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Abstract. In this paper, we investigate the properties of Ramanujan polynomials, a family of reciprocal
polynomials with real coefficients originating from Ramanujan’s work. We begin by finding their number
of real zeros, establishing a bound on their sizes, and determining their limiting values. Next, we prove
that all nonreal zeros of Ramanujan polynomials lie on the unit circle, and are asymptotically uniformly
distributed there. Finally, for each Ramunujan polynomial, we find all its zeros that are roots of unity.

1. Introduction

This paper investigates the properties of Ramanujan polynomials, which, for each k ≥ 0, the
authors of [2] define to be

R2k+1(z) =
k+1∑
j=0

B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
z2j ,

where Bj denotes the jth Bernoulli number. Of particular interest is the location of the zeros
of these polynomials, whose knowledge will give rise to explicit formulas for the Riemann zeta
function at odd arguments in terms of Eichler integrals.

Ramanujan polynomials are reciprocal polynomials with real coefficients, meaning that they
satisfy the functional equation

R2k+1(z) = z2k+2R2k+1

(
1
z

)
,

where 2k + 2 = deg(R2k+1). This elegant property greatly simplifies the analysis of their zeros,
the details of which will be unveiled in later sections.

To begin, this paper will derive certain basic properties of Ramanujan polynomials, including
a bound on the sizes of their real zeros. Furthermore, we will show that the largest real zero of
R2k+1 tends to 2 from above as k approaches infinity.

The subsequent section will give a proof that all nonreal zeros of Ramanujan polynomials lie
on the unit circle. In particular, we prove that for each k, these zeros (which take the form eiθ)
are interlaced between angles θ for which sin kθ assumes the values ±1. Hence, as k tends to
infinity, the nonreal zeros of R2k+1 become uniformly distributed on the unit circle.

The final section of the paper will determine which zeros of R2k+1 are 2k-th roots of unity.
Specifically, the roots of unity that are zeros of R2k+1 are

• Both ±i if k is even;
• All four of ±ρ, ±ρ̄ if k is a multiple of 3,

and no others. Here ρ is a primitive cube root of unity.
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2. Motivation

In Ramanujan’s notebooks, we find the following remarkable formula involving the odd values
of the Riemann-Zeta function (see [3]):

α−k

{
1
2
ζ(2k + 1) +

∞∑
n=1

n−2k−1

e2αn − 1

}
= (−β)−k

{
1
2
ζ(2k + 1) +

∞∑
n=1

n−2k−1

e2βn − 1

}

− 22k
k+1∑
j=0

(−1)j B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
αk+1−jβj ,

(1)

where α, β > 0 with αβ = π, and k is any positive integer. We recognize immediately that the
sum involving the Bernoulli numbers is

αk+1R2k+1

(
i

√
β

α

)
.

A rigorous proof of this formula together with a generalization was obtained by Grosswald. He
proved the following (see [1]):

Theorem 2.1 (Grosswald). Let

σk(n) =
∑
d|n

dk

and set

Fk(z) =
∞∑

n=1

σk(n)
nk

e2πinz

for =(z) > 0. Then

(2) F2k+1(z)− z2kF2k+1

(
−1

z

)
= 1

2ζ(2k + 1)(z2k − 1) +
(2πi)2k+1

2z
R2k+1(z).

The function Fk(z) is an example of an Eichler integral, and the above formula relates the
values of two Eichler integrals to ζ(2k + 1) through the Ramanujan polynomial. In particular,
zeros of R2k+1(z) that lie in the upper half plane and that are not 2k-th roots of unity give us
a formula for ζ(2k + 1) in terms of Eichler integrals. Indeed, the results of this paper tell us
that, for each k ≥ 4, there exists at least one algebraic number α with |α| = 1, α2k 6= 1 lying in
the upper half plane such that R2k+1(α) = 0 and hence

1
2ζ(2k + 1) =

F2k+1(α)− α2kF2k+1 (−1/α)
α2k − 1

.

In other words, there exists an explicit formula for the Riemann zeta function at odd arguments
9, 11, 13, . . . in terms of the difference of two Eichler integrals.

