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Abstract. We acknowledge priority of earlier and more general results than
Theorem 1 of the paper referred to in the title.

In [4, Theorem 1] we proved the following result.

Theorem 1. Let h(z) be a monic complex polynomial of degree n having
all its zeros in the closed unit disk |z| ≤ 1. Then for d > n and any λ on the
unit circle, the self-inversive polynomial

(1) P (λ)(z) = zd−nh(z) + λh∗(z)

has all its zeros on the unit circle.
Conversely, given a monic self-inversive polynomial P (z) having all its

zeros on the unit circle, there is a polynomial h having all its zeros in |z|
≤ 1 such that P has a representation (1). In particular, we can take h(z) =
1
d
P ′(z).

Here h∗(z) = znh(1/z). We used this result to prove that a certain fam-
ily Pk of polynomials have all their zeros on the unit circle. El-Guindy and
Raji [2, Theorem 2.2] pointed out that the theorem is also valid for d = n
(though we must then allow the possibility that P (λ)(z) is identically 0), and
that the condition that h be monic is of course unnecessary.

∗Corresponding author.
†The first author is supported by NSERC Discovery Grant 355412-2013, FQRNT Subven-

tion établissement de nouveaux chercheurs 144987, and a start-up grant from the Université de
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As we stated in [4], the converse part of the theorem is a well-known
result of Cohn. The purpose of this note is to acknowledge that the first
part of the theorem was also known earlier. As pointed out by Suzuki in [8],
it was stated and proved by Chen [1, Theorem 1] in 1995, essentially in the
form above.

In fact, the theorem has been strengthened. For as λ, as in (1), travels
anticlockwise around the unit circle from 1 back to 1, the d zeros of P (λ)(z),
say z1, . . . , zd, labelled by increasing argument, progress monotonically in
argument around the unit circle so that when λ returns to 1 the zero z1
has progressed to z2, z2 has progressed to z3, and so on, with finally zd
having progressed to z1. This is proved by a classical winding argument
by considering −zd−nh(z)/h∗(z) as z winds around the unit circle. See for
instance the proof of [5, Theorem 2.1] for essentially this method of proof,
as mentioned by Jankauskas [3, Section 6.1]. In particular, it then follows
immediately that for λ1 �= λ2 the zeros of P (λ1)(z) and P (λ2)(z) interlace
on the unit circle. Also, Jankauskas unearthed the fact that the stronger
version of Theorem 1, incorporating this interlacing property, had already
been proved by Schüssler [7] in 1976. See [3, Corollary 17].

Furthermore, Jankauskas [3, Section 6.1] pointed out that these results
have an even longer history, albeit in a modified form. Consider a linear
fractional transformation that maps the open unit disc |z| < 1 to the upper
half-plane Im z > 0, and so also maps the unit circle to the real line. Then,
on applying this map to z in Theorem 1, with interlacing of the zeros of
P (λ1)(z) and P (λ2)(z) for λ1 �= λ2 added, it becomes essentially the classical
Hermite-Biehler Theorem:

Theorem 2 (C. Hermite (1856), M. Biehler (1879); see [6, Theorem
6.3.4]). Two nonconstant polynomials P and Q with real coefficients, of de-
grees differing by at most 1, have strictly interlacing zeros on the real line
if and only if one of P (z)± iQ(z) has all its zeros in the upper half-plane

Im z > 0.
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