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1 Introduction

This report is part of a project funded by the Centre for Lewytand Academic Development (CLAD)

at the University of Birmingham and we gratefully acknovgedtheir support. The objective of

the project was to develop new learning resources to engdifievgorking in Science, Technology,

Engineering, and Mathematics (STEM) to incorporate pubaleed learning in their teaching. This
guide to puzzle-based learning accompanies a selectionatifematical and logic-based puzzles,
grouped by mathematical topic and approximate ‘level’, wged by our experiences. We shall
comment more on this later. It is written to provide advicestaff on how to adapt such puzzles for
use in their subject at the appropriate level(s).

Our motivation for this project is a belief, based on our eigeee here and elsewhere, that puzzle-
based learning is under-exploited in the teaching of ma#tiesiand problem solving to STEM stu-
dents. In Section 2 we define our terms and provide examples.tgaching experience strongly
suggests that embedding puzzles in the curriculum enhastadents’ learning by developing their
general problem-solving and independent learning skills.also expect this will increase their moti-
vation to learn mathematics, whether as a subject in its ayim or as vital learning for other STEM
disciplines. We expand on this theme in Section 3, and ini@edtprovide case studies of how such
puzzles have been used with students.

2 Whatis a puzzle?

The phrasepuzzle-based learningg taken from the title of Michalewicz and Michalewicz (2008
although it continues a long tradition within the mathergtscience, and engineering communities.
We start by defining our terms. We use the wtaskas a catch-all for any activity given to a student.
The educational literature contains many terms which @desenore specific types of task including
exerciseproblemandpuzzle Unfortunately, there are no agreed definitions and thesdsnare used,
sometimes interchangeably, to encompass a wide varietys&bt We shall discuss hallmarks and
characteristics of tasks and also how and why they might bl students’ education. Some of
these characteristics refer to the mathematics of the tssk,iothers relate to common experiences
of students and teachers when using the tasks.

Something that is technically complex, at least for the gersdertaking it, but can be solved by
a routine well-established technique is calleceaarcise

v Example task 1

1 41_ 4 29
Show/ de: — — .
0 1+CC 7

The answer to this task contains a mathematical joke. Ifestisdare curious about this strange and
amusing result, then this is an exercise in polynomial longsidn and basic integration. Such ex-
ercises, often without any humour, form an important partliodct instruction This is a form of
teaching in which a teacher explains some theory and givelsagie@xamples. A student is then given
exercises to practise (imitate even) the techniques justish Such exercises certainly have their
place and they characterigaditional teaching One implicit part of the contract between the teacher
and student is that such exercises relate closely to whausialseen taught. The following, satirical,



criticism of a strict diet of such instruction is a reminderus that dissatisfaction with education is
nothing new.

| was at the mathematical school, where the master taughtibits after a method scarce
imaginable to us in Europe. The proposition and demonetrativere fairly written on a
thin wafer, with ink composed of a cephalic tincture. Thitge student was to swallow
upon a fasting stomach, and for three days following, edtingtbut bread and water.
As the wafer digested, the tincture mounted to his brainribgahe proposition along
with it. But the success has not hitherto been answerablély iy some error in the
guantumor composition, and partly by the perverseness of lads, wthis bolus is so
nauseous, that they generally steal aside, and discharpevérds, before it can operate;
neither have they been yet persuaded to use so long an alotjrees the prescription
requires. (Swift, 1726, Chapter 4)

A more substantial review of these issues was undertaken dgoMet al. (2010) and Schoenfeld
(1992). However, part of the motivation for puzzle-baseatiang is a desire to widen the scope of
activities from such exercises to problems and puzzles.

For us, goroblemis more than an exercise. That is to say, it is more than agiedie task relating
directly to work just taught. It will not be immediately appat how to proceed and students need to
try to understand what the problem is actually about. Sq; tizaee to take responsibility for making
their own decisions.

Problems are often posed in words, somewhat dressed up. fGine skills we seek to develop
in STEM students is the ability to un-dress tasks and isdlseessential details. This isodelling
albeit in its most rudimentary form. It requires the studenmake choices about how to represent
a problem mathematically, even when there is a simple (meaid) equation which represents the
situation exactly. It is clearly a vital skill in engineegirwhere problems are rarely presented in
mathematical form.

v Example task 2

A large steel cylindrical tank is required to have a volum&amm?® and to use the smallest
amount of steel in its construction. What height will it haode to satisfy these conditions?

Once this process has been completed, students may thaemisedhe reformulated task as a rou-
tine exercise and hence be able to solve it. However, wriiogn equations poses some serious
psychological challenges.

v Example task 3

Write an equation for the following statemefithere are six times as many students as
professors at this universityUse.sS for the number of students arefor the number of
professors.

When Clement et al. (1981) gave this taskit® calculus level student8,7% answered incorrectly
and6S = P accounted for two thirds of the errors. There are genuirfecdifies in moving from

a word problem to a mathematical system which represengirtilar conceptual difficulties occur
with algebra story problems, particularly those conceagnistes of work, concentration and dilution
problems. A systematic analysis of story problems is giveWayer (1981). It is precisely because
these difficulties exist that we have a responsibility toradd them explicitly in providing such tasks
for our students. Some might argue they should be addresseti@ol.
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I hope | shall shock a few people in asserting that the mosbitapt single task of math-
ematical instruction in the secondary school is to teaclsd¢iiing up of equations to solve
word problems. [...] And so the future engineer, when henle@n the secondary school
to set up equations to solve “word problems” has a first tasterml has an opportunity
to acquire the attitude essential to, his principal proéesd use of mathematics. (Polya,
1962, Vol. |, pg. 59)

Nevertheless, university students in all STEM subjectsluting mathematics, appear to struggle
with word problems. It is clear that practice of such task&kesahem less problematic and closer
to exercises, and this is our point: the student’s expegienay have as important a bearing on the
characteristics of the task as does the task itself. To saopl@ a task is an exercise, to others it is
a more challenging problem. Therefore we are unable tordifteate exercise from problem clearly,

without the context of the students for whom the task is idéeh Indeed, calculus and algebra are
coherent systems of tools which enable a very wide rangealfl@ms to be framed in a way that

they become exercises. Our point here is that exposure targeproblem solving must accompany

practice of exercises.

