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ABSTRACT. We completely describe all integer symmetric matrices that have all their eigenvalues
in the interval [−2,2]. Along the way we classify all signed graphs, and then all charged signed
graphs, having all their eigenvalues in this same interval. We then classify subsets of the above
for which the integer symmetric matrices, signed graphs and charged signed graphs have all their
eigenvalues in the open interval (−2,2).

1. INTRODUCTION

Let A be an n×n integer symmetric matrix with characteristic polynomial χA(x) = det(xI−A).
The aim of this paper is to describe all such matrices A that have the maximum modulus of their
eigenvalues at most 2. The significance of the bound 2 is that, by a result of Kronecker [K],
every eigenvalue of such a matrix A is then of the form ω + ω−1, for some root of unity ω.
Thus znχA(z + 1/z) is a cyclotomic polynomial. For this reason we call such integer symmetric
matrices cyclotomic matrices.

In 1970 J.H. Smith [Smi] classified all cyclotomic {0,1}-matrices with zeros on the diagonal,
regarding them as adjacency matrices of graphs (see Figure 9). Such graphs were called cyclo-
tomic graphs in [MS]. It turns out that a full description of cyclotomic matrices is conveniently
stated using more general graphs. So if we allow the off-diagonal elements of our matrix to be
chosen from the set {−1,0,1}, we obtain a signed graph (see [CST],[Z2]), a non-zero (i, j)th
entry denoting a ‘sign’ of −1 or 1 on the edge between vertices i and j. Further, for a general
symmetric {−1,0,1} matrix, where now the diagonal entries may be nonzero, we obtain what
we call a charged signed graph; we regard a nonzero (i, i)th entry of A as corresponding to a
‘charge’ on its ith vertex. If none of the edges of a charged signed graph in fact have sign −1,
then we have a charged (unsigned) graph. However, a graph is also a signed graph, and a signed
graph is also a charged signed graph. The notion of a charged signed graph is a convenient device
for picturing and discussing symmetric integer matrices with entries in {−1,0,1}. These are the
most important matrices in our description of general cyclotomic matrices.

In this paper we extend Smith’s result to cyclotomic charged signed graphs (Theorem 2), and
then, with little further work, to all cyclotomic matrices (Theorem 3). Along the way we find
all cyclotomic signed graphs (Theorem 1). As a consequence, we can also describe all cyclo-
tomic charged graphs (Theorem 7) and all cyclotomic matrices whose entries are non-negative
(Theorem 9).

Having obtained our results for the closed interval [−2,2], it is then very natural to consider
restricting the eigenvalues to the open interval (−2,2). We give a complete classification of
symmetric integer matrices with eigenvalues in this restricted set (Theorem 6). As in the case
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of the closed interval, there are corresponding results for cyclotomic signed graphs (Theorem
4), cyclotomic charged signed graphs (Theorem 5), cyclotomic charged graphs (Theorem 8) and
cyclotomic matrices whose entries are non-negative (Theorem 10). Having dealt with the general
cyclotomic case, this is a relatively straightforward problem. There is a connection here with the
theory of finite reflection groups and their Coxeter graphs, and we conclude with a discussion of
this.

In [MS], cyclotomic graphs were used to construct Salem numbers and Pisot numbers. The
original motivation for this current work was that it provides one of the ingredients necessary to
extend the work in [MS]. But we think that our results may be of independent interest.

Throughout the paper, a subgraph of the (charged, signed) graph under consideration will
always mean a vertex-deleted subgraph, that is, an induced subgraph on a subset of the vertices.

2. INTERLACING, AND REDUCTION TO MAXIMAL INDECOMPOSABLE MATRICES

In order to state our results, we need some preliminaries. The matrix A will be called indecom-
posable if and only if the underlying graph is connected. (In the underlying graph, vertices i and
j are adjacent if and only if the (i, j)th entry of A is nonzero.) If A is not indecomposable, then
there is a reordering of the rows (and columns) such that the matrix has block diagonal form with
more than one block, and its list of eigenvalues is found by pooling the lists of the eigenvalues of
the blocks. For our classification of cyclotomic integer symmetric matrices, it is clearly sufficient
to consider indecomposable ones.

A repeatedly useful tool for us is Cauchy’s interlacing theorem (for a short proof, see [Fis]).

Lemma 1 (Interlacing Theorem). Let A be a real symmetric matrix, with eigenvalues λ1 ≤ λ2 ≤
. . . ≤ λn. Pick any row i, and let B be the matrix formed by deleting row i and column i from A.
Then the eigenvalues of B interlace with those of A: if B has eigenvalues µ1 ≤ . . . ≤ µn−1, then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ µn−1 ≤ λn .

In view of this Lemma, if A is cyclotomic, then so is any matrix obtained by deleting from
A any number of its rows, along with the corresponding columns: we then speak of the smaller
matrix as being contained in the larger one (the smaller graph is an induced subgraph of the
larger graph). We call an indecomposable cyclotomic matrix (or its graph) maximal if it is not
contained in a strictly-larger indecomposable cyclotomic matrix: the corresponding cyclotomic
graph is not an induced subgraph of a strictly larger connected cyclotomic graph. We shall see
that every non-maximal indecomposable cyclotomic matrix is contained in a maximal one. It is
therefore enough for us to classify all maximal indecomposable cyclotomic matrices.

When we consider matrices that have all their eigenvalues in the open interval (−2,2), we
shall see that it is no longer always true that every such matrix is contained in a maximal one:
there is an infinite family of indecomposable exceptions.

3. EQUIVALENCE, STRONG EQUIVALENCE AND SWITCHING

Denote by On(Z) the orthogonal group of n×n signed permutation matrices. Then conjugation
of a cyclotomic matrix by a matrix in On(Z) gives a cyclotomic matrix with the same eigenvalues.
We say that two n×n cyclotomic matrices are strongly equivalent if they are related in this way.
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Further, we say that two indecomposable cyclotomic matrices A and A′ are merely equivalent if
A′ is strongly equivalent to A or −A. This notion then extends easily to decomposable cyclotomic
matrices. Both of these notions are equivalence relations on the set of all cyclotomic matrices.
For indecomposable cyclotomic matrices, the equivalence classes for the weaker notion are the
union of one or two strong equivalence classes, depending on whether or not −A is in the same
strong equivalence class as A. It is clearly sufficient to classify all cyclotomic integer symmetric
matrices up to equivalence.

For a charged signed graph, the notions of strong equivalence and equivalence of course
carry over via the adjacency matrix. Now On(Z) is generated by diagonal matrices of the form
diag(1,1,. . . ,1,-1,1,. . . ,1) and by permutation matrices. Conjugation by these diagonal matrices
corresponds to reversing the signs of all edges incident at a certain vertex v; we call this switch-
ing at v. Conjugation by a permutation matrix merely means that we can ignore vertex labels;
we therefore do not label the vertices of our graphs. Thus for unlabelled charged signed graphs,
strong equivalence classes are generated only by such switching operations. The concept of
switching, and signed switching classes, appeared earlier for signed graphs in [CST].

Equivalence of charged signed graphs is generated both by switching, and by the operation of
reversing all the edge signs and vertex charges of a component of a graph.

Since most of our graphs will in fact be signed graphs, we avoid clutter by drawing edges with
sign 1 as unbroken lines ———-, and edges with sign −1 as dashed lines - - - - - -. For vertices,
those of charge 1,0,−1 will be drawn ⊕,•,	 respectively, with the vertices • without a charge
being called neutral vertices.

4. MAIN RESULTS

Theorem 1 (“Uncharged, signed, [−2,2]”). Every maximal connected cyclotomic signed graph
is equivalent to one of the following:

(i) For some k = 3,4, . . . , the 2k-vertex toral tesselation T2k shown in Figure 1;
(ii) The 14-vertex signed graph S14 shown in Figure 3;

(iii) The 16-vertex signed hypercube S16 shown in Figure 4.

Further, every connected cyclotomic signed graph is contained in a maximal one.

......
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FIGURE 1. The family T2k of 2k-vertex maximal connected cyclotomic toral tes-
selations, for k ≥ 3. (The two copies of vertices A and B should be identified.)

In particular, k = 3 of case (i) gives an octahedron T6, shown in Figure 5, while a more typical
example T24 is shown in Figure 2.
Theorem 2 (“Charged, signed, [−2,2]”). Every maximal connected cyclotomic charged signed
graph not included in Theorem 1 is equivalent to one of the following:
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FIGURE 2. A typical toral tesselation T2k: the signed graph T24.

FIGURE 3. The 14-vertex sporadic maximal connected cyclotomic signed graph
S14. See also Section 14.2.

(i) For some k = 2,3,4, . . . , one of the two 2k-vertex cylindrical tesselations C++
2k ,C+−

2k
shown in Figure 6;

(ii) One of the three sporadic charged signed graphs S7,S8,S′8 shown in Figure 7;

Further, every connected cyclotomic charged signed graph is contained in a maximal one.

In particular, k = 2 of case (i) gives two charged tetrahedra C++
4 ,C+−

4 , shown in Figure 8.
We remark that all the maximal cyclotomic graphs of Theorems 1 and 2 are ‘visibly’ cyclo-

tomic: their adjacency matrices A all satisfy A2 = 4I, so all their eigenvalues are ±2. The exact
multiplicity of these eigenvalues is given in Table 1 at the end of the paper.

Our most general result is readily deduced from the previous two theorems.
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FIGURE 4. The hypercube sporadic maximal connected cyclotomic signed graph S16.

FIGURE 5. The octahedral maximal connected cyclotomic signed graph T6.
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FIGURE 6. The families of 2k-vertex maximal connected cyclotomic cylindrical
tesselations C++

2k and C+−
2k , for k ≥ 2.

