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Abstract

For given integers a,b and 7 > 1 we determine the set Rijz of integers n for which
a™ — b" is divisible by n’. For j = 1,2, this set is usually infinite; we determine explicitly
the exceptional cases for which a,b the set Rfljz (7 = 1,2) is finite. For j = 2, we use
Zsigmondy’s Theorem for this. For j > 3 and ged(a,b) = 1, RSZ is probably always
finite; this seems difficult to prove, however.

We also show that determination of the set of integers n for which a™ 4 0" is divisible
j (7)
by n? can be reduced to that of R .

1. Introduction

Let a, b and j be fixed integers, with j > 1. The aim of this paper is to find the set
Rffz of all positive integers n such that n’ divides a® — b". For j = 1,2, ..., these sets
are clearly nested, with common intersection {1}. Our first results (Theorems 1 and 2)
describe this set in the case that ged(a,b) = 1. In Section 4 we describe (Theorem 15)
the set in the general situation where ged(a, b) is unrestricted.

Theorem 1. Suppose that ged(a,b) = 1. Then the elements of the set RSZ consist of
those integers n whose prime factorization can be written in the form

n=pph .t (g <py<-o-<py, allk; >1), (1)
where p; | a™ — b (i=1,...,r), withny =1 and n; = pph* . pi (i=2,...,7).

In this theorem, the k; are arbitrary positive integers. This result is a more explicit
version of that proved in Gyéry [5], where it was shown that if a — b > 1 then for any
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positive integer r the number of elements of R , having 7 prime factors is infinite. The
result is also essentially contained in [11], Wthh described the indices n for which the
generalised Fibonacci numbers u,, are divisible by n. However, we present a self-contained
proof in this paper.

On the other hand, for 7 > 2, the exponents k; are more restricted.

Theorem 2. Suppose that ged(a,b) = 1, and j > 2. Then the elements of the set szjl);
consist of those integers n whose prime factorization can be written in the form (1), where

a—2b if p1 > 2;

pgj Dk divides ,
lem(a — b,a+b) if p1 =2,

=1k i i ; — k1 ke ki1 /.
=DM with ng = pytps® . .piq (E=2,...,7).

and p,

Again, the result was essentially contained in [5], where it was proved that for a—b > 1
and for any given r, there exists an n € R , with r distinct prime factors. Further, the
number of these n is finite, and all of them can be determined. The paper [5] was
stimulated by a problem from the 31st International Mathematical Olympiad, which
asked for all those positive integers n > 1 for which 2" + 1 was divisible by n?. (For the
answer, see [5], or Theorem 16.)

Thus we see that construction of n € Rff 1)> depends upon finding a prime p; not used
previously with a™ — 0™ being divisible by pg ~!. This presents no problem for ] =2,
so that R((fg, as well as ng, are usually infinite. See Section 5 for details, including the
exceptional cases when they are finite. However, for j > 3 the condition p{ -1 | a™ — b
is only rarely satisfied. This suggests strongly that in this case R((f l)) is always finite for
ged(a,b) = 1. This seems very difficult to prove, even assuming the ABC Conjecture.
A result of Ribenboim and Walsh [10] implies that, under ABC, the powerful part of
a™ — b"™ cannot often be large. But this is not strong enough for what is needed here. On
the other hand, Rff 2, (7 > 3) can be made arbitrarily large by choosing a and b such that
a — b is a powerful number. For instance, choosing a = 1 + (¢1q2...¢5)’ ! and b = 1,
where ¢, ¢qo,...,qs are distinct primes, then Rffz contains the 2° numbers ¢j'¢5* . .. ¢5*
where the ¢; are 0 or 1. See Example 6 in Section 7.