Problemsvsexercises is a useful distinction and one we do not claimvelno

First, what is goroblen? We distinguish betwegmroblemsandexercisesAn exercise is

a question you know how to resolve immediately. Whether yattitgight or not depends
on how expertly you apply specific techniques, but you doa&dto puzzle out which
techniques to use. In contrast a problem demands much thamghresourcefulness
before the right approach is found. (Zeitz, 2007)

It should be noted that there are many valuable problemshareiguireestimationandapproxi-
mation These are valuable skills for all STEM students and thevalg task illustrates this.

v Example task 4

How many dumper trucks would be needed to cart away MouneBtr

To defend a solution to this task a variety of choices nee@tmade and approximations usédow

big is a dumper truck?’“What do we mean by Mount Everest®own to sea level or the plateau?),
“Can we approximate the mountain by a cone or a cubheR’key part of the task is identifying and
estimating the missing information. By breaking tasks ddmta parts, it is often possible to arrive
at an answer that is good to arder of magnitude Estimation problems such as this are sometimes
referred to ad~ermi problems after the Nobel prize-winning physicist Enrico Fermi (190954).
More comments on these kinds of tasks are given in Weinstainfalam (2008). Estimation is a
useful skill for all STEM students to develop, particuladggineers who can use estimates to check
answers tadesign problemshat have been found by more conventional means. Estimdtes
demand‘much thought and resourcefulnessZeitz (2007), but the methods can still become, with
practice, mainly routine.

Turning specifically to puzzles, Michalewicz and Michalew{2008) have saitsometimes the
difference is not clear between a puzzle and a real probladdwever, for upuzzleshave additional
characteristics to other problems, which we try to artitulaere. They also differ from estimation
tasks in important ways.



2.1 Hallmarks of a puzzle

Michalewicz and Michalewicz (2008) state that (educatippazzles satisfy four criteria: generality
(explaining some universal mathematical problem-solyirigciple), simplicity, “Eureka” factor and
entertainment factor. We believe that generality is a attarstic of problems, not just puzzles. As
noted by Michalewicz and Michalewicz (2008) not all puzaieset the simplicity criterion. However,
the other two criteria are critical. Our contention is thatuzzle is a problem that is perplexing and
either has a solution requiring considerable ingenuityhaes a lateral thinking solution, or possibly
results in an unexpected, even a counter-intuitive or agmtlyr paradoxical, solution. Solving the
puzzle usually results in a “Eureka” moment, very satigfyfior the solver and the process of finding
a solution is both frustrating and entertaining. The appiin of ingenuity extends much further than
being able to write down a correct model.

Puzzles constitute a significant intellectual challengecaise of the difficulties this obviously
presents when using such tasks with students we soughteguzith a variety of fruitful approaches
which lead to the correct answer. In particular, we souglazims where there was both a conven-
tional solution (preferably a contrasting, particularbnmplex exercise) andlateral thinkingsolution,
de Bono (1967). Lateral thinking is a way of solving probldmysby-passing traditional means, em-
ploying considerable ingenuity to reach a solution. A cgussce of this lateral approach is that the
correct answer should be more or leds/iousonce it has been seen. It should certainly be easy to
check an answer. These combine, so that puzzles often halegamt solution which has identifiable
aesthetic value. Finding such tasks was, we found, verydiffi

v Example task 5

Diagonals of two faces of a cube meet at a vertex. What is thke doetween the diagonals?

Clearly this puzzle (Puzzle 17) could be solved with routiiggonometry or perhaps vector methods,
which would make it more like a problem than a puzzle. Howemeticing that joining the other
ends of the segments forms an equilateral triangle giveteralahinking solution. This allows us to
classify this as a puzzle with both “Eureka” and entertainniactors. We liked puzzles, such as that
above, with an element of surprise.

The following is one example of a puzzle (Puzzle 25) whichlshis find difficult, but which has
this characteristic.

v Example task 6

You own a rectangular piece of land such as that shown belbe.'0-shaped’ grey part is
woodland, the rectangular white part is pasture.

Explain, with justification, how to build a single straiglenice which divides the pasture in half
and the woodland in half.

The crucial observation is that a straight line cuts a regteaim half if and only if it goes through the
centre. This line need not, obviously, be restricted to aliead, vertical or horizontal directions. The
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“Aha!” moment is the observation that if we halve the whole rectaagtithe pasture then we have
also cut the woodland in half.

It is intriguing that this leads to an interesting questiotnat shapes apart from a rectangle have a
point through which any line cuts the area in half? Bewaiig,ighnot the centre of mass and the point
need not lie inside the shape itself. Not all shapes have apdint, e.g. some triangles do not. This
opportunity to store up the observations which were cruniguzzle solving, or which open the way
to interesting areas, is something else we sought.

