma.
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number of vertices graph(s) Mahler measure(s)

4 Kt4 = Bl4 1.5061. . .
5 Kt5 1.5823. . .
6 Kt6, Bl6 1.6054. . . , 1.4012. . .
7 Kt7, Spa, Spd, Sph 1.6134. . . , 1.4723. . . , 1.5560. . . , 1.5823. . .
8 Kt8, Bl8, Spb, Spe 1.6162. . . , 1.3509. . . , 1.4967. . . , 1.5991. . .

Table 2. Small connected graphs that have Mahler measure strictly between1 andφ.

Lemma 2.1. Let G be a connected, non-bipartite graph with 1 < M(G) < φ and with at
most 8 vertices. Then G is either a kite (Figure 1), a balloon (Figure 2), or one of Spa, Spb,
Spd, Spe, Sph (Figure 3).

These results are tabulated in Table 2. Once the proof of Theorem 1.1 is complete, the
table can be extended at will: there are three more sporadic examples (Spc, Spf , Spg), all
with 9 vertices, and beyond that the only graphs appearing are the kites and balloons. In
fact it was some initial computations growing up to18 vertices that led us to conjecture the
statement of Theorem 1.1. For the proof, however, we need only grow up to8 vertices, as
later lemmas deal with all graphs on9 or more vertices.

The growing process can also be used to investigate connected, non-bipartite graphs
that have small Mahler measure and contain a particular induced subgraphH. One starts
with the singleton graphH, and applies the growing process. For certain subgraphsH this
process terminates, revealing only a finite number of possible larger graphs. In particular,
we record the results of growing from a pentagon and from a heptagon.

Lemma 2.2. The only connected, non-bipartite graphs of Mahler measure in the interval
(1, φ) that contain either a 5-cycle or a 7-cycle are Bl6, Bl8, and the eight sporadic graphs
of Figure 3.

2.4. Some graphs that do not have small Mahler measure

We present here some graphs that have Mahler measure greaterthanφ. There are, of course,
many others—we merely list those which will play a rôle in our later proofs. First we list
some bipartite examples, for which we can appeal to [MS1, Theorem 10.2].

Lemma 2.3. The four graphs L1, L2, L3, L4 in Figure 4 all have Mahler measure greater
than φ.

The graphsL3 andL4 are the first two members of an infinite family of balloons con-
taining an even cycle (by contrast to the balloons of Figure 2). We leave it as an exercise to
check that the corresponding sequence of Mahler measures forms a decreasing sequence,
converging toφ. For other examples of Pisot limits of graph Mahler measures, one can ap-
ply Lemma 4.3 of [MS1] . For example, takeKtn and add a new vertex adjacent to the two
degree-2 vertices of the triangle. One obtains a sequence of Mahler measures that converge
to 2.205 . . . , the real root ofz3 − 2z2 − 1.
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Lemma 2.4. The ‘tailed kites’ K̃tn of Figure 5 (n vertices, n ≥ 5) all have Mahler measure
greater than φ.

Proof. Note thatK̃tn is not one of Smith’s graphs [S], but that deleting one of the degree-2
vertices in the triangle of̃Ktn leaves a subgraph of one of those graphs. By interlacing,K̃tn
has at most one eigenvalue greater than2, and indeed exactly one, since the spectral radius
of a graph always equals an eigenvalue [GR, Lemma 8.7.3]. On the other hand,̃Ktn is a
generalised line graph [B, 3h]. HencẽKtn has all eigenvalues at least−2. ThusK̃tn has a
unique eigenvalue outside the interval[−2, 2], and this is> 2. From [HS, Proposition 2.4],
the Mahler measure of̃Ktn strictly decreases asn increases. In the limit, using [MS1,§4],
this sequence of Mahler measures converges toφ. HenceM(K̃tn) > φ for all n ≥ 5.

Lemma 2.5. Let Q̃(d, e) be the graph shown in Figure 6, where d, e ≥ 1 and d + e > 2.
Then with the exceptions of Spd, Spg, Sph

(
corresponding to (d, e) = (2, 3), (3, 4), (1, 4)

)

one has M(Q̃(d, e)) > φ.