Theorem 3 (“Integer matrix, [−2,2]”). Every maximal indecomposable cyclotomic matrix is
equivalent to one of the following:
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FIGURE 7. The three sporadic maximal connected cyclotomic charged signed
graphs S7,S8,S′8.
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FIGURE 8. The two maximal connected cyclotomic charged signed tetrahedra
C++

4 and C+−
4 .

(i) The adjacency matrix of a maximal connected charged cyclotomic signed graph (given
by Theorems 1 and 2);

(ii) The 1×1 matrix (2) or the matrix

(
0 2
2 0

)

.

Further, every indecomposable cyclotomic matrix is contained in a maximal one.

5. SIMPLIFICATIONS

A signed graph G is called bipartite if its vertices can be split into two disjoint parts such that
every edge of G joins a vertex in one part to a vertex in the other ([Z3]). The eigenvalues of G
are then symmetric about 0, counted with multiplicity; we record this fact as a Lemma.

Lemma 2. Let G be a bipartite signed graph with n vertices. Then

χG(−x) = (−1)nχG(x) .

Proof. One can mimic a standard proof for graphs (as in [Big, p. 11]; this result first appeared in
a Chemistry paper [CoR]), or simply note that if one changes the signs of all edges incident with
vertices in one part then χG is unchanged, yet every edge has then changed sign so that χG(x) is
changed to (−1)nχG(−x). �

It will be convenient to extend the definition of bipartite to cover any charged signed graph
such that changing the sign of every edge and charge produces a graph that is strongly equivalent
to the original. For (neutral) signed graphs, this captures the usual definition of being bipartite.
The extension of Lemma 2 holds true for this larger class of bipartite charged signed graphs, with
the same proof.

A cycle of length r in a charged signed graph G is a list of distinct vertices v1, . . . ,vr such that
there is an edge in G between vi and vi+1 (1 ≤ i < r) and between v1 and vr. A charged signed
graph without cycles is called a (charged signed) forest. A connected forest is called a tree.
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Lemma 3 ([CST, Theorem 2.2]). Any charged signed forest is equivalent to one for which all
the edges are positive.

Proof. An easy induction on the number of vertices: for the inductive step consider removing a
leaf (a vertex with exactly one neighbour), unless there are no edges. �

For detecting noncyclotomic integer symmetric matrices, the following trivial and obvious
sufficient condition can be useful.

Lemma 4. Let A be an n×n integer symmetric matrix. If either χA(2)(x) < 0 or (−1)nχA(−2) <
0, then A is not cyclotomic.

Lemma 5. Up to equivalence, the only indecomposable 1-by-1 or 2-by-2 cyclotomic matrices
are

(0) ,(1) ,(2) ,

(
0 1
1 0

)

,

(
1 1
1 0

)

,

(
1 1
1 1

)

,

(
1 1
1 −1

)

and

(
0 2
2 0

)

.

Of these, the only maximal ones are (2) and

(
0 2
2 0

)

.

Proof. This is an easy computation, using Lemma 4 to constrain the matrix entries. For example,

to show that
(

0 2
2 0

)

is maximal, suppose that

A =





0 2 a
2 0 b
a b c





is cyclotomic. To achieve χ(2)≥ 0 and χ(−2)≤ 0 requires both −2(a+b)2 ≥ 0 and 2(b−a)2 ≤
0, giving a = b = 0, so that A is not indecomposable. �

Lemma 6. Apart from matrices equivalent to either (2) or

(
0 2
2 0

)

, any indecomposable cy-

clotomic matrix has all entries from the set {0,1,−1}. In other words, it is the adjacency matrix
of a cyclotomic charged signed graph.

Proof. Let A = (ai j) be an indecomposable cyclotomic matrix, not equivalent to either (2) or
(

0 2
2 0

)

. Suppose first that some diagonal entry of A had modulus at least 2, say |aii| ≥ 2.

By interlacing (Lemma 1), the 1-by-1 matrix (aii) is cyclotomic, and then by Lemma 5 it equals
±(2) and is maximal, so equals A, giving a contradiction.

Next suppose that some off-diagonal entry ai j had modulus at least 2. By interlacing, the 2-

by-2 matrix
(

aii ai j
ai j a j j

)

is cyclotomic, and by Lemma 5 this must equal ±
(

0 2
2 0

)

, and is
maximal, so equals A. Again we have a contradiction.

Thus no entry of A has modulus greater than 1. �
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We conclude that, apart from two (up to equivalence) trivial examples, all indecomposable
cyclotomic matrices are the adjacency matrices of connected cyclotomic charged signed graphs.
Thus Theorem 3 follows from Theorems 1 and 2, and we can restrict our attention to charged
signed graphs.

6. REPRESENTATION VIA GRAM MATRICES

6.1. Gram matrices and line systems. Let A be the adjacency matrix of a cyclotomic charged
signed graph with n vertices. In particular, A has all eigenvalues at least −2. Hence A + 2I is
positive semi-definite. This implies that we can find vectors w1, . . . , wn in real n-dimensional
space such that A+2I is their Gram matrix: the (i, j)-entry of A+2I is the dot product of wi and
w j. The dimension of the space spanned by the wi might of course be smaller than n.

A particularly simple case is that of a signed graph, where there are no charges. Then the
diagonal entries of A + 2I all equal 2, so that the vectors wi all have length

√
2. Moreover the

lines spanned by the wi meet each other with angles π/3 or π/2. In the language of [CvL] we
have represented our signed graph in a line system, and if the graph is connected then the line
system is indecomposable. If we change the sign of one of our Gram vectors, then the line that it
spans is unchanged, and the new Gram matrix is equivalent to the old one: we have just changed
the sign of all edges incident with the vertex that corresponds to our Gram vector. Since we are
working up to equivalence, we can fix (at our discretion) the direction of each line in our system.

Indecomposable line systems have been classified. Every such line system is contained in a
maximal one. It follows that every cyclotomic connected signed graph is contained in a maxi-
mal one. Moreover we can hunt for these by looking inside the maximal indecomposable line
systems. These are Dn (n ≥ 4) and E8, which we now describe.

6.2. The line system and signed graph Dn. Fix n ≥ 2, and let e1, . . . , en be an orthonormal
basis for R

n. The signed graph Dn has n(n−1) vertices, represented by the vectors
ei ± e j (1 ≤ i < j ≤ n) .

Adjacency of unequal vertices is given by the dot product of the corresponding vectors, which
always equals one of 0, 1, −1. If A is the adjacency matrix of Dn, then A+2I is the Gram matrix
of the set of vectors.

6.3. The line system and signed graph E8. Let e1, . . . , e8 be an orthogonal basis for R
8,

where, in contrast to the previous subsection, each ei has length
√

2. The signed graph E8 has
120 vertices, represented by the vectors e1, . . . , e8 and 112 vectors of the form

1
2(ei ± e j ± ek ± e`) ,

where i jk` is one of the 14 strings
1234 , 1256 , 1278 , 1357 , 1368 , 1458 , 1467 ,
2358 , 2367 , 2457 , 2468 , 3456 , 3478 , 5678 .

As for Dn, adjacency of unequal vertices is given by the dot product (one of 0, 1, −1).
As a notational convenience, the vertices of E8 will be written as strings of digits, some of

them overlined. Single digits 1, . . . ,8 refer to the basis vectors e1, . . . , e8. Strings of four digits,
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with any of the last three overlined, refer to the vectors (ei ± e j ± ek ± e`)/2, with overlining
indicating a minus sign. For example, 146̄7̄ indicates the vector (e1 + e4 − e6 − e7)/2.

We sum up this discussion with the following result. For the proof one trivially adapts to
signed graphs the argument for graphs in Chapter 3 of [CvL], noting that the fact that we can
have negative edges makes the argument significantly easier.

Proposition 7. Up to equivalence, the only (neutral) connected signed graphs that have all their
eigenvalues in [−2,∞) are the connected subgraphs of Dn (n ≥ 2) and of E8.

Signed graphs with all their eigenvalues in [−2,∞) have been studied earlier by Vijayakumar
[V], Singhi and Vijayakumar [VS] and Ray-Chaudhuri, Singhi and Vijayakumar [RSV].

7. CYCLOTOMIC SIGNED GRAPHS

In this section we prove Theorem 1, and so classify all cyclotomic signed graphs. The plan is
as follows. First we find all the connected cyclotomic signed graphs that contain triangles (triples
of vertices with each pair being adjacent). Then, in view of Proposition 7, it suffices to consider
triangle-free subgraphs of Dn and E8. We find all maximal triangle-free subgraphs of Dn, and
observe the remarkable fact that they are all cyclotomic. We then find all maximal triangle-free
subgraphs of E8: these are not all cyclotomic, and so we need to search among their subgraphs
for any new maximal connected cyclotomic signed graphs that had not already been found as
subgraphs of some Dn.

7.1. Reduction to triangle-free graphs.

Lemma 8. Suppose that G is a cyclotomic signed graph that contains a triangle on vertices v, w,
x (the signs of the three edges being arbitrary). If z is a fourth vertex in G then z is a neighbour
of an even number of v, w, x.

Proof. Direct computation of the small number of cases. One finds that if z is a neighbour of
one or three of v, w, x then the subgraph induced by v, w, x, z is not cyclotomic, contradicting G
being cyclotomic, by interlacing. �

If z is a neighbour of exactly two of v, w, x, then the subgraph induced by v, w, x, z is not
always cyclotomic, and the next lemma describes the extra condition on the signs of the edges
that is required for a cyclotomic graph.

Lemma 9. If G is a cyclotomic signed graph containing two triangles that share an edge, then
one triangle has an even number of negative edges, and the other has an odd number of negative
edges.