In the next section we give preliminary results needed for the proof of the theorems.
We prove them in Section 3. In Section 4 we describe (Theorem 15) Rfj ;» where ged(a, b)

is unrestricted. In Section 5 we find all a,b for which RSZ is finite (Theorem 16). In
Section 6 we discuss the divisibility of a™ + b™ by powers of n. In Section 7 we give some
examples, and make some final remarks in Section 8.
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2. Preliminary results

We first prove a version of Fermat’s Little Theorem that gives a little bit more information
in the case z =1 (mod p).

Lemma 3. For x € Z and p an odd prime we have

p (mod p?) ifr =1 (mod p);

PP b4 1=
1 (mod p) otherwise .

Proof. If x =1 (mod p), say x = 1 + kp, then 27 = 1 + jkp (mod p?), so that

p—1
xp_1+xp_2+-~-+x+1zp+kp2jEp (mod p?). (3)
=0
Otherwise
vz —D@" 2+ +z+1)=2"-2=0 (mod p), (4)
so that for x # 1 (mod p) we have z(2P"2+---+ 2+ 1) =0 (mod p), and hence
PP tr+l=a(@P P+ 42+ 1)+1=1 (mod p). (5)
U

The following is a result of Birkoff and Vandiver [2, Theorem III]. It is also special
case of Lucas [9, p. 210], as corrected for p = 2 by Carmichael [3, Theorem X].

Lemma 4. Let ged(a,b) =1 and p be prime with p | a —b. Define t > 0 by pt|la — b for
p>2 and 2||lem(a — b,a +b) if p=2. Then for { >0

pH e =
On the other hand, if pta — b then for £ >0

pta” — v, (7)

(6)

Proof. Put x = a/b. First suppose that p is odd and p'||a — b for some ¢ > 0. Then as
ged(a,b) = 1, b is not divisible by p, and we have x = 1 (mod p'). Then from

a’ — b =(a—b)pP (2P 4P 1) (8)
we have by Lemma 3 that p'™||a? — b". Applying this result ¢ times, we obtain (6).

For p = 2, we have p'™!{|a? — b* and from a®> = V> = 1 (mod 8), we obtain 2!||a® + b?,
and so p'™?||a* — b?. An easy induction then gives the required result.

Now suppose that p{ a — b. Since ged(a,b) = 1, (7) clearly holds if p | a or p | b, as
must happen for p = 2. So we can assume that p is odd and p{b. Then = # 1 (mod p)
so that, by Lemma 3 and (8), we have p { a? — 0P. Applying this argument ¢ times, we
obtain (7). O
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For n € Rgz, we now define the set 73(532 (n) to be the set of all prime powers p*

for which np* € Ri]z Our next result describes this set precisely. (Compare with [11,
Theorem 1(a)]).

Proposition 5. Suppose that j > 1, ged(a,b) =1, n € Rffz and

a”—b"zZBIQHpeP, n:Hka 9)
P

p>2

and define ey by 2°|| lem(a™ — b, a™ + b™). Then

POm)= |J {"keN}, (10)

pla™—b"
and for j > 2

. _ ‘k
Pam= U {pk 1<k < h_—ﬂpJ } . (11)
p:pjfl‘an_bn

Note that ey is never 1. Consequently, if 2m &€ R((fg, where m is odd, then 4m € ng
Also, 2 € Rfljz for 5 < 3 when a — b is even.

Proof. Taking n € R((f l)) we have, from (9) and the definition of e; that jk, < e, for all
primes p. Hence, applying Lemma 4 with a, b replaced by a”, 0" we have for p dividing
a™ — b" that for £ > 0

ot — b (12)

So (npf)? | a™" — ™" is equivalent to j(k, +£) < e, + ¢, or (j — 1)¢ < e, — jk,. Thus we
obtain (10) for j > 2, with ¢ unrestricted for j = 1, giving (10).

On the other hand, if p { @™ — b", then by Lemma 4 again, p® { a™’ — b 5o that
certainly (np?)? t a™" — p#". O

We now recall some facts about the order function ord. For m an integer greater than
1 and x an integer prime to m, we define ord,,(x), the order of x modulo m, to be the
least positive integer h such that 2" = 1 (mod m). The next three lemmas, containing
standard material on the ord function, are included for completeness.