One characteristic of a puzzle and something that distalgps them from estimation tasks, is
that puzzles contain all the needed information; they alfeceatained. When posing something
as a puzzle this is implicit. For example, in Example taskde¢hare no dimensions given. While
some students might measure the diagram, the lack of tlisnigtion signals its irrelevance. When
first thinking about a puzzle it may appear impossible witreesumptions or estimation. However,
being self-contained is itself a very useful piece of infation. Indeed, it may lead to the following
reasoning,’Because | know | have all the information needed, then thlbows...."” We call such
thinking “meta-inferences”, but such confident logic is @gparent in the solutions most of our
students provide, even when it is clear that “puzzle rulaffier than “estimation rules” are currently
in play.

Sometimes problems are described as puzzles because dguiye réeep knowledge of a specific
discipline and require the student to work out the corregr@gch in a specific context. There are
many such examples in “200 Puzzling Physics Problems” @gnétcal. (2001). These may be “puz-
zling” and would seem to be of great pedagogic value but maayat puzzles as we define them
here. This is because we believe the application of ingemuia puzzle has to extend much further
than being able to write down a correct model. We admit thendison is fine but in any case many
of the problems in Gnadig et al. (2001) are more concerndd exiploring physical principles rather
than our purpose, which is the teaching of mathematics girguzzles.

The following is an example of a task which appears imposdildcause there seem to be too
many unknowns. An experienced mathematician might be wermbout this, but posing this as a
puzzle (Puzzle 10) indicatesritusthave a solution.

v Example task 7

A man walked fob hours, first along a level road, then up a hill, then he turnednd and
walked back to his starting point along the same route. Héke@d miles per hour on the level,
3 uphill and6 downhill. Find the distance walked.

As described in Section 5, there is also a meta-inferenadisolto this puzzle. The characteristic
that the mental moves needed to solve the puzzles are uatfutbunters the charge that such tasks
are contrived and pointless. Yes, they are certainly omdrbut that is the point. It is much more
common for students to become disaffected by the problentriok“questions”.

2.2 “Tricks” vs lateral thinking

We have already commented on our desire to choose puzzleshfoh there is a lateral thinking
solution as well as a longer routine solution. This riskshusosing tasks for which &ick is needed.
The word trick is also hard to define. Here, by trick we meamégllectual move which is key to
solving a task but which is unique to that task, or to very féspdrate tasks. Actually, most insightful
intellectual moves are worth remembering for use in futuodlem solving and so we have struggled



to find convincing examples for this guide. One candidateld/be writing

/ In(z) dz = / 1 x In(z) dz 1)

to facilitate integration by parts. Even heraultiplication by oneandaddition of zerdfind uses in
many other mathematical proofs. It is a trick work remenigeri Note that a student is unlikely
to re-invent (1), even with lateral thinking. We wanted tmiavquestions where there could be a
legitimate charge of it being a trick. This is perhaps bebtex@d by choosing tasks which have both
elegant lateral thinking and more prosaic solutions. Ia tiaise the trick is not necessary. Actually, an
alternative lateral thinking solution begs the questioméaivconstitutes a solution?”. Contemporary
students may not be familiar with some forms of argumentg,irely geometrical reasoning. These
forms of arguments can be just as rigourous as an algebrkiglatégon, and one of the values of
puzzles lies in expanding the range of ways a problem carchkiethand in the subsequent discussion
about the legitimacy of a particular argument.

Lateral thinking is to be encouraged, but before that we needcourag¢hinking Example task
8 below might be considered an unfair trick by some but itaiely teaches a lesson about thinking
first and problem solving later. It is also a case in which dngva diagram is helpful, as in so much
problem and puzzle solving.

v Example task 8

There are two telephone poles, perpendicular to level gilodtach one ig0 m tall. The poles
are an unknown distance apart.58 m cable is to be strung from the top of one pole to the top
of the other. Because the cable is heavy, it will of coursepland take up the shape of a
catenary. What must the distance between the two poles bhatsihé lowest point of the cable
touches the ground?

Drawing a diagram makes it immediately clear that the calilenever touch the ground, even if the
poles are adjacent to each other (or indeed, coincident).
The next example is a trick of another kind (Puzzle 46).

v Example task 9

Below is part of an infinite integer lattice. lattice triangleis a triangle where the coordinates
of all vertices are integers.

What is the size of the smallest equilateral lattice tria®l

The trick here is that is impossible to draw an equilatetahtyle' on the lattice. We have used this
problem with undergraduates during problem solving sessimd with postgraduates and staff during

LA triangle must have three distinct finite vertices.



teacher training events. Proving that no triangles exighisnteresting task in its own right. More
experienced problem solvers expect problems without diealand hence this becomes seen as less
of a trick as experience increases. Notice that ultimattlg Solution” here is the argument as to why
no equilateral triangles exist on the integer lattice. pigwes differ in the extent to which such issues
as irrationality are important and this problem is likelyappeal to more mathematically minded
students.

2.3 Cultural artifacts

Mathematics constitutes an intellectual sub-cultureeéa] mathematics has its own history, folklore
and humor, see Renteln and Dundes (2005). Mathematicsspie and music, has international
student competitions, see (Djuki¢ et al., 2011).

This sub-culture is not new. Indeed, the first recorded usdgefbra story problems occurs during
the mathematical training of scribes from around 2500BCERridient Iraq, see Robson (2008) and
Hayrup (1990). Since then puzzles have always been tradkeshaned throughout the world and there
is a continuous history of use. Many can be found in the Histbrecord. For examplBropositiones
ad acuendos juveng®roblems to Sharpen the Young) by Alcuin of York (732-804)an early
European collection of tasks, many of which we retain in geizable form today. See Hadley and
Singmaster (1992) for more details and a translation. @uhe Edo period (1603-1867) the Japanese
developed a distinctive form of geometric puzzles calBzthgaku These were written on wooden
tablets and hung in temples as offerings or challenges {btieand Rothman, 2008). Where we are
aware of the provenance of a particular task we have recatdadd more information is available
from Swetz (2012).