Proof. If two triangles share an edge and the parities of the numbers of negative edges in the two
triangles are equal, then one quickly checks that a suitable equivalence will make all the edges
on both triangles positive. But then the subgraph induced by the two triangles is not cyclotomic
(it has (1+

√
17)/2 as an eigenvalue), and by interlacing neither is G. �

Corollary 10. If G is a cyclotomic signed graph, then no three triangles can share a single edge.
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Corollary 11. If G is a cyclotomic signed graph, then it does not contain a tetrahedron as an
induced subgraph.

This latter Corollary also follows from Lemma 8.

Lemma 12. If G is a connected cyclotomic signed graph that contains a triangle, then it is
equivalent to a subgraph of the signed octahedron T6 of Figure 5.

Proof. Suppose that G is a connected cyclotomic signed graph that contains a triangle, on vertices
v1, v2, v3. By a suitable equivalence, we may suppose that the three edges of this triangle are all
positive. If G contains no other vertices then we are done.

Otherwise suppose that v4 is another vertex of G, joined to v1, say. By Lemma 8, v4 is adjacent
to exactly one other of the vi. Relabelling if necessary, we suppose that v4 is adjacent to v1 and
v2. If G contains no other vertices then we are done.

Otherwise G contains a fifth vertex v5, adjacent to at least one of v1, v2, v3, v4. By Lemma 8,
v5 is adjacent to two vertices on one of the triangles v1v2v3, v1v2v4, and hence is adjacent to one
of v1 or v2. By Corollary 10, v5 cannot be adjacent to both v1 and v2. Without loss of generality,
v5 is adjacent to v1. By Lemma 8 (using triangles v1v2v3 and v1v2v4), v5 is also adjacent to both
v3 and v4. If G contains no other vertices then we are done.

Otherwise G contains a sixth vertex, v6, adjacent to one of v2, v3, v4, v5 (it cannot be adjacent
to v1, or else by Lemma 8 it would be adjacent to one of the others, producing three triangles
sharing an edge, contrary to Corollary 10). Applying Lemma 8 repeatedly, we see that v6 must
be adjacent to all of v2, v3, v4, v5.

We now have a subgraph of G that is equivalent to the signed octahedron pictured in the
Lemma (by Lemma 9 the parity of the number of negative edges on faces sharing an edge must
differ, and up to equivalence one sees that there is just one choice of signs).

Finally, G can have no more vertices, as each existing triangle shares each of its edges with
another: we cannot adjoin a new vertex in a way that is compatible with both Lemma 8 and
Corollary 10. �

Corollary 13. In a cyclotomic signed graph G, each vertex has degree at most 4.

Proof. If G contains a triangle then it is equivalent to a subgraph of the signed octahedron, and
hence has maximal degree at most 4. We may therefore assume that G is triangle-free.

If G has a vertex v of degree at least 5, then v has neighbours v1, . . . , v5 say (and possibly
others), and since G is triangle-free there are no edges between any pair of v1, . . . , v5. By
computation the starlike subgraph induced by v, v1, . . . , v5 is not cyclotomic (up to equivalence all
the edges are positive, so there is only one case to compute). This contradicts G being cyclotomic,
by interlacing. �

7.2. The maximal triangle-free subgraphs of Dn. After Lemma 12, our search for connected
cyclotomic signed graphs can be restricted to triangle-free connected cyclotomic signed graphs.
After Proposition 7 we can hunt for these triangle-frees as subgraphs of one of the Dn, or of E8.
Here we deal with the Dn, classifying all the maximal triangle-free subgraphs. Fortunately for
us (in view of our ultimate goal) these subgraphs are all cyclotomic.
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For v = ei±e j ∈Dn — so that i < j — define the conjugate vertex v∗ to be ei∓e j. If v = ei±e j,
then we say that v includes ei and e j. Note that v and v∗ have the same neighbours in Dn.

Lemma 14. Let G be a maximal triangle-free subgraph of Dn. If v is a vertex of G, then so is v∗.

Proof. If v∗ab is a triangle in G, then so is vab. Hence if G contained v but not v∗ we could add
v∗ to the vertex set and get a larger triangle-free signed graph, contradicting the maximality of
G. �

Lemma 15. Let G be a maximal triangle-free subgraph of Dn. Each ei is included in at most
four vertices of G.

Proof. If ei is included at all, then take a vertex v including ei and e j ( j 6= i).
Suppose first that there exists a vertex w in G that includes ei and ek for some other k (k 6= i,

k 6= j). Then if x is a vertex of G that includes ei and e` (` 6= i) we must have either ` = j or ` = k,
or else vwx would be a triangle. Hence ei is included exactly four times, in v, w, v∗, w∗.

If no such w exists, then ei is included in exactly two vertices, v and v∗. �

Lemma 16. Let G be a maximal triangle-free subgraph of Dn. The maximum degree of G is at
most 4. Moreover if a vertex v in G has distinct neighbours a and b with a 6= b∗, then v has four
neighbours, a, b, a∗, b∗.

Proof. Take any vertex v in G. By relabelling, and moving to v∗ if necessary, we can suppose
that v = e1 + e2. Let w be a neighbour of v. Again after relabelling, and so on, we can suppose
that w = e2 +e3. Then w∗ is also a neighbour of v. If v has a third neighbour x, then, in the same
way, we can suppose that x = e1 + e4. Note that x cannot include e2, by Lemma 15. Then x∗ is
a fourth neighbour of v. By Lemma 15 again, there can be no more neighbours, as these would
have to include either e1 or e2, both of which have been included four times already (in v, v∗, x,
x∗ and in v, v∗, w, w∗ respectively). �

Recall that a path v1v2 . . .vm in G is a sequence of distinct vertices vi in G with vi adjacent to
vi+1 for i = 1, . . . ,m−1.

Lemma 17. Let G be a maximal connected triangle-free subgraph of Dn, where n ≥ 4. Let
P = v1v2 . . .vm be a path in G, maximal subject to no vi equalling any v∗j . Then

• v1 and vm are adjacent, so that the induced subgraph on the vertices of P is a cycle.
• P∗ := v∗1 . . .v∗m is a path in G disjoint from P, and G is the subgraph spanned by P and

P∗.

Proof. First suppose that v1 and vm are not adjacent. By Lemma 14, P∗ is a subgraph of G. No
vertex in P can have more than two neighbours in P, else together with its neighbours in P∗ it
would have more than four neighbours in G, contradicting Lemma 16. Without loss of generality,
v1 = e1 + e2, v2 = e2 + e3, . . . , vm−1 = em−1 + em, vm = em + em+1.

Now for 2 ≤ i ≤ m−1, vi has neighbours vi−1, vi+1, v∗i−1, v∗i+1, so has no other neighbours in
G, by Lemma 16. By maximality of P, v1 and vm have no neighbours in G that are not in P or
P∗, so P and P∗ span a component of G, and hence span G. But then we could add e1 + em+1 to
G without introducing triangles, contradicting maximality of G.
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Thus v1 and vm are adjacent, and without loss of generality v1 = e1 + e2, v2 = e2 + e3, . . . ,
vm−1 = em−1 + em, vm = e1 + em. Now each element of P∪P∗ has four neighbours in P∪P∗, so
no others, and again P and P∗ span the whole of G. �

The proof of Lemma 17 establishes the first sentence of the next result.

Proposition 18. Every maximal connected triangle-free signed graph that is a subgraph of some
Dn (n ≥ 4) is equivalent to one with vertex set of the form

e1 + e2,e2 + e3, . . . ,em−1 + em,e1 + em,e1 − e2,e2 − e3, . . . ,em−1 − em,e1 − em ,

for some m in the range 4 ≤ m ≤ n. Moreover, every such graph is cyclotomic, and is a maximal
connected cyclotomic signed graph.

Proof. It remains to prove that such a graph G is cyclotomic (maximality as a connected cyclo-
tomic signed graph follows from Corollary 13). For n = 4 one gets this by computation (or an
easy adaptation of the following argument). For n > 4, note that if v and w 6= v∗ are distance
2 apart in G, then there are exactly two 2-paths from v to w, one along edges of the same sign,
and one along edges of opposite sign. There are four 2-paths from v to v∗, two along edges of
the same sign, and two along edges of opposite sign. Hence (with A the adjacency matrix of G)
all off-diagonal entries of A2 are zero. Since each vertex has degree 4, we deduce that A2 = 4I.
Hence all the eigenvalues are either 2 or −2, so G is cyclotomic. �

A nice representative of the equivalence class of the maximal cyclotomic signed graph, de-
noted T2n in the Theorem, described in Proposition 18 is obtained by replacing the vertex e1−en
by en − e1. Then one of the n-cycles (say v1v2 · · ·vn) has all positive edges, and the other
(v∗1v∗2 · · ·v∗n) has all negative edges. The linking edges of the form viv∗i+1 (interpreted cyclically)
are all positive, and those of the form viv∗i−1 are all negative. One gets a nice picture if the two
cycles are viewed as the ends of a cylinder. Alternatively, the graph can be drawn on a torus
without crossings, wrapping each cycle round the torus in such a way that it cannot be shrunk to
a point (as in Figure 2).

7.3. The maximal triangle-free subgraphs of E8. The search for triangle-free subgraphs of
E8 (up to equivalence) was done by computer, using moderately intelligent backtracking. A
lexicographical ordering was given to the 120 vertices, and a set of equivalences of E8 was
precomputed (each as an explicit permutation of the 120 vertices), as follows.