Lemma 6. For x € N and prime to m we have m | " — 1 if and only if ord,,(z) | n.

Proof. Let ord,,(z) = h, and assume that m | 2" — 1. Then as m | 2" — 1, also
m | 284 — 1. By the minimality of h, ged(h,n) = h, i.e., h | n. Conversely, if
h|n then 2" —1 | 2" — 1, so that m | 2™ — 1. O

Corollary 7. Let j > 1. We haven’ | z"—1 if and only if gcd(z,n) = 1 and ord,; (z) | n.
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Lemma 8. Form = prfp and x € N and prime to m we have

ord,,(z) = lem,, ord, s, (7). (13)

Proof. Put h, = ord s, (z), h = ord,,(z) and A’ = lem,, h,. Then by Lemma 6 we have
p’r | 2 —1 for all p, and hence m | 2 —1. Hence h | . On the other hand, as p/» | n and
m | 2" — 1, we have p/» | 2" — 1, and so h, | h, by Lemma 6. Hence b’ = lem, h,, | h. O

Now put p,. = ord,(z), and define ¢ > 0 by p||aP* — 1.

Lemma 9. For ged(z,n) =1 and £ > 0 we have p, | p— 1 and ord,e(z) = pm>*=t0p, .

Proof. Since p | 27! — 1, we have p, | p— 1, by Lemma 6. Also, from p* | 7% —1
we have p | 2% _ 1 and so, by Lemma 6 again, p, = ord,(z) | ord,e(z). Further, if
¢ <t then from p‘ | 2P — 1 we have by Lemma 6 that ord,(z) | ps, so ord,(z) = p..

Further, by Lemma 4 for u >t
u—t

pt||x? P —1, (14)

so that, taking v = ¢ > ¢ and using Lemma 6, ord,(z) | ptp.. Also, if t < u < ¢, then,
from (14), 27 "P # 1 (mod p*). Hence ord,(z) = p*~'p, for £ > t. O

Corollary 10. Let j > 1. Forn = prkp and x € N prime to n we have n/ | 2™ — 1 if
and only if ged(z,n) =1 and

lcmppk;p* | Hpkp. (15)
P

Here the k;, = max(jk, — t,,0) are integers with t, > 0.

Note that p,, k, and t, in general depend on z and j as well as on p.
What we actually need in our situation is the following variant of Corollary 10.

Corollary 11. Let j > 1. Forn = prkp and integers a,b with ged(a,b) = 1 we have
n? | a® —b" if and only if ged(n, a) = ged(n,b) = 1 and

lem, Prp, | Hpkp. (16)
P

Here the k;, = max(jk, — t,,0) are integers with t, > 0.

This corollary is easily deduced from the previous one by choosing x with bz = a
(mod n/).

By contrast with Proposition 5, our next proposition allows us to divide an element
n e Rflj 2, by a prime, and remain within Rfj 2}
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Proposition 12. Let n € Rfljz with n > 1, and suppose that puax 1S the largest prime
factor of n. Then n/pmax € Rgz

Proof. Suppose n € ngz, so that (15) holds, with z = a/b, and put ¢ = ppax. Then,
since for every p all prime factors of p, are less than p, the only possible term on the
left-hand side that divides ¢*« on the right-hand side is the term ¢*s. Now reducing kq by
1 will reduce kj by at least 1, unless it is already 0, when it does not change. In either

case (15) will still hold with n replaced by n/q, and so n/q € Rc(f Z O

Various versions and special cases of Proposition 12 for j = 1 have been known for
some time, in the more general setting of Lucas sequences, due to Somer [12, Theorem
5(iv)], Jarden [7, Theorem E|, Hoggatt and Bergum [6], Walsh [14], André-Jeannin [1]
and others. See also Smyth [11, Theorem 3].