Clearly a mathematician might be interested in this aspgigmizzles. We go further and claim that
an educated scientist and engineer should also engageuwrittep as part of their broader education.
Just as people appreciate poetry and music, so a puzzlesmbelkavored. Clearly this is not our
primary motivation for asking students to solve puzzles. Wieve they also have more practical
aims. However, we have included some puzzles mainly bedaegehave such historical interest.
They are cultural artifacts in their own right.

3 What do students learn by engaging with puzzles?

It has long been known that students must struggle to sobldgms independently and construct their
own meaning. Mathematics education is the art of helpingdesits to reinvent the wheel. For example,
as early as 1543 in one of the first English textbooks on agtlunRobert Recorde acknowledges this
as follows.

Scholar. Sir, I thanke you, but | thynke | might the better @od you did showe me the
woorkinge of it.

Master. Yea but you muste prove yourselfe to do som thynges/tiu were never taught,
or els you shall not be able to doo any more then you were taagit were rather to
learne by rote (as they cal it) than by reason. (Recorde,,i548ind, Sig.F, i, \A

This fundamental tension betwegtiing students the correct methtmlsolve a problem angquiring
them to solve for themselvesparticularly marked in the STEM disciplines. More recsaholars
echo this sentiment:

2This highly influential textbook had over 25 editions betwé&&43 and 1700, see Howson (2008).



One of the fundamental contributions of modelidactiqueconsists of showing the im-
portance of the rdle played in the teaching process by tmmileg phases in which the
students works almost alone on a problem or in a situatiowfich she assumes the
maximum responsibility. (Brousseau, 1997, pg. 229)

When a problem is posed the student trusts that this will e interesting and lead to useful insights.
This is fundamental to what Brousseau (1997) callgdidactic contract The teacher has the respon-
sibility of choosing problems which are sufficiently noveltie a worthwhile challenge, but which
students still have a realistic prospect of solving. Theapbzone of proximal developmeistused to

refer to problem solving processes that have not yet maturedre in the process of maturation. Itis

the distance between the actual developmental level aswatd by independent prob-
lem solving and the level of potential development as detercththrough problem solv-
ing under adult guidance, or in collaboration with more ¢d@aeers. (Vygotsky, 1978,
pg.86)

These ideas are explored more full in, for example, Masoh é2@07).

What are the learning objectives and educational purpossing puzzles? This is not a simple
guestion and does not have a unique answer. The hallmarkshanakteristics of puzzles cited in our
earlier discussion leads us to suggest that puzzles arfuhtdpstudents in several ways. It is clear
that in solving problems and puzzles a student needs to

o take personal responsibility;

adopt novel and creative approaches, making choices;

develop modelling skills;

develop tenacity;

practice recognition of cases, reducing problem situattorexercises.

As discussed earlier, the additional hallmark of a puzzlthé students often have to apply con-
siderable ingenuity to solve a perplexing problem and thadding so they will be frustrated and
entertained and in reaching a solution may experience Eatka” moment.

Solving puzzles is often a solitary activity and enjoyed @ashs but in a teaching context, group
work is prevalent. Although any student in a group might heefirst to a solution, the pleasure of the
“Eureka” moment can be shared, with benefits in team buildimg) student engagement.

We believe the outcomes for students of successful problgsed courses include an increased
confidence in problem solving. This is tautological of ceytsecause if you practice solving problems
you would expect to become better at it. Problem-based ilgpaddresses a programme level aim
in all STEM courses. In the Quality Assurance Agency (QAA) litigher Education’s benchmark
statement for mathematics this is explicit:

2.20 Programmes in mathematics typically involve contirmuonathematics, discrete
mathematics, logical argument, problem solving and mathieal modelling. (Lawson
et al., 2007)

Similar statements exit in the QAA subject benchmarks foISAIEM subjects and are reinforced
by the accreditation criteria issued by all STEM profesalaocieties. Problem solving is a key
skill in all STEM subjects. Furthermore, there are otherontgnt affective outcomes, including real

8



challenge and therefore satisfaction, a sense of achievesme enjoyment. They provoke curiosity
and help students to refine their intuition. Nunn (1911)mkthat'the point of immediate importance
here is that mathematics is conceived not as a static bodyruths’ but in the dynamic form of
an activity”. In this context, with appropriately chosen puzzles, petAsed learning is a good
opportunity for students to discover that there may be ntwaa bne solution to a problem. As a sub-
class of problems, puzzles can provide additional chaflenmsight and entertainment, all of which
can increase student engagement and promote independeatitte

4 How can puzzles be used and adapted?

One way of using puzzles in teaching is through bespoke ptizrded courses, e.g. Michalewicz
and Michalewicz (2008) propose this approach. However mi@ntion is different; we propose that
puzzles should be redrafted into an appropriate STEM corsiest embedded alongside exercises
and problems in traditional teaching. In order to do thiseémed that it would be ideal if the core
content of puzzles could be identified, stripped as far asiplesof any superfluous context, for
example farmers’ fields and grazing horses, which commanbear in puzzle books for lay people.
It would then be possible to rebuild the puzzles for specifie and preferably with a clear relevance
to a chosen STEM discipline. However, this is more diffichlan it reads and in some cases may
not actually be desirable. For example, subject specifioi@y conflict with desirable simplicity, as
discussed in Section 5. It is also possible that trivial erfutalization might actually be annoying.
Before we consider this further, we provide three brief sasfeactivities in which problems play a
leading role but in which puzzle-based learning has alrdsan incorporated. They have all been
used successfully within the University of Birmingham foamy years and are an integral part of our
programmes. The first is being used in Engineering. The skbmlights group work, whereas the
third focuses on developing coherent mainstream mathesntatpics through a sequence of related
puzzles and problems.