Proof. We may assume thatd ≤ e. Fore < 9, we check the result by direct computation.
For e ≥ 9, delete suitable vertices from the middle of the longer pathbetween the two
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Figure 6. The graphs̃Q(d, e) andQ(a, b, c).
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degree-3 vertices to leave a subgraphQ(a, d, c) (see Figure 6; here(a − 1) + (c − 1) ≤
7 < e − 1) in the following list: Q(3, 1, 3), Q(3, 2, 3), Q(3, 3, 3), Q(3, 4, 4), Q(3, 5, 5),
Q(3, 6, 5), Q(3, 7, 6), Q(4, 8, 5), or Q(4, d, 4) if d ≥ 9. From the computations in the
proof of [MS1, Theorem 10.2], this (bipartite) subgraph hasMahler measure greater than
φ, and hence by interlacing so doesQ̃(d, e).

2.5. All large enough connected, non-cyclotomic, non-bipartite graphs of
small Mahler measure are either kites or balloons

Lemma 2.6. Let G be a connected graph, with Mahler measure in the interval (1, φ). If G
contains a triangle, then G is a kite.

Proof. We use induction onn ≥ 1. Forn ≤ 8, the direct computations in§2.3 establish the
result.

Suppose thatn > 8 and that the result is known for relevant graphs with fewer vertices.
Let T be a triangle inG, and for any vertexv define the distance fromv to T to be the
minimal number of edges in a path fromv to one of the vertices inT . Takev a vertex of
maximal distance fromT . Let G′ be the subgraph obtained by deletingv and all incident
edges. Maximality of the distance fromv to T ensures thatG′ is connected. By interlacing,
the Mahler measure ofG′ is at most that ofG, so either equals1 or is in the interval(1, φ).
The former is excluded by inspection of Smith’s graphs [S], so by our inductive hypothesis
G′ = Ktn−1. Let x be the leaf inG′, with y its neighbour. By maximality of the distance
of v from T , the only possible neighbours ofv in G arex andy.

First consider the possibility thatv is adjacent to bothx andy. Usingn − 1 ≥ 8, we
could then delete vertices from the middle of the path fromy to T to leave two disjoint
copies ofKt4. By interlacing, we would haveM(G) ≥ M(Kt4)

2 > 1.506132 > φ,
contradictingM(G) < φ. We deduce thatv is adjacent to exactly one ofx andy.

Next consider the possibility thatv is adjacent toy only. ThenG is a tailed kite (Figure
5), and Lemma 2.4 gives a contradiction.

We are forced to the conclusion thatv is adjacent tox only, and therefore thatG =
Ktn.

Lemma 2.7. Let G be a connected, non-bipartite graph, with Mahler measure in the inter-
val (1, φ). Let C be an odd cycle in G, of shortest length. If v is a vertex not in C , then v is
adjacent to at most one vertex of C .

Proof. If G contains a triangle, then the result follows from Lemma 2.6.We may therefore
suppose thatG contains no triangles.

Suppose thatv is a vertex not inC that is adjacent to two verticesx andy on C (and
perhaps adjacent to others). The cycleC provides us with two paths fromx to y, and since
C has odd length one of these pathsP contains an even number of edges. IfP had more
than two edges, then following the odd-length path fromx to y, then going fromy to v and
from v to x would give an odd cycle shorter thanC. HenceP has exactly two edges; letz
be the vertex onP betweenx andy, and letu be the other neighbour ofy on C. SinceG
has no triangles, andu cannot be a neighbour ofx (else we could shortenC by replacing
the pathxzyu by the pathxu) the subgraph induced byx, y, z, u, v is L3 in Figure 4.
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Lemma 2.3 records thatM(L3) > φ, hence by interlacing we haveM(G) > φ, which is
a contradiction. We conclude that no such vertexv exists, which is the claim of the current
Lemma.

We complete the proof of Theorem 1.1 by showing that any connected, non-bipartite
graph with Mahler measure in the interval(1, φ) and with no odd cycle of length below9
is a balloon.

Lemma 2.8. Let G be a connected, non-bipartite graph, with Mahler measure in the inter-
val (1, φ). Suppose that G has n vertices and that the shortest odd cycle in G has length
2m − 1. If m ≥ 5 then G = Bl2m.