In order to work out for which a, b the set Riﬂ ,3 is finite, we need the following classical
result. Recall that a™ — b" is said to have a primitive prime divisor p if the prime p
divides @™ — b" but does not divide a* — b* for any k with 1 < k < n.

Theorem 13 (Zsigmondy [15]). Suppose that a and b are nonzero coprime integers with
a>banda+0b>0. Then, except when

e n=2anda+ b is a power of 2

or

en=3a=20=-1

or

en=06a=20=1,
a™ — b" has a primitive prime divisor.

(Note that in this statement we have allowed b to be negative, as did Zsigmondy. His
theorem is nowadays often quoted with the restriction a > b > 0 and so has the second
exceptional case omitted.)

3. Proof of Theorems 1 and 2

Let n € R((f l)) have a factorisation (1), where p; < py < --- < p, and all k; > 0. First take
j > 1. Then by Proposition 12 n/pir =n, € Rgz, and hence

(TL/pTT)/pr__ll = TNyp_1, R plfl = Na, 1 = ni
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are all in Rfjg Now separate the two cases 7 = 1 and j > 2 for Theorems 1 and 2

respectively. Now for j = 1 Proposition 5 gives us that p; | ™ — " (i = 1,...,7), while
for 7 > 2 we have, again from Proposition 5, that
i —b if p1 > 2;
pgj DR Qivides 4 ¢ 1 P ’
lem(a — b,a+ b) if p; = 2,
and pgj_l)ki a™ —b" (i =2,...,r). Here we have used the fact that ged(p;,n;) = 1, so

that if pfi | (a™ — b™)/n? then pl
the exponents k, equal to 0.)

a™ —b" (i.e., we are applying Proposition 5 with all

4. Finding Rffz when ged(a,b) > 1

For a > 1, deﬁne the set F, to be the set of all n € N' whose prime factors all divide a.
To find RY) o 11 general, we first consider the case b = 0.

Proposition 14. We have RaO = RaO = F,, while for 7 > 3 the set RaO =Fa\ Sy

where S is a finite set.

Proof. From the condition n’/ | a™, all prime factors of n divide a, so RY) a0 C Fa, say
Rfl{()) =Fa\ SS9 We need to prove that SY) is finite. Suppose that a = p{' ... p%, with

p1 the smallest prime factor of a. Then n = plfl ... pkr for some k; > 0. From n/ | a™ we
have

ki < C;p’fl...pf’" i=1,....r). (17)
For these r conditions to be satisfied it is sufficient that
Sk < TG Rk (18)
- J
=1

Now (18) holds if j = 1 or 2, as in this case, from the simple inequality k < 28! valid
for all £ € N, we have

r 1 i in" . , .
Sk < ppEk < B E (19
=1

Hence S is empty if 7 =1 or 2.

Now take 7 > 3, and let K = Kflj) be the smallest integer such that Kpr <
(min}_, a;)/j. Then (18) holds for >, k; > K, and S is contained in the finite set
S"={necNn=p". .  p: > ki < K}. (To compute S precisely, one need just
check for which r-tuples (ki,...,k,) with >/, k; < K any of the r inequalities of (17)
is violated. O
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One (at first sight) curious consequence of the equality Ra%()) = Rf()) above is that

n | @™ implies n? | a™.

Now let g = ged(a,b) and a = ayg, b = byg. Write n = Gny, where all prime factors
of G divide g and ged(ny, g) = 1. Then we have the following general result.

Theorem 15. The set RSZ s given by
RY) = {n=Gn,:Ge F,n € RY yo and ged(g,ny) =1} \ R, (20)
) a1 01

where R is a finite set. Specifically, alln = Gny; € R have 1 < nj < j/2 and

G=q". . ¢, (21)
where .