If the reader prefers to consider some specific puzzles iratedg our selection is in Section 5,
page 18.

4.1 Modelling Concepts and Tools

Modelling Concepts and Tools is a first year module curretalyght to students from three Engi-
neering disciplines (and previously to four). This moduleliides modelling techniques, Engineering
mathematics, estimation, Excel and MATLAB programmingd,talight in an Engineering context.

Mathematics is learned primarily through guided studyhalgh a limited number of lectures de-
scribes both the scope and the context of the intended tearrn regular Mathematical Problem

Classes, this mathematical knowledge is assumed and thefdhle study is based on problem solv-
ing. Sometimes the problems are little more than exercisés am appropriate context, especially
early in the academic year.



v Example task 10

The flow of water through a pipe to a heat-treat quench furnaggven by

H
= 5
Q =1/ (3D
where( is the flow of water through a pipe of lengthand diametekl, with an associated head
loss of H. If d decreases by% and H by 2%, use the binomial theorem to estimate the
decrease inQ. (Ans.=x 3.5%)

However, other problems are true word problems and reflece losely the type of problem that
students will face later in their progress to professiomatfice. For example, the following is adapted
from Evans (1997).

v Example task 11

A given volume of a dangerous chemical has to be stored insgdloylindrical container,
which must be filled completely. The cylinder is to stand anftat end in an open space. If the
surface area exposed to the atmosphere (i.e. excludingrézecd the base) is to be the
minimum possible, calculate the relationship between thmédter and the height of the
cylinder. (Ans.: diameter= 2x height)

Mathematical modelling techniques are taught formally stodlelling Problem Classes introduce
students to a very difficult class of word problems in which itlitial steps to developing a model and
its solution can be very challenging. For a pre-calculusreta:

v Example task 12

Reverse osmosis can be used to recover drinking water frarwager. A large unit is treating
140000 m? of sea water every day. The sea water contaB)0 ppm of salts and the drinking
water is effectively salt free. The plant returns waste étimthe sea at20000 ppm. What is
the volume of drinking water produced per day in acre-feet?

(Hint: An acre is roughlyt000 m? and a foot abous0 cm)

If an American family uses acre-foot of water per year, roughly how many families wit t
desalination plant support? (Ans.: ca.30000)

Group work is encouraged, particularly in Modelling Probl€lasses. It is vital that Engineers
learn to work in teams as they will be most likely to be requiite do in professional practice. This
is a requirement of the UK Standard for Professional EngingegCompetence (UK-SPEC), which
has been adapted as the Quality Assurance Agency (QAA) bearkhstatement for Engineering.
Advantages of group work are described later.

One aspect of modelling, which is also important in mathé&salthough usually less empha-
sised, is the need for rigorous checking of solutions. Iniigegring problems this usually includes a
check on dimensional consistency, consideration of exdrieamaviour of equations and the realism of
model predictions (for example compared to experimenta)d@®ne useful tool for checking models
is estimation. Whereas Fermi problems or the “guestimatiasks given in Weinstein and Adam
(2008) tend to be general in nature, many of the estimatisksti the Modelling Concepts and Tools
module are Engineering specific. For example:

10



v Example task 13

In your teams, estimate the height of the tallest possibidihg.

This problem is interesting in having many solutions, theich of a particular solution depending on
the student’s view of factors limiting the height. Theselddae mechanical i.e. considering stresses
and strains in the structure, economic, architecturalliégccess to the higher floors, psychological
e.g. asking if people want to live or work so far from the gréduor indeed some other factor not
identified here.

Puzzle-based learning has been embedded within the mazhsere years, primarily as exten-
sion activities in Mathematics Problem Classes for more ahidents. However, it was found that
few students actually attempted these problems becaugemére “bolted on” to other problems.
Nevertheless, the answer to one (Example task 14) is soemimtditive that it inspired one diligent
student to a significant self-guided investigation.

v Example task 14

A railway track is exactlyi km long. It sits on a piece of ground that is flat. One day, under
intense heat from the sun, the track expahdas in length. Its ends remain fixed to the ground,
so the track bows up to form a circular arc of lengtbo1 m. At the centre of the arc, how high
is the track above the ground? What do you think about youwar®

This problem has a surprising answe (n), which can be found in several conventional ways. We
contend that the surprise alone is not enough to call thizaleu

To overcome this lack of engagement, many puzzles are nowdaed alongside other problems
in Mathematics and Modelling Problem Classes. In most ¢alseg are presented in an Engineering
context. A typical example, adapted from Cooper (2010),ldvbe Puzzle 19:

v Example task 15

An Icelandic civil engineer is in charge of laying a pipe beém a geothermal power plarit
and a townB. BetweenA and B there is a small mountain range of uniform widtfkm. The
pipe must go through a straight tunnel through the mountp@rpendicular to the edges of the
latter. The perpendicular distance dffrom the mountains i8 km, andB is 6 km away. The
distance between the town and the power plant, as the crasy ili€s km. Where should the
tunnel be built to minimise the pipe length?

(Ans: 3 km from the point nearest td on the mountains)

Recent experience suggests that this deep embedding lh@ased student engagement.
Finally, it should be noted that the Engineering contextusdhaot be just a trivial change to a
puzzle. For example a classic puzzle was rewritten as:
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v Example task 16

“Each day,” said the demanding boss to the metallurgist, dymust fill some casting moulds
with molten titanium and you will continue to do this until tde moulds are full. Moreover,
each day your work will become more strenuous. On each day thi first, you must fill
double the number of moulds that you have so far filled. Fomgte, if you fill3 moulds with
titanium on the first day, you will filh on the secondi8 on the third and so on. Clear?”
“Perfectly clear,” said the metallurgist who summoned heain and with great skill and
dedication, the moulds began to fill. After a week, a thirchefavailable moulds were full.
How long did it take them to do the job? Prove this mathem#ica (Ans.: 8 days)

It was pointed out by a colleague that no metallurgist woaltbgnise this situation, which made
the adaptation useless; this is not proper discipline fipamntextualisation. This will be discussed
further in Section 5 where examples of puzzles are given.