We can change the sign of any ei: for any i ∈ {1,2,3,4,5,6,7,8}, we can swap the roles of i
and ī, which preserves all dot products. Then flip the sign of any vector that is no longer a vertex
of E8 to induce an equivalence of E8. If G is a signed subgraph of E8, then applying this process
gives an equivalent (but perhaps different) subgraph.

Some, but not all, permutations of {1,2,3,4,5,6,7,8} induce a permutation of the lines spanned
by the vertices of E8 (and hence induce a permutation of the vertices of E8). For any string i jk`
that appears as a vertex, we can apply elements of the Klein 4-group acting on {i, j,k, `} to in-
duce a permutation of the vertices of E8. For example, if we apply (12)(56) to the vertex 12̄34̄
we get the vector 1̄234̄, which spans the same line as the vertex 12̄3̄4, so the image of 12̄34̄ under
(12)(56) is 12̄3̄4. Note that such a transformation might not be an isomorphism of signed graphs
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(since some of the vertices may be switched) but will be an equivalence. Again, applying this to
a subgraph of E8 will give an equivalent subgraph.

Also, if i jk` is a vertex of E8, then we can perform a change of basis by the following four
swaps: i ↔ i jk`, j ↔ i jk̄ ¯̀, k ↔ i j̄k ¯̀, l ↔ i j̄k̄`. This induces an equivalence on E. (It is enough
to check that this works for i jk` = 1234, and then use the previous symmetries to reduce to this
case.)

Starting with S being empty, the search grew S by adding the smallest possible vertices (with
respect to the chosen ordering) whilst (i) maintaining triangle-freeness, and (ii) checking that
none of the above equivalences of E8 would map the enlarged S to a lexicographically earlier set.
The use of equivalences was hugely powerful in cutting down on the number of sets S considered
by rejecting most sets at an early stage. When no more vertices could be added, the set S was
tested for maximality, and maximal triangle-frees were written to a file. Then backtracking was
done to find the next candidate for S.

The following twenty inequivalent maximal triangle-free subgraphs were found.
G1 1,2,3,4,5,6,7,8,1234,123̄4̄,12̄34̄,12̄3̄4,5678,567̄8̄,56̄78̄,56̄7̄8.

This is two copies of the toral tesselation T8.
G2 1,2,3,4,5,6,7,8,1234,123̄4̄,12̄56̄,12̄5̄6,34̄56,34̄5̄6̄.

This comprises two isolated vertices plus T12.
G3 1,2,3,4,5,6,7,8,1234,123̄4̄,12̄56̄,12̄5̄6,34̄78̄,34̄7̄8,5678,567̄8̄.

This is T16.
G4 1,2,3,4,5,6,7,8,1234,12̄56̄,13̄5̄7,14̄67̄,23̄58̄,24̄6̄8,34̄78̄,5678.

This is the hypercube S16.
G5 1,2,3,4,5,6,7,8,1234,12̄56̄,13̄5̄7,14̄67̄,23̄6̄7̄,24̄57,34̄5̄6̄.

This is an isolated vertex plus S14.
G6 1,2,3,4,5,6,1234,123̄4̄,12̄56̄,12̄5̄6,34̄78̄,34̄7̄8,5678̄,567̄8.

This is T14.
G7 1,2,3,4,5,6,1234,123̄4̄,12̄78̄,12̄7̄8,34̄78̄,34̄7̄8,5678,567̄8̄.

This is a square plus T10.
G8 1,2,3,5,1278,146̄7̄,24̄68̄,3456,34̄7̄8,56̄78̄.

10 vertices, 2 cyclotomic components (both are 5-cycles).
In the remaining cases, the larger component was noncyclotomic.
G9 1,2,3,4,5,6,1234,12̄56̄,13̄5̄7,14̄67̄,34̄78̄,5678̄.

12 vertices, 1 component, 29 maximal cyclotomic subgraphs (maximal in the sense
that no larger subgraph of G9 is cyclotomic).

G10 1,2,3,4,5,6,1234,12̄78̄,13̄57̄,14̄5̄8,34̄7̄8̄,5678.
12 vertices, 1 component, 13 maximal cyclotomic subgraphs.

G11 1,2,3,4,5,6,1234,12̄78̄,13̄57̄,24̄57,34̄7̄8.
11 vertices, 2 components (one being a single vertex), 15 maximal cyclotomic sub-

graphs.
G12 1,2,3,4,5,6,1234,12̄78̄,13̄57̄,24̄68̄,34̄7̄8,5678.

12 vertices, 1 component, 15 maximal cyclotomic subgraphs.
G13 1,2,3,4,5,6,1234,12̄78̄,13̄57̄,24̄68̄,5678,56̄78̄.



14 CYCLOTOMIC MATRICES

12 vertices, 1 component, 19 maximal cyclotomic subgraphs.
G14 1,2,3,4,5,6,1278,12̄78̄,135̄7̄,2358̄,3478,56̄7̄8.

12 vertices, 1 component, 17 maximal cyclotomic subgraphs.
G15 1,2,3,4,5,6,1278,12̄78̄,135̄7̄,246̄8̄,3478,56̄7̄8.

12 vertices, 1 component, 37 maximal cyclotomic subgraphs.
G16 1,2,3,4,5,1234,12̄56̄,13̄68̄,24̄6̄8,34̄78̄,567̄8.

11 vertices, 1 component, 44 maximal cyclotomic subgraphs.
G17 1,2,3,4,5,1234,12̄78̄,13̄6̄8,24̄68̄,34̄7̄8,5678.

11 vertices, 2 components: K2 plus a 9-vertex component; 36 maximal cyclotomic
subgraphs.

G18 1,2,3,4,5,1256,12̄78̄,135̄7̄,246̄8̄,3478,34̄78̄,56̄7̄8̄.
12 vertices, 1 component, 3-regular, 45 maximal cyclotomic subgraphs.

G19 1,2,3,4,5,1278,136̄8̄,14̄67̄,2367̄,24̄6̄8̄,34̄78,56̄7̄8.
12 vertices, 2 components: K2 plus a 3-regular 10-vertex component, equivalent to the

Petersen graph (switch at vertex 4 to get it) 57 maximal cyclotomic subgraphs.
G20 1,2,3,5,1234,12̄56̄,13̄68̄,24̄57̄,34̄7̄8̄,5678̄.

10 vertices, 1 component, 23 maximal cyclotomic subgraphs.
For each of the noncyclotomic components listed above, it was checked by computer that none

of their cyclotomic subgraphs are maximal cyclotomic graphs.
This completes the proof of Theorem 1.
Inspection of the graphs reveals that the adjacency matrix A satisfies A2 = 4I in every case, so

the eigenvalues are all ±2. The exact number of each sign there are is given in Table 1. After
Corollary 13 these examples are also clearly maximal: they are regular of degree 4.

7.4. An alternative view of the cyclotomic subgraphs of E8. Let G be a cyclotomic subgraph
of E8 that is not equivalent to a subgraph of any Dr, with vertices given by vectors v1, . . . , vn,
contained in 8-dimensional real space. Then −G, obtained from G by changing the signs of all
edges and charges, is also cyclotomic. Now −G is equivalent to G, so cannot be represented in
any line system Dr, so must be represented in the line system E8, and hence the vertices of −G
can be represented as vectors w1, . . . , wn, where for each i either wi or −wi is in the signed graph
E8.

We can view the concatenated vectors [v1,w1], . . . , [vn,wn] as elements of 16-dimensional
real space, a subset of the 28800 vectors [v,w] where v ∈ E8, ±w ∈ E8. Moreover, since the wi
represent −G, we have

wi ·w j = −vi ·v j

for all i 6= j. This implies that
[vi,wi] · [v j,w j] = 0

for all i 6= j: our concatenated vectors [v1,w1], . . . , [vn,wn] are pairwise orthogonal. Since these
vectors lie in 16-dimensional space, we must have n ≤ 16, as is confirmed by the examples
computed in Section 7.3.

Conversely, suppose that we take any orthogonal subset [v1,w1], . . . , [vn,wn] of the 28800
vectors considered above, with the constraint that v1, . . . , vn are distinct. Then the signed graph
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G with vertices v1, . . . , vn (and adjacency of unequal vertices given by the dot product) is cyclo-
tomic, for both G and −G are represented in the line system E8, with w1, . . . , wn spanning the
lines that represent −G.

7.5. Remark on maximal cyclotomic (unsigned) graphs. The maximal cyclotomic graphs
classified by Smith are shown in Figure 9. The n-cycle Ãn−1 and the graph D̃n are subgraphs
of T2n, while the sporadic examples are all subgraphs of the hypercube S16. Unlike in the signed
case, however, the maximal unsigned graphs are not visibly cyclotomic.

. . . .. . . .

....

PSfrag replacements

Ãn

D̃n

Ẽ6 Ẽ7 Ẽ8

FIGURE 9. The maximal connected cyclotomic graphs Ẽ6, Ẽ7, Ẽ8, Ãn(n ≥ 2) and
D̃n(n ≥ 4). The number of vertices is 1 more than the index. (From [MS]).

We can deduce Smith’s classification as a corollary of Theorem 1, by checking that these
graphs are the only maximal (unsigned) subgraphs of the signed graphs of the Theorem. A
useful fact to use in this check is that the graphs D̃4 and D̃5, since they have 2 as an eigenvalue,
cannot be a proper subgraph of any such graph. This is because otherwise the graph would have
an eigenvalue greater than 2 — see [CvR, p. 4].

8. CYCLOTOMIC CHARGED SIGNED GRAPHS

We now embark upon the trickier task of proving Theorem 2, and so classifying all cyclo-
tomic charged signed graphs. The addition of charges means that we can no longer appeal to
Proposition 7, although the Gram matrix approach will still prove extremely powerful.