Though Ramanujan polynomials have appeared in the work of Grosswald and others, they
were never studied for their own sake. It turns out that they are of tremendous interest in their
own right, and serve as motivation for further applications. Indeed, the authors of [2] study the
function

G2k+1(z) =
2

z2k − 1
(F2k+1(z)− z2kF2k+1(−1/z))

and show that the set

{G2k+1(z) | =(z) > 0, z ∈ Q, z2k 6= 1}

contains at most one algebraic number.
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3. Basic Properties of Ramanujan Polynomials

Let us begin with the following simple well-known observation.

Lemma 3.1. Suppose that the polynomial

P (z) = p0 + p1z
2 + · · ·+ pdz

2d

has real coefficients pj, and satisfies pd−j = pj, j = 0, . . . , d. Then P (z) is a reciprocal
polynomial and, for z on the unit circle, z−dP (z) is real.

Proof. We have

z2dP

(
1
z

)
=

d∑
j=0

pjz
2(d−j) =

d∑
j=0

pd−jz
2j =

d∑
j=0

pjz
2j = P (z).

Hence for z on the unit circle,

z−dP (z) = zdP

(
1
z

)
= z̄−dP (z̄).

�

Corollary 3.2. Ramanujan polynomials are reciprocal.

Proof. This follows from the fact that the coefficient of z2j of R2k+2(z) is the same as that of
z2k+2−2j . �

From this corollary we see that replacing z by −1/z in the identity (2) gives the same identity
again.

Before moving on, let us take a moment to list the first few Ramanujan polynomials and
their zeros (the values given in parentheses are approximations to exact solutions by radicals).
Notice that, for 1 ≤ k ≤ 8, R2k+1(z) has exactly 4 real zeros. Furthermore, the largest of the
real zeros is always between 2 and 2.2 (and it seems to be approaching 2 as k increases). On
the other hand, the nonreal zeros seem to lie exactly on the unit circle.

R1(z) = 1
2·3!(z

2 + 1) (this is the trivial case) Zeros: ± i

R3(z) = 1
6!(−z4 + 5z2 − 1) Zeros: ±

√
5±

√
21

2 (±2.1889,±0.4569)

R5(z) = 1
12·7!(2z6 − 7z4 − 7z2 + 2) Zeros: ± i,±

√
9±

√
65

4 (±2.0653,±0.4842)

R7(z) = 1
10!(−3z8 + 10z6 + 7z4 + 10z2 − 3) Zeros: ± ρ,±ρ̄,±

√
13±

√
133

6 (±2.0221,±0.4945)

R9(z) = 1
12!(10z10 − 33z8 − 22z6 − 22z4 − 33z2 + 10)

Zeros: ± i,±

√
43
40 + 3

√
201

40 ± 1
2

√
1029
200 + 129

√
201

200 ,±

√
43
40 −

3
√

201
40 ± i

2

√
−1029
200 + 129

√
201

200

(±2.0071,±0.4982,±0.7112± 0.7030i)
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And a few more cases (all zeros other than ±i, ±ρ, ±ρ̄ are approximations):

R11(z) = 1
2·15!(−1382z12 + 4550z10 + 3003z8 + 2860z6 + 3003z4 + 4550z2 − 1382)

Zeros: ± 2.0022,±0.4995,±0.3081± 0.9513i,±0.8146± 0.5800i

R13(z) = 1
12·15!(210z14 − 691z12 − 455z10 − 429z8 − 429z6 − 455z4 − 691z2 + 210)

Zeros: ± i,±ρ,±ρ̄,±2.0006,±0.4998,±0.8715± 0.4904i

R15(z) = 1
5·18!(−10851z16 + 35700z14 + 23494z12 + 22100z10 + 21879z8

+ 22100z6 + 23494z4 + 35700z2 − 10851)
Zeros: ± 2.0002,±0.5000,±0.2219± 0.9751i,±0.9058± 0.4238i,±0.6247± 0.7809i

R17(z) = 1
21!(438670z18 − 1443183z16 − 949620z14 − 892772z12 − 881790z10

− 881790z8 − 892772z6 − 949620z4 − 1443183z2 + 438670)
Zeros: ± i,±2.0001,±0.5000,±0.3822± 0.9241i,±0.9279± 0.3729i,±0.7091± 0.7051i.