4.2 Workshops

The School of Mathematics at the University of BirminghamaWorkshopdor first year students.
The purpose, stated in the course description, is explitdevelop problem solving skills:

The material covered here is not on any syllabus and is natetekater in your degree
course. Instead, it is designed to improve vital skills eakto all courses:

understanding and solving problems;

tackling problems unlike ones you have met before;

thinking clearly and logically;

e communicating solutions clearly, concisely and convighin

[...] The Workshops are designed to make you think for ydtira¢gher than being told
what to do; you may need to explore various approaches bgfardéind one that works
for you. For the most part, there is no one right way to solegttoblems and no solutions
are handed out.

The Workshops take place in the even weeks of the term in thieyirar. Each week students
are assigned to a group of three or four students who will woglether. Each group has 2 hours to
produce its solution to the week’s problem on at most twossafeéd4 paper. An important part of the
Workshops is to be able to submit precise, concise and wgikar solutions on which all members of
the group agree. Marks are awarded for mathematical pesemiand clarity of exposition. Lastly,
during the last session of the Spring term each student gigbert talk (4-5 min) on a mathematical
topic of their own choosing. The assessment includes mattieshcontent, presentation and the talk.

Notice during these workshops the students work in a grodpeasduce a joint report. The social
dynamic here is an important part of the activity.

One of the tasks used is the Monty Hall problem (Puzzle 42)tresn is the game of NIM (Puzzle
45). Both of these can certainly be puzzling. The followingzde, common in problem solving
books, is also used.

12



v Example task 17

How many squares, of all sizes, with vertical and horizostdés can you draw with all four
corners on the dots of a 5-dot by 5-dot square lattice?
(+ further problems which generalize.)

Other workshops are much more mathematical, these incladeetry, formal logical systems or
classical topics such as the following.

v Example task 18

n
We want to findz k® for various powers! € N.
k=1

1. What isz 1?
k=1

2. Simplify(k + 1)? — k2. Sum the equation you get frdm= 1 to n.

Hence find the formula foz k.
P

3. Now considefk + 1)2 — k3. Find a formula forz k2.
k=1

3. How far can you go?

This example, as posed in this form, is more like a structsexlence of exercises than a puzzle.
However, we argue that we could adapt some of the mathematéesrlying the task into a puzzle in
the following way. We don'’t claim that these puzzles willeal'the general power of finite difference
methods, as students are instructed to do in the task abdwepdint of puzzles is that a particular
method is not prescribed. We also note that physical arsface being used to motivate a puzzle.

Figure 1: lllustrating the sum fromton

SFigure 1 and Figure 2 are reproduced from Bryant and Sand@@id8) with permission.
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Figure 2: Summing the squares of the numbers ftaimn
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Figure 3: Summing the cubes of the first four integers.
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v Example task 19

1. Examine the first model (shown in Figure 1). What does dflisis aboutl +2+3+--- +n?
2. Examine the second model (shown in Figure 2). What dogsdihius about

12422432 4.+ n??

3. What does Figure 3 tell us about + 23 + 33 4 ... 4 n3?

One of the key points about workshops is the developmentafworking skills. We believe
that embedding puzzles in such activities leads to imprgredp work as it is less likely (than with
more conventional problems) that one student would jump ediately to a solution or a solution
method. Indeed, some students who are excellent at solgintgne tasks may lack the ingenuity to
solve puzzles easily. In any case, a puzzle solution shauiddaes engender considerable group
discussion as it is explained by the solver to his or her graembers.

4.3 Moore Method

The Moore Method is a type of enquiry based learning (EBL)etlgyed by the influential Texan
topologist Robert Lee Moore (1882-1974) for university nembatics courses and it has been used
widely within a variety of STEM subjects and at a number o€lev A biography of Moore, together
with a discussion of his contribution to education, is gibgnParker (2004). A Moore Method class
works in the following way

1. Tasks, which might be puzzles, are posed by the lectutbetahole class.
2. Students solve these independently of each other.

3. Students present their solutions to the class, on thalboar

4. Students discuss solutions to decide whether they areat@nd complete.

Solutions are not imposed by the lecturer, who chairs d&gonsbefore offering their own com-
ments. Moore is quoted as sayifibhat student is taught the best who is told the leagParker,
2004, vii).

Moore has a reputation for running his classes in an autrit way. For example, he required
that students worked alone; those who sought help from gesirs or the published literature were
expelled (Parker, 2004, pg. 267). One misconception raggafdoore’s Method is that he simply
stated axioms and theorems and expected students to expaordplete theory. W. Mahavier (see
Parker (2004)) said of Moore

Moore helped his students a lot but did it in such a way thay thid not feel that the
help detracted from the satisfaction they received fromngasolved a problem. He was
a master at saying the right thing to the right student atitjte time.

Moore was particularly successful in attracting and enaging graduate students, many of whom
adopted his teaching approach. As a result, this methodlisstd widely. Naturally, each teacher
varies the precise approach, with some colleagues endografydents to work as a group, both an-
swering questions and formulating research topics of their. Alternative solutions are sometimes
encouraged, presented and discussed, helping students ttedir sense of aesthetics and providing
other strategies. In all forms, a key aspect is tinat students’ take responsibility for their activ-
ity. Furthermore, in all versionthe groupcriticises these solutions and ultimately, together wlii t
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teacher, decides if a solution is complete and correct. iGaweh variations, (Coppin et al., 2009,
pg. 13) lists six principles common to versions of Moore’stivsl:

The goal of elevating students from recipients to cresadbknowledge.