8.1. Excluded subgraphs I. By interlacing, every subgraph of a cyclotomic charged signed
graph is cyclotomic. We can therefore exclude as subgraphs any that are not cyclotomic. In
particular, the following eight non-cyclotomic charged signed graphs X1, . . . ,X8 of Figure 10 (or
anything equivalent to any of them) cannot be subgraphs of any cylotomic charged signed graph.

8.2. Excluded subgraphs II. Certain cyclotomic charged signed graphs have the property that
if one tries to grow them to give larger connected cyclotomic graphs then one always stays inside
one of the maximal examples on the following list: S7, S8, S′8, C++

4 , C+−
4 , C++

6 , C+−
6 , T6. The

process of proving that a cyclotomic graph has this property is in principle simple, although
perhaps tedious, to carry out. Starting from the given graph, one considers all possible ways
of adding a vertex (up to equivalence) such that the graph remains connected and cyclotomic.
Check that the resulting graphs are (equivalent to) subgraphs of one of graphs on this list. Repeat
with all the larger graphs found. If the checks in this process are always valid, then, since the
process terminates, the original graph is suitable for exclusion.
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FIGURE 10. Excluded subgraphs I: some noncyclotomic charged signed graphs.

By this technique, the six cyclotomic graphs Y1, . . . ,Y6 of Figure 11 (and anything equivalent
to them) can be excluded from future consideration.

PSfrag replacements

Y1 Y2 Y3
Y4 Y5 Y6

FIGURE 11. Excluded subgraphs II: Some cyclotomic charged signed graphs that
are contained as subgraphs of a maximal connected cyclotomic charged signed
graph only in one of the maximal graphs S7, S8, S′8, C++

4 , C+−
4 , C++

6 , C+−
6 , T6.

8.3. Charged and neutral components. Let G be a charged signed graph. We define the
charged subgraph of G to be the subgraph induced by all its charged vertices, and the neu-
tral subgraph of G to be the subgraph induced by all its neutral vertices. The components of
the charged (respectively neutral) subgraph of G will be called the charged components of G
(respectively the neutral components of G).

Our next task will be to show that the charged components of a cyclotomic charged signed
graph are tiny, provided that G does not contain Y1, Y6, or any equivalent subgraph.

Lemma 19. Let G be a cyclotomic charged signed graph that does not contain any subgraph
equivalent to Y1 or Y6 of Section 8.2. Then each charged component of G contains at most two
vertices, necessarily of the same charge.

Proof. The last phrase is clear, since Y1 is excluded as a subgraph. Moreover the exclusion of Y1
forces every charged component to have all charges of the same sign, which by equivalence we
may assume to be all positive. Since graphs X2 and X3 of Section 8.1 are not cyclotomic, and Y6
is excluded by assumption, no charged component of G can have as many as three vertices. �

8.4. Local geometric constraints.

Lemma 20. Let G be a cyclotomic charged signed graph. Suppose that G contains two nonad-
jacent neutral vertices v and w that have a charged vertex x as a common neighbour. Then v and
w have the same neighbours.
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Proof. Adjacency being unchanged by equivalence, we may suppose that the charge on x has
negative sign, and that the edges joining v and w to x are positive. The subgraph induced by v, w,
x is then .

PSfrag replacements

wxv
Since G is cyclotomic, all eigenvalues of its adjacency matrix A are in [−2,∞), so A+2I is the

Gram matrix of some set of vectors. Let v, w, x be the Gram vectors corresponding to v, w, x.
Since v and w are neutral, v and w have length

√
2. Since x has a negative charge, x has length

1. The angle between v and x is π/4, the angle between w and x is π/4, and the angle between v
and w is π/2. Hence v, w, x are coplanar, with x in the direction of v + w. By consideration of
their lengths we have

2x = v+w . (1)
Now let y be any other vertex of G, with corresponding Gram vector y. Taking dot products

with (1) gives
2y ·x = y ·v+y ·w . (2)

The left hand side of (2) is an even integer, hence the parities of the two integers on the right
must agree. Hence y is adjacent to v if and only if it is adjacent to w. �

Lemma 21. Let G be a cyclotomic charged signed graph containing adjacent charged vertices v
and w, where the signs on the charges for v and w agree. Then v and w have the same neighbours.

Proof. Adjacency is preserved by equivalence, so we may suppose that the charges on v and w
are both negative, and that the edge between v and w is positive. In the usual way, let v and w be
Gram vectors corresponding to v, w. These have length 1, and the angle between them is zero,
so v = w, although v 6= w. Hence v and w have the same neighbours. �

8.5. Removing charged components I. We now show that if a connected cyclotomic charged
signed graph does not contain a subgraph equivalent to any of the excluded subgraphs of Section
8.2, then it has a single neutral component. As a first step, we show that certain charged vertices
can be deleted without disconnecting the graph.

Lemma 22. Suppose that a connected cyclotomic charged signed graph G has two adjacent
charged vertices v and w, with the charges on v and w having the same sign. Then the vertex w
can be deleted without disconnecting G.

Proof. By Lemma 21 every neighbour of v is a neighbour of w (and vice versa). Let x and y be
any distinct vertices in G, with neither of them being w. We must show that there is a walk in
G from x to y that does not pass through w. Certainly there is a path v1v2 . . .vr in G from x to y
(v1 = x, vr = y). Suppose that this path contains w, say vi = w. If either vi−1 or vi+1 is v, then we
can simply remove w from the path, since v shares its neighbours. Otherwise we can replace w
by v in the path (producing a walk, but perhaps no longer a path), again since v and w share their
neighbours. �

Lemma 23. Let G be a connected cyclotomic charged signed graph, with more than three ver-
tices, that contains no subgraph equivalent to either Y1 or Y4 of Section 8.2. Suppose that G
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contains two nonadjacent neutral vertices v and w that share a common charged neighbour x (as
in Lemma 20). Then x can be deleted from G without disconnecting the graph.

Proof. By the hypothesis on the number of vertices in G, there is some fourth vertex y in G that
is adjacent to one of v, w, x.

First we dispose of the cases where y is adjacent to x. If y has a charge, then since Y1 is an
excluded subgraph, y and x have charges of the same sign. Then Lemma 22 shows that x can
be removed without disconnecting G. If y is neutral, then since subgraphs equivalent to Y4 are
excluded, and a subgraph equivalent to X1 of Section 8.1 is impossible, y cannot be adjacent to
either v or w. But then G would contain a subgraph equivalent to X4 of Section 8.1, which is not
possible.

We may now suppose that y is not adjacent to x, and more strongly may suppose that v and w
are the only neighbours of x. By Lemma 20, v and w share all their neighbours. In particular, y
is adjacent to both v and w.

Let z1 and z2 be any vertices in G other than x. It is enough to show that there is a walk in
G from z1 to z2 that does not pass through x. Certainly there is a path v1v2 . . .vr from z1 to z2
(v1 = z1, vr = z2). Suppose that x is on this path: say x = vi. We know that vi−1 and vi+1 each
equal one of v and w. We can therefore replace x by y in our path to produce the desired walk. �

The requirement that G has more than three vertices is clearly necessary: if v, w, x are the only
vertices in G then deleting x disconnects G.

8.6. Removing charged components II.

Lemma 24. Let G be a connected cyclotomic charged signed graph that does not contain a
subgraph equivalent to Y1, Y4 or Y6 of Section 8.2. Suppose further that G has at least four ver-
tices. Then G contains a single neutral component: all charged vertices can be deleted without
disconnecting G.

Proof. By Lemma 19, all charged components have at most two vertices, and do not equal Y1.
By Lemma 22, we can remove a charged vertex from any charged component that has two ver-
tices, without disconnecting G. We are thus reduced to charged components containing only one
vertex.

If a charged vertex is a leaf, it can be removed without disconnecting G.
If a charged vertex has two neutral neighbours, then since subgraphs equivalent to X1 and

Y4 are excluded we can appeal to Lemma 23 to see that this vertex can be removed without
disconnecting G.

No charged vertex can have three or more neutral neighbours, or G would contain a subgraph
equivalent to one of X1, X4 or Y4. �

8.7. Growing the neutral component. Let G be a connected cyclotomic charged signed graph
that contains at least four vertices, at least one of which is charged, but does not contain any of the
excluded subgraphs Y1, . . . , Y6. Then Lemma 24 tells us that G has a single neutral component, H
say. By interlacing, H is cyclotomic, and from the classification of all cyclotomic signed graphs
we know that H is (equivalent to) a subgraph of one of Dr (for some r), S14 or S16. We treat each
of these cases in turn.
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8.7.1. H is equivalent to a subgraph of Dr. We may suppose that r is minimal such that Dr
contains a subgraph equivalent to H. Cases with r ≤ 4 can be dealt with exhaustively by grow-
ing each possible H in all possible ways, adding only charged vertices, and checking that each
maximal connected cyclotomic charged signed graph (maximal subject to the neutral component
being H) is contained in some C++

2k or C+−
2k . We may therefore suppose that r ≥ 5.

Working up to equivalence, we identify H with some subgraph of Dr (which has vertices
ei±e j for 1 ≤ i < j ≤ r, where e1, . . . , er is an orthonormal set of vectors). From our knowledge
of the structure of cyclotomic signed graphs, we see that by relabelling and changing signs of
basis vectors (thereby inducing an equivalence), we can suppose that H contains e1 +e2, e2 +e3,
. . . , er−1 + er, and that all other vertices of H are of the form ei − ei+1 (for some i in the range
1 ≤ i ≤ r−1), or e1 ± er.