> < KU (22)

i=1

Here the q; are the primes dividing g, and K;%)l 15 the constant in the proof of Proposition
14 above.

Proof. Supposing that n € Rfj 2, we have
n' | a" —b" (23)
and so n/ | g"(a} — b}). Writing n = Gny, as above, we have
i | (af)™ — (F)™ (24)
and
G7 | g% ((ay)™ = (67)™) - (25)

Thus (23) holds with n, a,b replaced by ny,af,b¢. So we have reduced the problem of
(23) to a case where ged(a,b) = 1, which we can solve for ny prime to g, along with the
extra condition (25). Now, from the fact that Rg()) = F, from Proposition 14, we have
G? | ¢ and hence G7 | g™ for all G € F, , provided that n; > j/2. Hence (25) can fail
to hold for all G € F, only for 1 <mn; < j/2.

Now fix n; with 1 < n; < j/2. Then note that by Proposition 14, G7 | g“™ and
hence (23) holds for all G € Fyn; \ S, where S is a finite set of G’s contained in the set
of all G’s given by (21) and (22). O

Note that (taking n; = 1 and using (25)) we always have Rg()) C Rffz See example
in Section 7.
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5. When are R((llg and ng finite?

First consider RSZ From Theorem 1 it is immediate that Rglg contains all powers of any
primes dividing a — b. Thus Rglg is infinite unless @ — b = £1, in which case Rglg = {1}.
This was pointed out earlier by André-Jeannin [1, Corollary 4].

Next, take 5 = 2. Let us denote by 73(522 the set of primes that divide some n € R((fg

and, as before, put g = ged(a, b).

Theorem 16. The set ng = {1} if and only if a and b are consecutive integers, and
ng = {1,3} if and only if ab = —2. Otherwise, ng is infinite.

If R((IQ/)g,b/g = {1} (respectively, = {1,3}) then 77(522 is the set of all prime divisors of g

(respectively, 3g). Otherwise 7722,3 is infinite.

For coprime positive integers a, b with a—0b > 1, the infiniteness of ng already follows
from the above-mentioned results of [5].

The application of Zsigmondy’s Theorem that we require is the following.

Proposition 17. If RSZ contains some integer n > 4 then both RSZ and 77((12,3 are infinite
sets.

Proof. First note that if @ = 2, b = 1 (or more generally a —b = £1) then by Theorem 2,
R® = {1}. Hence, taking n € ng with n > 4 we have, by Zsigmondy’s Theorem, that
a™ — b™ has a primitive prime divisor, p say. Now if p | n then, by applying Proposition
12 as many times as necessary we find p | n/, where n’ € R((fg and now p is the maximal
prime divisor of n’. Hence, by Proposition 12 again, n” = n'/p € R((fg and so, from
n' = pn” and Proposition 5 we have that p | ™ — b"", contradicting the primitivity of p.

Now using Proposition 5 again, np € ng. Repeating the argument with n replaced
by np and continuing in this way we obtain an infinite sequence

n, mnmp, nppi, nppip2, ..., NPpiP2...pPe,

of elements of R((fg, where p < p; < py < -+ < pp < ... are primes. O

Proof of Theorem 16. Assume ged(a,b) = 1, and, without loss of generality, that a > 0
and a > b. (We can ensure this by interchanging a and b and/or changing both their
signs.) If a — b is even, then a and b are odd, and a* — b* = 1 (mod 2'™!), where
t > 2. Hence 4 € Rffg, by Proposition 5, and so both ng and 77(522 are infinite sets, by
Proposition 17.
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If a — b=1then R® = {1}, as we have just seen, above.

If @ — b is odd and at least 5, then a — b must either be divisible by 9 or by a prime
p > 5. Hence 9 or p belong to sz, by Proposition 5, and again both ng and Pffb) are
infinite sets, by Proposition 17.