The commitment to teaching by letting students discdvepbwer of their minds.

The attitude that every student can and will do mathematic

The time for students to discover, present, and debateemaitics.

The careful matching of problems and materials to stident

L O o

The material, varying widely in difficulty, to cover a sifjocant body of knowledge.

It is important to note that the Method does not aim to trahswoiherent bodies of knowledge in a
polished professional and pre-defined format. The teaabes dot normally provide model solutions
to problems. Hence, the method itself can be used with a viédg vange of tasks and clearly the
choice of these by the teacher is key.

We have found the Moore Method to be a particularly prodectivay of using puzzles with
students. It has both the benefits of individual work and duad dynamic. The course was set up as
an optional 10 credit module outside the main discipline (N in 2003 by Dr Chris Good. Since
then it has been taught by two other colleagues and from 20%fudents on the Mathematics MSci
are expected to choose this MOMD in preference to the otheMid@ffered by Mathematics. After
four years of using one set of problems there is a surprisimgistency and stability of the way the
class runs. Indeed, each year we have endedt2iproblems from the same place with little or no
effort to set a particular pace for the work. The followingt lis a caricature of the cycle of the class.

Week 1: Anticipation.
“What is this class going to be about?”

Week 2: Excitement and enthusiasm.
“Someone is going to take me seriously and this sounds liké fu

Week 3: Frustration.
“Actually I'm finding these problems a bit difficult!” “So-aiitso’s presentation was aw-
ful. What a waste of time!”

Week 4-5: Despondency, Doldrums and Despair.
“l can’t do these!” / “They can't do these!”

Week 6-7: Re-build confidence.
“Actually, | can do some of them.”

Week 8-9: Adjust expectations.
“Problem-solving takes time, so how many problems do weaxtpealo?”

Week 10-11:Collegiate conviviality.
“Ok, so let’s get on with it..”

This collegiate conviviality remains after the class withdents forming close working friendships
which are seen to persist throughout their degree prograftaare currently undertaking a substan-
tial follow-up analysis of the effectiveness of this couirs@ separate research project.

One drawback of the Moore Method is that it becomes very uhmtive with groups of fewer
than 5 or more than 20 students. This is a serious flaw whicitsliits use in institutions which rely
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on large class sizes and lectures. Furthermore, if claseasiain parallel then each needs different
tasks to avoid potential collusion.

Puzzles have many characteristics suited to a Moore methsd. d-or example, puzzles should
constitute a significant intellectual challenge, requivasiderable ingenuity and in some cases, suc-
cumb to a variety of fruitful approaches. That said, Moom#igiinal approach was to structure tasks
that led students through a major mathematical topic in @iett way. This is much more difficult
to achieve using puzzles and creating class materialssempi® a serious intellectual challenge for
teachers.

Serious attempts have been made to provide sequences sifaskinstream mathematics suit-
able for a Moore Method course. There following are examples

1. Calculus of a single variable. Wall (1969)

. Classical real analysis. Burn (2000)

2

3. Number theory. Burn (1996)

4. Group theory through geometry. Burn (1987)
5

. Axiomatic systems in geometry. Yates (1949)

There are many problem sets in geometry, such as Gutennauth®asilyev (2004), Hubbard (1955)
and Yates (1949). Contemporary students’ unfamiliaritthvgeometry makes such tasks puzzling,
even at an elementary level. Hence geometry is likely to Ineithifl choice of topic for a puzzle-based
course, independent of the mainstream curriculum, but feithprerequisites. The solution we have
given to puzzle 32 is typical of the kind of geometric reasgnive mean here. Thiwurnal of Inquiry-
based Learning in Mathemati¢gww. j i bl m or g) contains peer-reviewed course notes which have
been tested in classes for a variety of Moore Method couasie of these are closer to puzzle-based
approaches than others. These are freely available forldadand use. It is perfectly sensible, and
reassuring, for colleagues new to puzzle-based learniaddpt or adapt tasks which other colleagues
have found to work well with similar groups of students. Ashave already commented, expecting
each teacher to write entirely novel puzzles is unrealestid wasteful. However, when selecting and
using existing puzzles, the teacher needs to considerutigrife prior knowledge and experience of
the students, as mentioned in Section 2.1.

Even the goal of finding coherent problems can be achievisthdt clear that the careful structure
in the tasks is evident to students. To the participantsettass the tasks mappear to thento be
disconnected puzzles!

It is then assumed that if learners ‘work through’ the pailtc cases, they will emerge
with a sense of the generalised whole. This assumption tsaxtioted by the observation
that ‘one thing we do not seem to learn from experience, iswheararely learn from
experience alone’. Something more is required. Mason €2@07)

Such a development of some deeper structure may appeautary to mathematics students. The
best way to use puzzles with the Moore method is not clear,toarss it obvious how this might be
investigated, given that there are so many variables tieatdherence of the tasks is only one aspect
of many. As with Workshops (section 4.2), a key aspect of thei method is a development of the
group working skills that are so important to the STEM difnigs.
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5 The Puzzles

This section contains the puzzles that we have gatherededected during the course of this work.
Our criteria in selecting puzzles is eclectic. Most we hastially used with students. Some we
experienced ourselves as students and others are simpgiosla The vast majority already appear,
under various guises, in many other books, including tHeviahg.

