ADDENDUM TO: UNIMODULARITY OF ZEROS OF SELF-INVERSIVE POLYNOMIALS

M. N. LALÍN^{1,†} and C. J. SMYTH^{2,*}

¹Département de mathématiques et de statistique, Université de Montréal, H3C 3J7 Montreal, QC, CP 6128, succ. Centre-ville, Canada e-mail: mlalin@dms.umontreal.ca

²School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, EH9 3JZ Edinburgh, Scotland e-mail: c.smyth@ed.ac.uk

(Received March 5, 2015; revised March 15, 2015; accepted March 15, 2015)

Abstract. We acknowledge priority of earlier and more general results than Theorem 1 of the paper referred to in the title.

In [4, Theorem 1] we proved the following result.

THEOREM 1. Let h(z) be a monic complex polynomial of degree n having all its zeros in the closed unit disk $|z| \leq 1$. Then for d > n and any λ on the unit circle, the self-inversive polynomial

(1)
$$P^{(\lambda)}(z) = z^{d-n}h(z) + \lambda h^*(z)$$

has all its zeros on the unit circle.

Conversely, given a monic self-inversive polynomial P(z) having all its zeros on the unit circle, there is a polynomial h having all its zeros in $|z| \leq 1$ such that P has a representation (1). In particular, we can take $h(z) = \frac{1}{d}P'(z)$.

Here $h^*(z) = z^n \overline{h}(1/z)$. We used this result to prove that a certain family P_k of polynomials have all their zeros on the unit circle. El-Guindy and Raji [2, Theorem 2.2] pointed out that the theorem is also valid for d = n(though we must then allow the possibility that $P^{(\lambda)}(z)$ is identically 0), and that the condition that h be monic is of course unnecessary.

^{*} Corresponding author.

 $^{^\}dagger$ The first author is supported by NSERC Discovery Grant 355412-2013, FQRNT Subvention établissement de nouveaux chercheurs 144987, and a start-up grant from the Université de Montréal.

Key words and phrases: zero, unit circle.

Mathematics Subject Classification: primary 26C10.

As we stated in [4], the converse part of the theorem is a well-known result of Cohn. The purpose of this note is to acknowledge that the first part of the theorem was also known earlier. As pointed out by Suzuki in [8], it was stated and proved by Chen [1, Theorem 1] in 1995, essentially in the form above.

In fact, the theorem has been strengthened. For as λ , as in (1), travels anticlockwise around the unit circle from 1 back to 1, the *d* zeros of $P^{(\lambda)}(z)$, say z_1, \ldots, z_d , labelled by increasing argument, progress monotonically in argument around the unit circle so that when λ returns to 1 the zero z_1 has progressed to z_2 , z_2 has progressed to z_3 , and so on, with finally z_d having progressed to z_1 . This is proved by a classical winding argument by considering $-z^{d-n}h(z)/h^*(z)$ as z winds around the unit circle. See for instance the proof of [5, Theorem 2.1] for essentially this method of proof, as mentioned by Jankauskas [3, Section 6.1]. In particular, it then follows immediately that for $\lambda_1 \neq \lambda_2$ the zeros of $P^{(\lambda_1)}(z)$ and $P^{(\lambda_2)}(z)$ interlace on the unit circle. Also, Jankauskas unearthed the fact that the stronger version of Theorem 1, incorporating this interlacing property, had already been proved by Schüssler [7] in 1976. See [3, Corollary 17].

Furthermore, Jankauskas [3, Section 6.1] pointed out that these results have an even longer history, albeit in a modified form. Consider a linear fractional transformation that maps the open unit disc |z| < 1 to the upper half-plane Im z > 0, and so also maps the unit circle to the real line. Then, on applying this map to z in Theorem 1, with interlacing of the zeros of $P^{(\lambda_1)}(z)$ and $P^{(\lambda_2)}(z)$ for $\lambda_1 \neq \lambda_2$ added, it becomes essentially the classical Hermite-Biehler Theorem:

THEOREM 2 (C. Hermite (1856), M. Biehler (1879); see [6, Theorem 6.3.4]). Two nonconstant polynomials P and Q with real coefficients, of degrees differing by at most 1, have strictly interlacing zeros on the real line if and only if one of $P(z) \pm iQ(z)$ has all its zeros in the upper half-plane Im z > 0.

Acknowledgements. We thank Jonas Jankauskas for making his preprint [3] available to us.

References

 Weiyu Chen, On the polynomials with all their zeros on the unit circle, J. Math. Anal. Appl., 190 (1995), 714–724.

[2] Ahmad El-Guindy and Wissam Raji, Unimodularity of zeros of period polynomials of Hecke eigenforms, Bull. Lond. Math. Soc., 46 (2014), 528–536.

- [3] Jonas Jankauskas, Binary words, winding numbers, and polynomials with interlacing zeros, preprint (2014).
- [4] Matilde Lalín and Chris Smyth, Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar., 138 (2013), 85–101.

Acta Mathematica Hungarica 147, 2015

- [5] James McKee and Chris Smyth, Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros, *Cent. Eur. J. Math.*, **11** (2013), 882–899.
- [6] Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, 26. The Clarendon Press, Oxford University Press (Oxford, 2002).
- [7] Hans. W. Schüssler, A stability theorem for discrete systems, *IEEE Trans. Acoust. Speech Signal Process.*, ASSP-24 (1976), 87–89.
- [8] Masatoshi Suzuki, On zeros of self-reciprocal polynomials, arXiv:1211.2953v2 [math.CA] 14 Dec 2012.