4. On Real Zeros of Ramanujan Polynomials

Invoking the identity
B2j

(2j)!
= − 2ζ(2j)

(2πi)2j
,

where ζ denotes the Riemann zeta function, we may define

M2k+1(z) =
(2k + 2)!
B2k+2

R2k+1(z) = z2k+2 + 1−
k∑

j=1

2ζ(2j)ζ(2k + 2− 2j)
ζ(2k + 2)

z2j ,

which is just the monic companion of R2k+1(z).
We now verify the existence of a real zero of M2k+1.

Theorem 4.1. For k ≥ 1 we have M2k+1(2) = −2k − 1.

Proof. Recall that the generating function for Bernoulli numbers is

t

et − 1
=

∞∑
n=0

Bntn

n!
,

and that all Bn with n ≥ 3 and odd are 0. Hence(
2t

e2t − 1

)(
t

et − 1

)
=

 ∞∑
j=0

Bj(2t)j

j!

( ∞∑
n=0

Bntn

n!

)
,

and the coefficient of t2k+2 (for k ≥ 1) in this product of sums is
2k+2∑
j=0

BjB2k+2−j

j!(2k + 2− j)!
2j =

2k+2∑
j even

BjB2k+2−j

j!(2k + 2− j)!
2j

=
k+1∑
j=0

B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
22j

= R2k+1(2).

Now, notice also that (
2t

e2t − 1

)(
t

et − 1

)
=

t2

(et − 1)2
− t

2
· 2t

e2t − 1
,

and furthermore
d

dt

(
t2

et − 1

)
=

2t

et − 1
− t2

et − 1
− t2

(et − 1)2
.



ZEROS OF RAMANUJAN POLYNOMIALS 5

Hence we can eliminate t2

(et−1)2
to obtain(

2t

e2t − 1

)(
t

et − 1

)
=

2t

et − 1
− t2

et − 1
− d

dt

(
t2

et − 1

)
− t

2
· 2t

e2t − 1

=
∞∑

n=0

Bn

n!

(
2tn − tn+1 − (n + 1)tn − t

2
(2t)n

)

= −
∞∑

n=0

Bn

n!
(
(n− 1)tn + (1 + 2n−1)tn+1

)
.

So for n = 2k + 2 with k > 0 the coefficient of t2k+2 is
−(2k + 1)B2k+2

(2k + 2)!
= R2k+1(2),

since B2k+1 = 0. Then

M2k+1(2) = R2k+1(2)
(2k + 2)!
B2k+2

= −(2k + 1).

�

We mention in passing that the two formulae for R2k+1(2) in the above proof give, for k > 0,
the identity

k+1∑
j=0

B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
22j = −(2k + 1)

B2k+2

(2k + 2)!

between Bernoulli numbers.
Now, it is only a pleasure to state the following corollary:

Corollary 4.2. For k ≥ 1, M2k+1 has exactly four distinct real zeros.

Proof. Now M2k+1(z) is positive for z real, positive and sufficiently large, so, by the intermediate
value theorem, it has a real zero, z0 say, greater than 2. As M2k+1(z) is reciprocal, 1/z0 ∈ (0, 1/2)
is also a zero. By Descartes’ Rule of Signs, we see that M2k+1(z) can have at most 2 positive
zeros, so z0 and 1/z0 are the only positive zeros. Since M2k+1 is an even function, we may also
conclude that −z0 and −1/z0 are the only negative zeros. �

We may in fact give an upper bound on the size of the largest real zero. This bound, coupled
with the proof that all nonreal zeros of M2k+1 lie on the unit circle (which will be given in the
next section), will tell us that the zeros of M2k+1 are uniformly bounded for all k.