Now suppose that w is a charged vertex in G. Since (i) G is connected, (ii) Y1 is an excluded
subgraph, and (iii) adjacent charged vertices that have the same charge share all their neighbours
(Lemma 21), we deduce that w is adjacent to one or more vertices in H. We treat first the case
where w has charge −1. We have represented (a graph equivalent to) H by a set of Gram vectors,
where adjacency of unequal vertices is given by the dot product, and we can extend this to (a
graph equivalent to) H ∪{w}, where w is represented by the Gram vector w = ∑r+1

i=1 λiei. If w is
in the span of e1, . . . , er, then we may set er+1 = 0; otherwise we need an extra dimension for
w, and take er+1 of length 1 and orthogonal to all of e1, . . . , er. Since w has charge −1, w has
length 1.

We consider two subcases. Case 1 (which we shall prove to be impossible): H contains one
or both of e1 ±er, so that H contains a cycle of length r containing no pair of conjugate vertices.
Case 2: H contains neither of the vertices e1 ± er.

In Case 1, H contains at least one cycle of length r containing no pair of conjugate vertices.
Suppose that w were adjacent to at least two vertices on such a cycle, say x and y (and perhaps
others). Since subgraphs of G equivalent to Y4 have been excluded, and G cannot contain a
subgraph equivalent to X1, the vertices x and y are not adjacent. By Lemma 20, every neighbour
of x is a neighbour of y. But in a cycle of length at least 5 containing unadjacent vertices x and y
and containing no pair of conjugate vertices, there will be a neighbour of x that is not a neighbour
of y.

Still in Case 1, suppose next that w is adjacent to exactly one vertex in some cycle of length
r containing no pair of conjugate vertices. Then G would contain a subgraph equivalent to X6,
giving a contradiction.

To kill off Case 1, we now consider the remaining subcase where w is adjacent to none of
the vertices in the cycle e1 + e2, e2 + e3, . . . , er−1 + er, e1 ± er. Then H must contain at least
one more vertex, and after some relabelling and equivalence we can assume that w is adjacent to
e1 − e2, with a positive edge. Then

λ1 −λ2 = 1 , λ1 +λ2 = λ2 +λ3 = λ3 +λ4 = λ4 ±λ5 = 0 ,

where the ‘±’ might be ‘−’ if r = 5. This gives

λ1 = 1/2 , λ2 = −1/2 , λ3 = 1/2 , λ4 = −1/2 , λ5 = ±1/2 ,

and hence |w| > 1, giving a contradiction.
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We now move to Case 2, where H contains the path formed by the vertices e1 + e2, e2 + e3,
. . . , er−1 + er, and all other vertices in H are of the form ei − ei+1 (for some i in the range
1 ≤ i ≤ r−1).

If w were adjacent to more than one vertex in our path, say x and y, then as in Case 1 we would
have x and y unadjacent, implying that they share all their neighbours, giving a contradiction.

If w were not adjacent to any vertex in our path, then it would be adjacent to some ei − ei+1,
and from

λi −λi+1 = ±1 , λ1 +λ2 = λ2 +λ3 = . . . = λr−1 +λr = 0 ,

we would get at least five distinct j such that |λ j| = 1/2, contradicting |w| = 1.
We are reduced to the case where w is adjacent to exactly one vertex in our path. Since X6 is

excluded as a subgraph, this neighbour of w must be an endvertex of our path. Relabelling, we
can suppose that w is attached to e1 +e2 by a positive edge, but to none of e2 +e3, . . . , er−1 +er.
If H also contained e1 −e2, then w would necessarily be adjacent to it, or else G would contain a
subgraph equivalent to X7. Moreover, as e2 +e3 is joined to e1−e2 by a negative edge, exclusion
of subgraphs equivalent to X8 implies that w must then be connected to e1−e2 by a positive edge.

To sum up, if the minimal value of r is at least 5, then we can assume that H contains the
vertices e1 + e2, e2 + e3, . . . , er−1 + er, and that all other vertices are of the form ei − ei+1. Any
negatively charged vertex w in G is adjacent to one of e1 ± e2 or er−1 ± er. If both of e1 ± e2 are
in H and w is adjacent to one of them, then it is adjacent to both; similarly for er−1 ± er. The
excluded graph X8 constrains the signs of the edges that connect w to H. In short, H ∪{w} is
equivalent to a subgraph of one of the C++

2k or C+−
2k .

By equivalence, similar remarks hold for positively-charged vertices in G.
If more than one charged vertex in G is adjacent to the same vertex in H, then the exclusion of

subgraphs equivalent to Y2 and Y3 implies that these charged vertices are adjacent to each other;
the exclusion of subgraph Y1 implies that they all have the same sign; Lemma 21 implies that
there are at most two such. We conclude that G is equivalent to a subgraph of one of the C++

2k or
C+−

2k .

8.7.2. H is equivalent to a subgraph of S16. We shall show that H is in fact equivalent to a
subgraph of Dr for some r, so that we are reduced to the previous case.

Recalling previous notation, the vertices of S16 are labelled 1, 2, 3, 4, 5, 6, 7, 8, 1234, 12̄56,
13̄5̄7, 14̄6̄7̄, 23̄58, 24̄68̄, 34̄78, 56̄78̄. These are vectors in 8-dimensional real space, with adja-
cency of unequal vectors given by the dot product. Each vector has length

√
2. Our restrictions

on G imply that it has no triangles except perhaps involving two charged vertices and one neutral
vertex.

Note that S16 is bipartite, with parts V1 = {1,2,3,4,5,6,7,8}, V2 = {1234, 12̄56, 13̄5̄7, 14̄6̄7̄,
23̄58, 24̄68̄, 34̄78, 56̄78̄}. There is an equivalence of S16 that interchanges these two parts,
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induced by the orthogonal map with matrix

1
2














1 1 1 1 0 0 0 0
1 −1 0 0 1 1 0 0
1 0 −1 0 −1 0 1 0
1 0 0 −1 0 −1 −1 0
0 1 −1 0 1 0 0 1
0 1 0 −1 0 1 0 −1
0 0 1 −1 0 0 1 1
0 0 0 0 1 −1 1 −1














with respect to e1, . . . , e8.
Let w be a charged vertex in G. Arguing as before, w is adjacent to at least one vertex in

H. First we treat the case where w is adjacent to at least two vertices in H, say x and y. Now
x and y cannot be adjacent in G, or we would have a forbidden triangle equivalent to X1 or Y4.
Then by Lemma 20 the vertices x and y share all their neighbours (and they must have at least
one neighbour in H or H would not be connected). It follows that x and y are either both in V1
or both in V2. Working up to equivalence, and swapping V1 and V2 as above if necessary, we
may suppose that x and y are both in V1. We may also suppose that w is negatively charged, so
that if we extend our set of Gram vectors representing H (some subset of the vectors/vertices in
V1 ∪V2) to a set of Gram vectors representing H ∪{w}, the vector w representing w will have
length 1. We may write w = ∑9

i=1 λiei , where e9 (length
√

2, orthogonal to e1, . . . , e8) is included
in case we need an extra dimension to make room for w. Since |w| = 1, we have ∑9

i=1 λ2
i = 1/2 .

If x and y correspond to i and j in our labelling of the vertices of S16, then from

w.ei = ±1, w.e j = ±1, (3)

we have λi,λ j ∈ {1/2,−1/2}, and hence all other λk are zero.
There are now essentially two cases (up to equivalence): {i, j} = {1,2} and {i, j} = {1,8}.

In the former case, since 1 and 2 are not adjacent, Lemma 20 implies that they have the same
neighbours in G, and hence also in H, whence 13̄5̄7, 14̄6̄7̄, 23̄58, 24̄68̄ 6∈ H. One of 1234 and
12̄56 has dot product ±1 with w, and hence must be excluded from H (or else together with
w and 1 (or 2) we would have a forbidden triangle). Hence the vertices in H are a subset of
W1 ∪W2, where

W1 = {1, 2, 3, 4, 5, 6, 7, 8, 34̄78, 56̄78̄}, W2 = {1234} or {12̄56},
depending on the signs of λ1 and λ2. Then H is readily seen to be equivalent to a subgraph of
D8.

For the other essentially distinct case, {i, j} = {1,8}, similar reasoning shows that H is a
subset of V1, contradicting the connectedness of H.

We are left with the possibility that w is adjacent to exactly one vertex in H. Let us temporarily
call a signed charged graph K friendly if it is cyclotomic, contains exactly one charged vertex w,
the vertex w is joined to exactly one neutral vertex, and the neutral vertices in K form a single
component. In our current case, H ∪{w} is friendly. It will be enough to show that any friendly
graph with neutral component equivalent to a subgraph of S16 is contained in a larger friendly
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graph (where the neutral component of the larger friendly graph might or might not be equivalent
to a subgraph of S16). For then we can grow our friendly graph H∪{w} to a larger friendly graph
H ′∪{w} with H ′ not equivalent to a subgraph of S16. Then H ′ must be equivalent to a subgraph
of some Dr, and hence the same is true for H.

A computer search checked that all friendly graphs with up to 13 neutral vertices are contained
in larger friendly graphs. We then checked by computer the small number of required remaining
cases (up to equivalence) to find that there are no friendly graphs with 14, 15, or 16 neutral
vertices for which the neutral component is equivalent to a subgraph of S16.

8.7.3. H is equivalent to a subgraph of S14. The argument here is very similar to that for S16, but
in fact slightly simpler, as S14 has fewer vertices. Analogously, we have V1 = {1,2,3,4,5,6,7},
V2 = {1234,12̄56̄,13̄5̄7,14̄67̄,23̄6̄7̄,24̄57,34̄5̄6̄}. In the ‘unfriendly’ case we find that the ver-
tices in H are (after a suitable equivalence) a subset of W1 ∪W2 where

W1 = {1,2,3,4,5,6}, W2 = {1234} or {12̄56̄} .