Ifa—b=3then 3 € RY), and a® —b® = 9(v* +3b+3). If b= —1 (and a = 2, ab = —2)
or —2 (and @ = 1, ab = —2) then a® — b*> = 9 and so, by Theorem 2, so R® = {1,3}.
Otherwise, using ged(a, b) = 1 we see that a®> —b® > 5, and so the argument for a —b > 5
but with a, b replaced by a3, b applies. O

6. The powers of n dividing a™ + b"

Define R((Zl)f to be the set {n € N : n/ divides a" + 0"}. Take j > 1, and assume that

ged(a,b) = 1. (The general case ged(a,b) > 1 can be handled as in Section 4.) We then
have the following result.

Theorem 18. Suppose that j > 1, ged(a,b) =1, a > 0 and a > |b|. Then

(a) R22+ consists of the odd elements of Rg)fb, along with the numbers of the form 2n4,

where ny 1s an odd element of RS?)fb? ;

(b) If j > 2 the set R((ZZJF consists of the odd elements of R((Z)_b only .

Furthermore, for j =1 and 2, the set R((ZZJF is infinite, except in the following cases:

e Ifa+bisl orapower of 2, (j,a,b) # (1,1,1), when it is {1};
o RT ={1,2};

o RYT ={1,3}.

Proof. If n is even and j > 2, or if 4 | n and j = 1, then n’ | a" + 0" implies that
4 | a™ + b", contradicting the fact that, as a and b are not both even, a™ + 0" = 1 or 2
(mod 8). So either

e n is odd, in which case n/ | a™ + 0" is equivalent to finding the odd elements of the
set RY) .

a,—b’

or
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. . 1
e j =1 and n = 2ny, where n; is odd, and belongs to RELQ)be.

Now suppose that j =1 or 2. If a + b is &1 or £ a power of 2, then, by Theorem 2, all
n e Rglb with n > 1 are even, so for j = 2 there are no n > 1 with n? | a” + 0™ in this
case. Otherwise, a+ b will have an odd prime factor, and so at least one odd element > 1.
By Theorem 16 and its proof, we see that R((f)_b will have infinitely many odd elements
unless a(—b) = =2, i.e. a=2,b=1 (using a > 0 and a > [b]).

For j = 1, there will be infinitely many n with n | a™ 4 b", except when both a + b
and a? + b% are 1 or a power of 2. It is an easy exercise to check that, this can happen
only fora=b=1ora=1,0=0. O

If g = ged(a,b) > 1, then, since R%F contains the set RY) it will be infinite, by

9,0°
Proposition 14. For j > 3 and ged(a, b) = 1, the finiteness of the set Rng’ would follow

from the finiteness of Ri{z, using Theorem 16(b).

7. Examples.

The set Rg Z has a natural labelled, directed-graph structure, as follows: take the vertices

to be the elements of Rsz, and join a vertex n to a vertex np as n —, np, where p € Pijg
We reduce this to a spanning tree of this graph by taking only those edges n —, np for
which p is the largest prime factor of np. For our first example we draw this tree (Figure

1).
1. Consider the set

R$) =1,2,4, 20,220, 1220, 2420, 5060, 13420, 14740, 23620, 55660,
145420, 147620, 162140, 237820, 259820, 290620, 308660,
339020, 447740, 847220, 899140, 1210220, . . .|

(sequence A127103 in Neil Sloane’s Integer Sequences website). Now
320 —1=2%.5%.11? .61 - 1181,
showing that P47 (20) = {11,112,61,1181}. Also

3220 _1=2%.5%.11%.23-61-67-661-1181 - 1321 - 3851 - 5501
-177101 - 570461 - 659671 - 24472341743191 - 560088668384411
-927319729649066047885192700193701,
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[N

o

-— PN N
N

- B

1181
\

1220 367 23620
447740
1151
132
/ / 14740 145420 259820 290620 847220
23
61

55660 147620 162140 237820 308660 339020 899140
. 2 .
Figure 1: Part of the tree for Ré}, showing all elements below 10°.

so that the elements of 77?521) (220) less than 10°/220, needed for Figure 1, are

11,23,61,67,661, 1181, 1321, 3851.