Theorem 4.3. The largest real zero of M2k+1 does not exceed 2.2 (for any k ≥ 0), and ap-
proaches 2 as k →∞.

Note that, for 0 ≤ k ≤ 4, we already have explicit expressions for the real zeros of M2k+1,
and they are certainly bounded above by 2.2. Hence for the rest of this section, we focus on the
case k ≥ 5.

Now, to prove the theorem above, we require three lemmas.

Lemma 4.4. For n ≥ 2, we have the inequalities

1 + 2−n < ζ(n) < 1 +
n + 1
n− 1

2−n.

Proof. The lower bound is immediate from the definition of ζ(n). As for the upper bound,

ζ(n) < 1 +
1
2n

+
∫ ∞

2
x−ndx

= 1 +
n + 1
n− 1

2−n.

�
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The second lemma presents two known results concerning series involving the zeta-function.

Lemma 4.5 (see [4, equations (45) p. 163 and (193) p.178]). We have
∞∑

j=1

ζ(2j)
4j

= 1
2

and
∞∑

j=1

(ζ(2j)− 1) = 3
4 .

Proof. Now
∞∑

j=1

ζ(2j)
4j

=
∞∑

j=1

4−j
∞∑

k=1

1
k2j

=
∞∑

k=1

∞∑
j=1

1
(2k)2j

=
∞∑

k=1

1
(2k)2 − 1

= 1
2

∞∑
k=1

(
1

2k − 1
− 1

2k + 1

)
= 1

2 ,

where the second equality follows from changing the order of summation, and last equality
follows from telescoping series.

The second result is proved in a similar manner. �

Next, we need the following estimate.

Lemma 4.6. For k ≥ 1 and j = 1, . . . , k, we have
ζ(2k + 2− 2j)

ζ(2k + 2)
− 1 < 3 · 4j−(k+1).

Proof.
ζ(2k + 2− 2j)

ζ(2k + 2)
− 1 < ζ(2k + 2− 2j)− 1

<
2k + 3− 2j

2k + 1− 2j
4j−(k+1)

≤ 3 · 4j−(k+1),

using Lemma 4.4, and the fact that j ≤ k. �

Equipped with these lemmas, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. We have

M2k+1(
√

4 + t)
(4 + t)k+1

= 1− 2
k∑

j=1

ζ(2j)
(4 + t)j

ζ(2k + 2− 2j)
ζ(2k + 2)

+
1

(4 + t)k+1
,

which, on replacing 1 by 2
∞∑

j=1

ζ(2j)
4j

using Lemma 4.5, gives

2
∞∑

j=k+1

ζ(2j)
4j

+
1

(4 + t)k+1
+ 2

k∑
j=1

ζ(2j)
(

1
4j
− 1

(4 + t)j

ζ(2k + 2− 2j)
ζ(2k + 2)

)
.
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We now claim that M2k+1(
√

4 + t) is positive for some small t > 0 that goes to 0 as k →∞.
For this to hold, we see from the above expression that a sufficient condition is

4−j > (4 + t)−j ζ(2k + 2− 2j)
ζ(2k + 2)

for j = 1, . . . , k.

Using the upper bound in Lemma 4.6, it is therefore sufficient that(
1 +

t

4

)j

> 1 + 3 · 4j−(k+1),

or equivalently
t

4
> (1 + 3 · 4j−(k+1))1/j − 1.

Since for a ≥ 0 and 0 < δ ≤ 1 we have (1 + a)δ ≤ 1 + aδ, we replace this condition by

t >
3 · 4j−k

j
.

This lower bound attains its maximum at j = k, and hence we obtain our final sufficient
condition for M2k+1(

√
4 + t) to be positive, namely that

t >
3
k
.

Hence for k ≥ 5 the zero z0 of M2k+1 lies in the open interval
(
2,
√

4 + 3
k

)
. It follows that

z0 < 2.15 for k ≥ 5 and z0 → 2 as k →∞. �

5. Zeros of Ramanujan Polynomials on the Unit Circle

We now ascertain the location of the nonreal zeros of M2k+1.