Then H is equivalent to a subgraph of D6.
This completes the proof of Theorem 2.

9. EIGENVALUES IN THE OPEN INTERVAL (−2,2)

9.1. Introduction to the next three sections. Sections 9,10 and 11 are devoted to results for
matrices and graphs under further restrictions. These follow more or less straightforwardly from
Theorems 1 and 2. We consider first restricting to eigenvalues in the open interval (−2,2) (Sec-
tion 9), deferring the proofs to Section 12. Then we consider charged (unsigned) graphs, treating
both the open and closed intervals (Section 10). Finally we treat symmetric matrices that have
non-negative integer entries (Section 11).

9.2. Cyclotomic signed graphs with all eigenvalues in (−2,2). Having classified all integer
symmetric matrices having all their eigenvalues in the interval [−2,2], a natural question is what
happens if we restrict the eigenvalues to the open interval (−2,2). From our knowledge of the
closed interval case, we can immediately restrict to cyclotomic signed graphs and cyclotomic
charged signed graphs, and need only consider subgraphs of the maximal ones.

Theorem 4 (“Uncharged, signed, (−2,2)”). Up to equivalence, the connected signed graphs
maximal with respect to having all their eigenvalues in (−2,2) are the eleven 8-vertex sporadic
examples U1, . . . ,U11 shown in Figure 12, and the infinite family O2k of 2k-cycles with one edge
of sign −1, for 2k ≥ 8, shown in Figure 13.

Further, every connected cyclotomic signed graph having all its eigenvalues in (−2,2) is either
contained in a maximal one, or is a subgraph of one of the signed graphs Qhk of Figure 14 for
h+ k ≥ 4.

We note in passing that the graphs Ui can all be obtained from the cube U1 by deleting certain
edges. Not every choice of edge-deletion produces a Ui, however. For instance no edge-deleted
subgraph of U1 containing an induced subgraph equivalent to D̃5 can have all its eigenvalues in
(−2,2).
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FIGURE 12. The sporadic connected cyclotomic signed graphs maximal with re-
spect to having all eigenvalues in (−2,2).

FIGURE 13. The 2k-vertex connected cyclotomic signed graph O2k, maximal
with respect to having all eigenvalues in (−2,2), shown here for k = 5.
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PSfrag replacements
h k

︷ ︸︸ ︷ ︷ ︸︸ ︷

FIGURE 14. The doubly infinite family Qhk of connected cyclotomic signed
graphs having all eigenvalues in (−2,2) but not contained in a maximal one.

9.3. Cyclotomic charged signed graphs with all eigenvalues in (−2,2). Next we have a cor-
responding result for charged signed graphs.

Theorem 5 (“Charged, signed, (−2,2)”). Up to equivalence, the connected charged signed
graphs maximal with respect to having all their eigenvalues in (−2,2), and not covered by the
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Theorem 4 above, are the eight 4-vertex sporadic examples V1,V2, . . . ,V8 shown in Figure 17,
and the infinite family P±

n of n-vertex charged paths of Figure 18 for n ≥ 4.
Further, every connected cyclotomic charged signed graph not covered by the previous theo-

rem is contained in such a maximal one.

9.4. Cyclotomic matrices with all eigenvalues in (−2,2). We can combine the previous two
theorems, translated into matrix language, to obtain the following.
Theorem 6 (“Integer matrix, (−2,2)”). Every indecomposable cyclotomic matrix maximal with
repect to having all its eigenvalues in the open interval (−2,2) is equivalent to the adjacency
matrix of one of the graphs U1,U2, . . . ,U11, O2k(2k ≥ 8), V1,V2, . . . ,V8, P±

n (n ≥ 4) (given by
Theorems 4 and 5).

Further, every indecomposable cyclotomic matrix having all its eigenvalues in (−2,2) is either
contained in a maximal one, or is contained in the adjacency matrix of one of the signed graphs
Qhk of Figure 14 for h+ k ≥ 4.

10. MAXIMAL CYCLOTOMIC CHARGED GRAPHS

10.1. Cyclotomic charged unsigned graphs. We now restrict our attention to cyclotomic charged
graphs, looking for those that are maximal with respect to having all their eigenvalues in [−2,2].
For such a graph G we need to define G as the graph whose edges are the same as those of G, with
the same signs, but with the charges on vertices being the opposite of those on G. For example,
graphs V1 and V1 are shown in Figure 17. It is clear that when G is a tree, G is equivalent to G.

One difference for this kind of maximality is that it is not a property of equivalence classes of
charged graphs: two of them may be equivalent with one of them maximal and the other not. For
instance, one consequence of the next result is that for the maximal graphs W5 and W6 the graphs
W5 and W6, being subgraphs of W7, are not maximal.

However, we have the following.
Theorem 7 (“Charged, unsigned, [−2,2]”). The maximal connected cyclotomic charged graphs
not covered by Smith’s result (i.e. not graphs), are the sporadic examples W1, . . . ,W13 from Figure
15, along with W1, W11,W12, and the seven families Fn(n ≥ 5), Gn(n ≥ 5), Hn(n ≥ 3), In(n ≥ 3),
Jn(n ≥ 2) and In(n ≥ 3), Jn(n ≥ 2) from Figure 16.

Further, every connected cyclotomic charged graph is contained in such a maximal one.

PSfrag replacements
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FIGURE 15. The sporadic maximal connected cyclotomic charged graphs W1, . . . ,W13.

The proof of this theorem is by inspection of the maximal connected cyclotomic charged
signed graphs of Theorem 2 to find their maximal connected charged (unsigned) subgraphs.
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FIGURE 16. Five families of maximal connected cyclotomic charged graphs. The
smallest two members of each family are also shown.

10.2. Cyclotomic charged unsigned graphs with all eigenvalues in (−2,2). We next have a
corresponding result for eigenvalues in the open interval (−2,2).

Theorem 8 (“Charged, unsigned, (−2,2)”). The connected charged (unsigned) graphs maximal
with respect to having all their eigenvalues in (−2,2), are the graph U5, the charged graphs V1,
V1, V2, . . . ,V5, from Figure 17, and P±

n of n-vertex charged paths of Figure 18 for n ≥ 4.
Further, every connected cyclotomic charged graph not covered by Theorem 4 is contained in

one of the above graphs.

Note that for n ≥ 8 the graph Dn (Figure 18), which is D̃n (Figure 9) with a leaf deleted, is a
subgraph of some Qhk. So it has all its eigenvalues in (−2,2) and is covered by Theorem 4. It is
not contained in any charged graph maximal with respect to having all its eigenvalues in (−2,2).

11. MAXIMAL CYCLOTOMIC SYMMETRIC NON-NEGATIVE INTEGER MATRICES

In this section we record our results for non-negative cyclotomic matrices, i.e., those integer
symmetric matrices that are cyclotomic and have only non-negative entries.

Theorem 9 (“Non-negative integer matrix, [−2,2]”). Up to conjugation by permutation matri-
ces, the only maximal indecomposable non-negative cyclotomic matrices are the matrices (2)

and

(
0 2
2 0

)

, adjacency matrices of Ẽ6, Ẽ7, Ẽ8, Ãn(n ≥ 2), D̃n(n ≥ 4) (Figure 9) along with the

two families In(n ≥ 3) and Jn(n ≥ 2) (Figure 16).
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n (for Theorems 5, 6 and 8), P+

n (The-
orem 10), P−

n , Pn (Section 13) and Dn (Theorem 10).

Further, every indecomposable non-negative cyclotomic matrix is contained in such a maximal
one.

This result is readily deduced from Theorems 3,7 and Smith’s results (Figure 9).

Theorem 10 (“Non-negative integer matrix, (−2,2)”). Up to conjugation by permutation ma-
trices, the only indecomposable non-negative cyclotomic matrix maximal with respect to having
all its eigenvalues in (−2,2) is the adjacency matrix of U5 (Figure 12).

Further, every indecomposable non-negative cyclotomic matrix is either contained in the ad-
jacency matrix of U5 or in the adjacency matrix of either P+

n or Dn (Figure 18) for some n.

12. PROOFS OF THEOREMS 4 AND 5

To prove Theorem 4, we first we show that the two infinite families O2k, Qhk have their eigen-
values in the open interval.

Suitable sets of Gram vectors, for the two cases, are:
For O2k, the columns of the (2k)× (2k) matrix (ci j), where

ci j =







1 if i = j or i = j +1
−1 if (i, j) = (1,2k)

0 otherwise .
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For Qhk, the columns of the (h+ k +4)× (h+ k +4) matrix (qi j), where

qi j =







1 if i = j ( j = 1, . . . ,h+ k +4) or i = j +1 ( j = 1,2,3) or (i, j) = (2,k +5)

or i = j−1 ( j = 5, . . . ,k +4,k +6, . . . ,h+ k +4)

−1 if (i, j) = (1,4)

0 otherwise.

Note that both of these sets of columns are easily seen to be linearly independent. Hence, in
each case, for the adjacency matrix A of these signed graphs, A+2I is non-singular, so −2 is not
an eigenvalue. Since these families comprise bipartite graphs (in the extended sense), 2 is not an
eigenvalue. The families are cyclotomic, being subgraphs of Tn for some n, so we are done.

Now we find the remaining graphs.
For subgraphs of the sporadic graphs S14 and S16, we know that these are subgraphs of E8, and

so can be embedded in R
8, with A + 2I nonsingular. Hence such a subgraph can have at most 8

vertices. These can be found by exhaustive search; the maximal ones are U1, . . . ,U11 and O8.
There remain the subgraphs of the infinite families.
We observe that:

• an hour-glass , equivalent to an unsigned square, has 2 as an eigenvalue;
• the classical D̃n graphs (see Figure 9) have 2 as an eigenvalue.