Proof. We use induction onn. Forn ≤ 9 the result is vacuous.
We suppose thatn > 9, and that the result is known for all relevant smaller graphs. Let

C be a shortest odd cycle inG. We may assume thatC has at least9 edges, or there is
nothing to prove. SinceM(C) = 1, there must be other vertices inG. Let v be a vertex
in G that is as far distant fromC as possible. Deletingv leaves a connected graphH,
containingC as a shortest odd cycle. IfM(H) = 1, thenH = C (Case1). Otherwise, by
our inductive hypothesis,n− 1 is even andH = Bln−1 (Case2): we shall in fact show that
this case cannot arise.

Case1: H = C. Thenn − 1 is odd, son is even. And by Lemma 2.7,G = Bln.
Case2: H = Bln−1. Let x be the leaf ofH, and lety be its neighbour onC. We split

into three subcases: (a)v is adjacent tox only; (b) v is adjacent tox and to a vertexz on
C (exactly one such neighbour onC, after Lemma 2.7); (c)v is adjacent to a vertexz onC
(again unique, after Lemma 2.7), but not tox.

Case2(a). Noting thatL1 of Figure 4 is an induced subgraph, we see that this case is
ruled out by Lemma 2.3.

Case2(b). Consider the pathP onC that connectsy andz via anodd number of edges.
By minimality of the length ofC, the only possible lengths forP are1 and3 (else we could
find a shorter odd closed walk by replacing the pathP within C by the pathzvxy). If P has
length1, thenG containsL3 of Figure 4 as an induced subgraph; ifP has length3, then it
containsL4. In either case we see that Lemma 2.3 gives a contradiction.

Case2(c). We have two further subcases. Ifz = y, then we haveL2 of Figure 4 as
an induced subgraph ofG. If z 6= y, then we appeal to Lemma 2.5, noting thatm ≥ 5
excludes the sporadic cases.

Each subcase of Case2 produces a contradiction, so we must be in Case1: H = C and
G = Bln.

3. Proof of Corollary 1.1

The proof of the Corollary 1.1 follows readily from Theorem 1.1, using the facts that

• A graph is non-bipartite if and only if at least one connectedcomponent is non-
bipartite;

• The Mahler measure of a graph is the product of the Mahler measures of its connected
components.
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Let G be a non-cyclotomic graph of small Mahler measure. If all thenon-cyclotomic com-
ponents are bipartite, then at least one cyclotomic component must be non-bipartite, and so
an odd cycle. This gives the first case of the Corollary. Otherwise,G has a non-bipartite
non-cyclotomic component, as described by the Theorem. As all of these have Mahler
measure at leastM(Bl8) = 1.350980338 >

√
φ, there can be only one of these compo-

nents. If all other components are cyclotomic, we have the second case. Otherwise, some
component is non-cyclotomic and bipartite, in which case, by [MS1, Theorem 10.2], it has
Mahler measure at leastM(T (1, 2, 6)) = 1.176280818. HereT (1, 2, 6), defined in [MS1,

Figure 15], is the tree s s s s s s s s

sHH s . But then the non-bipartite component ofG can
have Mahler measure at mostφ/1.176280818 = 1.375550773. But Bl8 is the only such
non-bipartite non-cyclotomic connected graph, all othershaving Mahler measure at least
M(Bl6) = 1.401268368, and the only connected bipartite non-cyclotomic graph that has
Mahler measure belowφ/M(Bl8) is T (1, 2, 6). This gives the third case.

4. Final remarks

It would be nice to push knowledge of graphs of small Mahler measure beyond theφ bound-
ary, in either the bipartite or non-bipartite case. In another direction, one might ask about
signed graphs, or more generally the Mahler measure of integer symmetric matrices, as
defined in [MS3]. The best result known in this setting is a classification of all indecom-
posable integer symmetric matrices that have Mahler measure below1.3 ([MS3, Theorem
4], along with [MS2,§4] for a description of the cyclotomic cases).

We are grateful to the referee for helpful comments, including the suggestion of adding
Tables 1 and 2 to help the exposition.
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