Theorem 5.1. For k ≥ 0, all nonreal zeros of Ramanujan polynomials lie on the unit circle.

From Section 3, we know that this result is true for k ≤ 4. We are therefore again entitled
to assume that k ≥ 5.

The idea of the proof is to approximate M2k+1(z) by the polynomial

(3) A(z) = B(z)(z4 − 4z2 + 1),

where

(4) B(z) =
z2k − 1
z2 − 1

.

Not only does A have integer coefficients, but we know its zeros exactly. We then define ∆(z)
by

(5) M2k+1(z) = A(z)−∆(z).

To proceed, we need two lemmas, which enable us to describe quantitatively the approximation
of M2k+1(z) by A(z).

Lemma 5.2. For k ≥ 5 and k − 1 ≥ j ≥ 2, we have

(2j + 1)(2j′ + 1)
(2j − 1)(2j′ − 1)

< 2.5,

where j′ = k + 1− j.

Sketch of Proof. Treat this as a calculus problem involving a function of j. Then the left hand
side is maximized at j = 2, and setting k ≥ 5 gives the desired result. �
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Lemma 5.3. For k ≥ 5, the polynomial ∆(z) satisfies |∆(z)| < 1.3 for z on the unit circle.
Furthermore, writing

∆(z) = (ε1 − 1)(z2 + z2k) +
k−1∑
j=2

εjz
2j ,

we have, for 1 ≤ j ≤ k,

(6) εj = 2
(

ζ(2j)ζ(2k + 2− 2j)
ζ(2k + 2)

− 1
)

.

Proof. The formula for εj follows from the easily-verified fact that

A(z) = z2k+2 − 3z2k − 2z2k−2 − · · · − 2z4 − 3z2 + 1.

To bound ∆(z), we first note that, since ε1 − 1 and all the εj for 2 ≤ j ≤ k − 1 are positive,

|∆(z)| < 2(ε1 − 1) +
k−1∑
j=2

εj

for z on the unit circle. We therefore need to bound this sum from above.
Recalling that εj = εk+1−j , invoking Lemma 4.4 gives

ε1 = εk =
π2

6
2ζ(2k)

ζ(2k + 2)
− 2

<
π2

3

(
1 +

2k + 1
2k − 1

4−k

)
− 2

< 1.3

for k ≥ 5, since the right hand side of the inequality in Lemma 4.4 is strictly decreasing.
Now, once again invoking Lemma 4.4, we have

εj < 2
((

1 +
2j + 1
2j − 1

4−j

)(
1 +

2j′ + 1
2j′ − 1

4−j′
)
− 1
)

= 2
(

2j + 1
2j − 1

4−j +
2j′ + 1
2j′ − 1

4−j′
+

(2j + 1)(2j′ + 1)
(2j − 1)(2j′ − 1)

4−(k+1)

)
.

Summing both sides over j and using Lemma 5.2 gives us

k−1∑
j=2

εj < 4
∞∑

j=2

2j + 1
2j − 1

4−j +
5
4
(k − 2)4−k

= 4
∞∑

j=2

(
1 +

2
2j − 1

)
4−j +

5
4
(k − 2)4−k

= 2 log 3− 5
3

+
5
4
(k − 2)4−k

< 0.7

for k ≥ 5, using the fact that

log
(

1 + x

1− x

)
= 2

∞∑
j=1

x2j−1

2j − 1
,

and so

log 3 = 1 + 4
∞∑

j=2

1
2j − 1

4−j ,
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on setting x = 1/2. Hence

2(ε1 − 1) +
k−1∑
j=2

εj < 2× 0.3 + 0.7

= 1.3,

�

We are now ready prove Theorem 5.1:

Proof of Theorem 5.1. We first note that the polynomial A(z), which approximates M2k+1(z),
can, using (3), be written as

A(z) = zk+1

(
zk − z−k

z − z−1

)
((z − z−1)2 − 2),

Restricting z to the unit circle (in other words, putting z = eiθ) gives us

z−(k+1)A(z) = −(2 + 4 sin2 θ)
sin kθ

sin θ
= f(θ),

say. In particular, f is a real-valued function of θ. Next, consider

g(θ) = e−(k+1)iθ∆(eiθ).