Hence the subgraph can contain at most one pair of conjugate vertices. So it is either a path,
a cycle, some Qhk or Q′

k, defined to be Q1k with its two leaves identified. A path is a subgraph
of some Qhk, while a cycle must be equivalent to some O2k, for otherwise it is equivalent to a
cycle with all positive edges for which 2 is an eigenvalue. For Q′

k, we can delete one of its pair
of conjugate vertices to obtain a graph equivalent to a cycle with all positive edges.

This completes the proof of Theorem 4.
The proof of Theorem 5 is similar. We can assume that the charged graphs we seek do indeed

have at least one charged vertex. The relevant subgraphs of S7, S8 and S′8 are found by exhaustive
search. For the subgraphs of C++

2k and C+−
2k , we see by the same argument as above that the neutral

component can contain at most one pair of conjugate vertices. Hence the neutral component is a
path, or some Qhk.

Two adjacent charges of the same sign have one of ±2 as an eigenvalue, so each charged
component has exactly one charge. Putting charges of the same sign at each end of a path would
give one of ±2 as an eigenvalue, as one can see by writing down an obvious eigenvector.

Putting a charge on either end of some Qhk gives one of ±2 as an eigenvalue. To see this
it suffices to consider adding a negative charge to one end, with corresponding column vector
(0, . . . ,0,1)T to add to (qi j), and adding a row of zeroes to (qi j) to make it square, giving a
singular matrix, and hence −2 as an eigenvalue. This leaves P±

n (and its subgraphs) as the only
possibilities.
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For P±
n , the columns of the n×n matrix (pi j), where

pi j =







√
2 if (i, j) = (1,1)

1 if i = j or i = j +1 (i ≥ 2)

0 otherwise ,

are easily seen to be linearly independent. Again, for the adjacency matrix A of this bipartite
charged signed graph, A+2I is non-singular, so −2 is not an eigenvalue, and hence neither is 2.

This completes the proof of Theorem 5. Theorem 8 then follows easily.

13. THE CYCLOTOMIC POLYNOMIALS OF CHARGED SIGNED GRAPHS

Table 1 gives the reciprocal polynomials of the maximal connected cyclotomic charged signed
graphs that appear in our results. All are maximal in the sense explained where they appear,
apart from the Qhk which, as we have seen, do not belong to any connected cyclotomic charged
signed graph maximal with respect to having all eigenvalues in (−2,2). Note, however, that the
polynomials associated to C++

2k and S7 will need changes of variable x 7→−x, z 7→−z when going
from one equivalent, but not strongly equivalent, graph to another.

Charged signed graph Characteristic polynomial Associated cyclotomic polynomial
T2k (x+2)k(x−2)k (z2 −1)2k (k ≥ 3)
S14 (x+2)7(x−2)7 (z2−1)14

S16 (x+2)8(x−2)8 (z2−1)16

C++
2k (x+2)k−1(x−2)k+1 (z−1)2k+2(z+1)2k−2 (k ≥ 2)

C+−
2k (x+2)k(x−2)k (z2 −1)2k (k ≥ 2)
S7 (x+2)3(x−2)4 (z+1)6(z−1)8

S8, S′8 (x+2)4(x−2)4 (z2 −1)8

TABLE 1. The characteristic and cyclotomic polynomials of maximal cyclotomic
charged signed graphs.

Table 2 gives the reciprocal polynomials of the cyclotomic signed graphs of Theorems 4 and 5,
shown in Figures 12, 14, 17, 13 and 18. In the table, Φn denotes the nth cyclotomic polynomial.

For a single sporadic graph with adjacency matrix A, the reciprocal polynomial znχA(z+1/z)
can be easily calculated. For the infinite families, more work is required. Here, for convenience,
we use the same notation for a graph and its associated cyclotomic polynomial.

For computing formulae for families of associated cyclotomic polynomials, a standard tool
will be to use induction on the determinant det((z+1/z)I−A), where A is the adjacency matrix
of the graph under consideration. In this way it is easy first to compute the the n-vertex (unsigned)
path Pn, giving Pn = (z2n+2 −1)/(z2−1), as in the table (see also [MS]). Then expansion by the
first row of the determinant gives P−

n = (z2n+1 −1)/(z−1). Also P±
n is readily calculated, again

expanding in the same way.
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Charged signed graph Associated cyclotomic polynomial
O2k (z2k +1)2

Qhk (z2h+4 +1)(z2k+4 +1) (h+ k ≥ 4)
U1 Φ4

6(z
2)

U2 Φ20(z2)
U3 Φ24(z2)
U4 Φ6(z2)Φ18(z2)
U5 Φ30(z2)

U6, U9 Φ2
12(z

2)
U7, U11 Φ15(z2)

U8 Φ12(z2)Φ2
6(z

2)
U10 Φ2

10(z
2)

V1 Φ15(z)
V1, V4 Φ30(z)
V3, V6 Φ20(z)
V2, V5 Φ24(z)
V7, V8 Φ2

12(z)
Pn (z2n+2 −1)/(z2−1)
P−

n (z2n+1 −1)/(z−1)
P±

n z2n +1 (n ≥ 4)

TABLE 2. The cyclotomic polynomials of some charged signed graphs having all
their eigenvalues in (−2,2).

For O2k, determinant expansion firstly along the top row, and then down the left rows of the
resulting determinants gives O2k = (z2 +1)P2k−1 −2z2P2k−2 +2z2k, and hence the result.

For Qhk, the formulae for Q1k and Q2k can be proved by induction, using the determinant, in a
similar way to that for P−

n . These can then be used as the base cases for an inductive proof of the
Qhk formula.

For T2k, label its top vertices 1,3,5, . . .,2k − 1 and the bottom vertices 2,4,6, . . .,2k, with
2 the conjugate vertex to vertex 1. Then (−1,1,1,1,0, . . .,0) is an eigenvector of T2k with
eigenvalue −2, and (1,−1,1,1,0, . . .,0) is an eigenvector of T2k with eigenvalue 2, both as-
sociated to the hourglass [1,2,3,4]. From the symmetry of T2k that acts by i 7→ i + 2 mod 2k
on its vertices, we get two eigenvectors, with eigenvalues −2 and 2 for each of the hourglasses
[3,4,5,6], [5,6,7,8], . . ., [2k − 1,2k,1,2]. These eigenvectors are independent, so that T2k has
characteristic polynomial (x+2)k(x−2)k, which, on putting x = z+1/z, gives the result.

For C++
2k , label the vertices as for T2k. For the hourglasses [3,4,5,6], . . . , [2k− 5,2k− 4,2k−

3,2k−2] (those without charged vertices), we get the same eigenvectors as for T2k, with the same
eigenvalues. The hourglasses [1,2,3,4] and [2k−3,2k−2,2k−1,2k] give the same eigenvectors
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as for T2k with eigenvalue −2. For the hourglass [1,2,3,4], however, we also get two indepen-
dent eigenvectors (1,1,0, . . .,0) and (2,0,1,1,0, . . .,0) with eigenvalue 2, and from the hour-
glass [2k− 3,2k− 2,2k− 1,2k] we get two more independent eigenvectors (0, . . . ,0,−1,1) and
(0, . . . ,0,1,−1,0,2) with eigenvalue 2. Thus C++

2k has characteristic polynomial (x + 2)k−1(x−
2)k+1, giving the result.

For C+−
2k , note that this is bipartite in the extended sense, so that the eigenvalues 2 and −2 have

equal multiplicities.

14. FINAL REMARKS

14.1. Finite reflection groups. Given the root system Φ of a finite reflection group, one classi-
cally looks for a subset ∆ that is a simple system, namely one that is a basis for the R-span of Φ
and such that every element of Φ is a linear combination of elements of ∆ with all coefficients
weakly of the same sign. The Coxeter graph of a simple system is determined by the reflection
group, and provides a means of classifying finite reflection groups.

If we have a signed graph with all eigenvalues in (−2,2) then (as we have seen) its vertices can
be associated with a linearly independent set ∆′ of vectors, and the reflection group generated by
the hyperplanes orthogonal to those vectors is a finite reflection group. The closure of ∆′ under
this reflection group is a root system Φ: in the language of [CvL] we are taking the star closure
of the lines spanned by the elements of ∆′.

Our set ∆′ will not generally be a simple system for Φ, but it will be a basis for the R-span of
Φ. The unsigned version of our graph (making all edges positive) is the Coxeter graph of ∆′.

The neutral signed graphs of Theorem 4 therefore provide a classification of all Coxeter graphs
coming from bases for the R-span of root systems contained in either Dn (n ≥ 4) or E8. For
example, one can generate E8 using eight reflections whose Coxeter graph is the cube U1 of
Figure 12.

For other connections between signed graphs and Coxeter graphs and roots systems see [CST]
and [Z1].

14.2. The graph S14. Robin Chapman has pointed out that, up to equivalence, the signed graph
S14 of Figure 3 can be defined as follows: label the vertices 0,1, . . . ,6,0′,1′, . . . ,6′ and, working
modulo 7, for each i join i to each of i′, (i+1)′ and (i+3)′ by positive edges, and join i to (i−1)′

by a negative edge. The representation of S14 in the figure is based on this observation.

14.3. Chebyshev polynomials and cyclotomic matrices. Let Tn(x) denote the nth Chebyshev
polynomial of the first kind, defined on the interval [−2,2]. So Tn(x) has integer coefficients and
satisfies

Tn

(

z+
1
z

)

= zn +
1
zn . (4)

Then for any cyclotomic matrix A, the matrix Tn(A) is again cyclotomic. This follows from
diagonalizing A and using (4).
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