2. Now
RY | =1,2,3,4,6,12,21,42, 52,84, 156, 186,372, . . .,

whose odd elements give
R?)j =1,3,21,609,903, 2667, 9429, 26187, . . ..
See Section 6.

3. We have
R R3 ’o=1,5,55,1971145, ...,

as all elements of Rz(f)_g are odd. Although this set is infinite by Theorem 16, the
next term is 1971145p where p is the smallest prime factor of 31971145 4 1971145 ot
dividing 1971145. This looks difficult to compute, as it could be very large.

4. We have
RY ., =RY) =1,7,2653,....

Again, this set is infinite, but here only the three terms given are readily com-
putable. The next term is 2653p where p is the smallest prime factor of 42653 4 32653
not dividing 2653.

5. This is an example of a set where more than one odd prime occurs as a squared
factor in elements of the set, in this case the primes 3 and 7. Every element greater
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than 9 is of one of the forms 21m, 63m, 147m, or 441m, where m is prime to 21.

R, =1,3,9,21, 63,147,441, 609, 1827, 4137, 4263, 7959,
8001, 12411, 12789, 23877, 28959, 35931, 55713, 56007,
86877, 107793, 119973, 167139, 212541, 216237, 230811
232029, 251517, 359919, 389403, . . .,

6. Romor, = {1,2,3,5,6,10,15,30}. This is because 27001 — 1 = 23-3%- 5%, and none
of 27001™ — 1 has a factor p? for any prime p > 5 for any n = 1,2, 3,5, 6, 10, 15, 30.

7. R, = {1,2,3,6,42,1806}7 Is this the entire set? Yes, unless 19'%% — 1 is divisible
by p? for some prime p prime to 1806, in which case 1806p would also be in the set.
But determining whether or not this is the case seems to be a hard computational
problem.

8. Ré&, an example with ged(a,b) > 1. It seems highly probable that
Rigy = (F2\ {2,4,8}) U (37)
—1,3,6,12,16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, . . .

However, in order to prove this, Theorem 15 tells us that we need to know that
282" # 1 (mod p?) for every prime p > 3 and every £ > 0. This seems very difficult!
Note that Ry = 5\ {2,4,8} and Ry, = {1,3}.

8. Final remarks.

1. By finding Rff;g, we are essentially solving the exponential Diophantine equation
2y = a® — b®, since any solutions with z < 0 are readily found.

2. It is known that

1 a”—b"
Ra,z:{nGN:ndivides }

’ a—>b
See [11, Proposition 12] (and also André-Jeannin [1, Theorem 2] for some special
cases.) This result shows that RSZ = {n € N : n divides u,}, where the u,, are the
generalised Fibonacci numbers of the first kind defined by the recurrence ug = 1,
u; = 1, and up4o = (@ + b)upy1 — abu, (n > 0). This provides a link between
Theorem 1 of the present paper and the results of [11].

The set ngf is a special case of a set {n € N : n divides v,}, also studied in [11].
Here (v,) is the sequence of generalised Fibonacci numbers of the second kind. For
earlier work on this topic see Somer [13].



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (200x), #Axx 14

3. Earlier and related work. The study of factors of a™ — b™ dates back at least to

Euler, who proved that all primitive prime factors of a™ — b" were = 1 (mod n).
See [2, Theorem 1]. Chapter 16 of Dickson [4] (Vol 1) is devoted to the literature
on factors of a™ 4+ b™.

More specifically, Kennedy and Cooper [8] studied the set R%)J. André-Jeannin [1,
Corollary 4] claimed (erroneously — see Theorem 18) that the congruence a™+b" = 0
(mod n) always has infinitely many solutions n for ged(a,b) = 1.
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