Note that, by Lemma 3.1, ∆(z) is reciprocal, and g(θ) is real-valued; also, by Lemma 5.3, it is
bounded above by 1.3.

Finally, by confining our attention to θ ∈ (0, π), we see that f(θ) > 2 whenever sin kθ = −1
and f(θ) < −2 whenever sin kθ = 1. This is because

2 + 4 sin2 θ

sin θ
> 2 + 4 sin2 θ

> 2

on the interval (0, π).
Therefore the function

e(k+1)iθM2k+1(eiθ) = f(θ) + g(θ)

has a zero between every consecutive pairs of values of θ ∈ (0, π) with sin kθ = ±1. There are
precisely k values for which sin kθ = ±1, namely

(2l + 1)π
2k

, l = 1, . . . , k,

giving k − 1 zeros of M2k+1 on the upper half of the unit circle. Taking complex conjugates
yields another k − 1 zeros on the lower half of the unit circle. Hence M2k+1 has exactly 2k − 2
zeros on the unit circle, which is what we wanted to show. �

Observe that the above theorem not only gives the modulus of the nonreal zeros, but also
gives some restriction on their distribution. In particular, these zeros are interlaced between
angles θ for which sin kθ assumes the values ±1, which means that, asymptotically, they are
uniformly distributed on the unit circle.

We also observe another useful result concerning zeros of Ramanujan polynomials:

Corollary 5.4. Ramanujan polynomials have no repeated zeros.

Proof. The real zeros of M2k+1 were already shown to be distinct. The nonreal zeros on the
unit circle are strictly interlaced between angles θ for which sin kθ assumes the values ±1, and
hence never coincide with each other. �
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6. Zeros of Ramanujan Polynomials that are Roots of Unity

In this section we find all zeros of the Ramanujan polynomial R2k+1 that are roots of unity.
We do this in three stages. First, we show that any such zero must be a 2k-th root of unity.
Next, we show that such a zero must in fact be a primitive 3rd, 4th, or 6th root of unity. Finally,
we calculate for which values of k these three cases occur.

Let

ρ = −1
2

+
√

3
2

i,

a primitive cube root of unity, and φ`(z) be the `-th cyclotomic polynomial, whose zeros are
the primitive `-th roots of unity.

Our main result is the following.

Theorem 6.1. The roots of unity that are zeros of M2k+1 are
• Both ±i if k is even;
• All four of ±ρ, ±ρ̄ if k is a multiple of 3,

and no others.

In terms of polynomial factors, this says that the only cyclotomic factors of R2k+1 are z2 + 1
when k is even, and

(z2 + z + 1)(z2 − z + 1)
when k is a multiple of 3.

Proposition 6.2. Any zero of R2k+1 that is a root of unity must be a 2k-th root of unity.

Proof. As in the previous section, we work with M2k+1 rather than R2k+1, and write

M2k+1(z) = A(z)−∆(z),

where A and B are given by (3) and (4). Note that A(±1) = −2k, so that any 2k-th root of
unity that is a zero of A is also a zero of B. Suppose that M2k+1(z) = 0 at a primitive `-th
root of unity – call it ω – so that φ` is a factor of M2k+1 (φl must be a factor since M2k+1 has
rational coefficients). Then

A(ω) = ∆(ω)
and since, by Lemma 5.3, |∆(z)| < 1.3 for z on the unit circle, we have |A(ω)| < 1.3. If ω is
not a 2k-th root of unity, then the resultant Res(φ`, B) must be a nonzero integer, and so at
least 1 in modulus. But (see [5, Section 5.9]) this resultant is equal to∏

z: φl(z)=0

B(z).

Hence, choosing ω to be such a z where |B(z)| is largest, we must have |B(ω)| ≥ 1. Since

|z4 − 4z2 + 1| ≥ 2

for z on the unit circle, we see from (3) that |A(ω)| ≥ 2, a contradiction. �

Next, we need the following lemma.

Lemma 6.3. Every cyclotomic polynomial φ` except for φ3, φ4 and φ6 has a zero z = eiθ with
θ ∈ [0, 14

45π] ∪ [π − 14
45π, π].

Proof. If ` = 1, ` = 2 or ` ≥ 8, then the zero e2πi/` of φ` has its argument θ in the required
range. Also φ5 has the zero e4πi/5 and φ7 has the zero e6πi/7, with both these zeros also having
their arguments in the required range. �

Proof of Theorem 6.1. The theorem holds for k < 8 by the computations of Section 2; we can
therefore assume that k ≥ 8. Suppose that ω is a root of unity lying in the upper half plane
such that M2k+1(ω) = 0. By Proposition 6.2, ω must be a 2k-th root of unity. Then, since
A(ω) = 0, we have ∆(ω) = 0. If ω is an `-th root of unity then, since ∆ has rational coefficients,
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φ` divides ∆. Hence, using Lemma 6.3, unless ` = 3, 4 or 6 we can assume, by appropriate
choice of zero of φ`, that ω = eiθ with θ ∈ [0, 14

45π] ∪ [π − 14
45π, π].

Now from (5) we have

ω−1∆(ω) = (ε1 − 1)(ω + ω2k−1) +
b k+1

2
c∑

j=2

∗ εj(ω2j−1 + ω2(k+1−j)−1),

where the εj are given by (6), and where the ∗ indicates that the final term is halved for k odd.
So, on putting ω = eiθ we obtain(

π2

3
· ζ(2k)
ζ(2k + 2)

− 3
)

2 cos θ +
b k+1

2
c∑

j=2

∗
(

2ζ(2j)ζ(2k + 2− 2j)
ζ(2k + 2)

− 2
)

2 cos((2j − 1)θ) = 0.

We now introduce an integer parameter r, to be chosen later, lying in the range 1 ≤ r < bk+1
2 c.

Then we have

(
π2

3
− 3
)

cos θ +
π2

3
·
(

ζ(2k)
ζ(2k + 2)

− 1
)

cos θ + 2
r∑

j=2

(ζ(2j)− 1) cos((2j − 1)θ)

+
r∑

j=2

2ζ(2j)
(

ζ(2k + 2− 2j)
ζ(2k + 2)

− 1
)

cos((2j − 1)θ)

+ 2
b k+1

2
c∑

j=r+1

∗
(

ζ(2j)ζ(2k + 2− 2j)
ζ(2k + 2)

− 1
)

cos((2j − 1)θ) = 0.

Hence, defining

hr(θ) =
(

π2

3
− 3
)

cos θ + 2
r∑

j=2

(ζ(2j)− 1) cos((2j − 1)θ),

we have

|hr(θ)| <
π2

3
·
(

ζ(2k)
ζ(2k + 2)

− 1
)

+ 2
r∑

j=2

ζ(2j)
(

ζ(2k + 2− 2j)
ζ(2k + 2)

− 1
)

+2
b k+1

2
c∑

j=r+1

(
ζ(2j)ζ(2k + 2− 2j)

ζ(2k + 2)
− 1
)

<
π2

3
· (ζ(2k)− 1) + 2

r∑
j=2

ζ(2j)(ζ(2k + 2− 2r)− 1)

+2
b k+1

2
c∑

j=r+1

(ζ(2j)ζ(k + 1)− 1)

<
π2

3
· 2k + 1
2k − 1

4−k + 2
r∑

j=2

ζ(2j)
2k + 3− 2r

2k + 1− 2r
4−(k+1−r)

+2
b k+1

2
c∑

j=r+1

(
ζ(2j)

(
1 +

k + 2
k

2−(k+1)

)
− 1
)

,

using Lemma 4.4.
For the last sum of this upper bound, we have, using Lemma 4.5, that, for r ≤ (k + 1)/2,
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2
b k+1

2
c∑

j=r+1

(
ζ(2j)

(
1 +

k + 2
k

2−(k+1)

)
− 1
)

<
3
2
− 2

r∑
j=1

(ζ(2j)− 1) +
k + 2
k2k

ζ(2r + 2)
(

k + 1
2

− r

)
,

giving finally that

|hr(θ)| <
π2

3
· 2k + 1
2k − 1

4−k + 2
r∑

j=2

ζ(2j)
2k + 3− 2r

2k + 1− 2r
4−(k+1−r)

+
3
2
− 2

r∑
j=1

(ζ(2j)− 1) +
k + 2
k2k

ζ(2r + 2)
(

k + 1
2

− r

)
.

The big term in this upper bound is

3
2
− 2

r∑
j=1

(ζ(2j)− 1);

all other terms go to 0 as k →∞.
We now choose r = 4. Then a Maple plot of h4(θ) shows that it is a decreasing function of θ

for 0 ≤ θ ≤ π/3, and takes the value 0.01398 at θ = 14
45π. However, the upper bound for |hr(θ)|,

calculated above, is a decreasing function of k, and, for r = 4 and k = 8, equals 0.01255. So at
this value we must have θ > 14

45π. As |h4(θ)| is an even function of θ, we see that θ lies in the
interval (14

45π, π − 14
45π). So ` must be 3, 4 or 6.

The above discussion tells us that for k ≥ 8, if ω = eiθ is a root of unity with M2k+1(ω) = 0,
then ω is a primitive 3rd, 4th, or 6th root of unity.

We now proceed to prove that M2k+1(i) = 0 if and only if k is even, while M2k+1(ρ) = 0
if and only if 3 | k. To begin, we see from (3) that for k odd, A(i) = 6, so that |∆(i)| < 1.3
implies that M2k+1(i) = A(i)−∆(i) 6= 0. Similarly, if k is not a multiple of 3, then |A(ρ)| = 5,
which again shows that M2k+1(ρ) 6= 0.

On the other hand, for k even we have 1
2 deg(M2k+1) = k + 1 is odd, so by the evenness and

the functional equation for M2k+1we have

M2k+1(i) = (−1)k+1M2k+1(i),

giving M2k+1(i) = 0.
Next, fix k ≡ 0 (mod 3) and recall that ρ satisfies

−ρ2 = 1 + ρ = −1
ρ
.

Now, since ρ lies in the upper half plane, we may evaluate Grosswald’s formula at ρ, yielding

F2k+1(ρ)− ρ2kF2k+1

(
−1

ρ

)
=

1
2
ζ(2k + 1)(ρ2k − 1) +

(2πi)2k+1

2ρ
R2k+1(ρ),

or equivalently

F2k+1(ρ)− F2k+1(1 + ρ) =
(2πi)2k+1

2ρ
R2k+1(ρ).



ZEROS OF RAMANUJAN POLYNOMIALS 13

But since

F2k+1(1 + ρ) =
∞∑

n=1

σ2k+1(n)
n2k+1

e2πin(1+ρ)

=
∞∑

n=1

σ2k+1(n)
n2k+1

e2πinρ

= F2k+1(ρ),

the left-hand side of the above equality is 0, giving R2k+1(ρ) = 0.
Now, from M2k+1(−i) = M2k+1(i) we see that M2k+1(i) = 0 if and only if M2k+1(i) =

0. Similarly, we have M2k+1(ρ̄) = M2k+1(ρ) and M2k+1(−ρ) = M2k+1(ρ), since M2k+1 is a
polynomial in z2. So all four of ±ρ, ±ρ̄ are zeros of M2k+1 if any one of them is. Hence both of
±i are zeros of M2k+1 if and only if k is even, and all four of ±ρ, ±ρ̄ are zeros of M2k+1 if and
only if k is a multiple of 3. These are the only zeros of M2k+1 that are roots of unity. �

As a final observation, for k even, the fact that R2k+1(i) = 0 allows us to deduce that,
k+1∑
j=0

(−1)j B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
= 0,

which agrees with claim (2) in [2]. This also follows (1), on putting α = β =
√

π.
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