1. Mathematical puzzles, Zeitz (2007)

2. For mechanics and physics, Gnadig et al. (2001).

3. School competition mathematics, Haese et al. (1995) amdélet al. (1998).
4. Classic puzzle books, Dudeney (1907), Dudeney (1917ebBey (1932).

Since it is unlikely that students will exhaust the potdrfamore than one or two puzzles per hour
session, our selection is brief. We have included a variétewels of difficulty and topics. Our
contribution here is to make a selection suitable for undehgates in the STEM subjects, particularly
those learning mathematics in early years of study. As raeeatl in Section 2.1, we sought puzzles
where there was both a conventional solution (preferabbndérasting, particularly complex, exercise)
and a lateral thinking solution. In some cases, we have bielent@ strip puzzles down to essential
details and have then provided variants for subject spagtc However, in most cases we have given
a generic version of the puzzle and whatever useful subecific variants we could find or develop
ourselves or with colleagues. In each case we provide sakiind a brief commentary. We welcome
correspondence on STEM subject specific variants to thdgmjzmd especially any tested examples.

It should be noted that a STEM context is not always appragarigor example, take the following
(Puzzle 27).

v Example task 20

Alice and Bob take two hours to dig a hole. Bob and Chris takeethours to dig the hole,
while Chris and Alice would take four hours. How long wouldythiake working together?

This has been used in a modelling class by one of the authdesl tio a long and fruitful discussion
about formulating equations, using rate equations and idgfifand checking) units. It would of
course be possible to rewrite this problem in a STEM contaxt e

v Example task 20 variant

There are three construction companies; B and C. Working togetherA and B take two days
to erect a building.B and C' would take three days to build a similar building whiltand C
would take four days. How long woultl B and C take working together?

This may well detract, however, from the usual (and incdjrérst attempt of many students (and
staff) to solve this puzzle i.e. writing equations such as

A+B=2

*We acknowledge preliminary work on this problem by L. Holidie
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The simplicity of the original formulation is valuable. Angilar situation is found with Puzzle 22. In
other cases, such as that described in Exercise task 1&r54ct, the context might be too contrived
to have any real value.

Our original intention was to “classify the puzzles by legétifficulty”. However, on reflection
this seems like an erroneous goal. The difficulty a particpson, student or colleague, has when
solving a puzzle will be determined as much by their priorezignce as the characteristics of the
puzzle itself. For example, we have provided a purely genmsblution to Puzzle 32 which involves
recognizing that all the points on the pitch with a particydeoperty lie on a circle. Familiarity with
similar puzzles make this quite a natural move, but otherwis have to fall back on general tools
such as coordinates, algebra and trigonometry. In praditsations there is often a homogeneity
within a particular group of students which enable an apfatg puzzle to be used. Hence, we have
ordered the puzzles in a broadly increasing level of chgélen

It is important to note that most of the puzzles have a pravemand a heritage that is difficult
fully to discover — they have been passed down from teach&utient over centuries, and in the case
of Puzzle 28, millennia, changing to suit the zeitgeist. \efeehmodified or adapted puzzles to our
purpose here. However, we have recorded the immediateesofitbe puzzles, where known to us,
and investigated the history of the puzzles and puzzlerspls an activity. It follows that the sources
we offer for each puzzle are unlikely to be original, and atieee where the puzzles were found or
give an example close to a puzzle already known by one of $earehers on the project. However,
historical concerns were not a primary aim of the project.
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Grazing Horse

v Puzzle 1

A horse is tied with 20 m rope to the middle of one side of a square barn with side kengt
10 m. What area of grass does it have to graze?

Solution

On the side of the barn to which the horse is tethered, thethat@an be grazed will be a semicircle
of radius10 m. However, the rope will also allow the horse to graze aratmedcorner of the barn, as
demonstrated in the picture.

5 m of the rope will run along the side of the square and so thgteremaining to reach around
the corner will bes m. On each side the perimeter of the accessible area wid vata quarter circle
and so the total area above the line of the side of the squdireena semicircle of radius m.

Thus to total area will ber(12.5 4 50) m?.

Extensions and Commentary

This puzzle is something of a cultural artefact in matheosagducation, but its origins are unknown.
One example is Mason et al. (2010), pg. 27.

This question was co-author Matthew Badger's EdExcel GC&Esework in 2000, posed in
terms of a horse and a barn. The coursework encouraged s&tudextend the problem and there are
many options for doing so. Two are to move the point at whighhbrse is tethered and to increase
the length of the rope so that is more than half the perimdténeobarn. It is possible to strip this
puzzle to its core content.

v Puzzle 1 variant

One end of a0 m rope is tied in the middle of one side of a square with sidgtletd m.
What area is enclosed by the set of points which the other ettt wope may meet?

This variant has the apparent advantage of not referringgi@zing horse, which is outside the
STEM disciplines. However, the original formulation malieslear that all the points that the non-
tethered end of the rope can reach are of interest (becaed®tbe can graze there). This variant
might be less accessible to many students and therefores mofjayable.
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Mile markers

v Puzzle 2

There arel2 successive mile markers on a road. A motorist takesin to drive from the
first to the sixth. If she continues to drive at the same sps®d,long will she take to
reach the last marker?

Solution

After leaving the first marker, the motorist has to drive gastarkers to reach the sixth marker, so it
takes2 min from a marker to the next marker. From the sixth markeheottvelfth marker, there are
a further6 markers, which will takd 2 min.

Extensions and Commentary

This is a classic “fence and gateposts” puzzle of which theeamany variants.

v Puzzle 2 variant

A civil engineer has been instructed to design a securitgddar one side of a building
site. Whilst his design had the posts for such a fence 6 magbaas, the number of posts
delivered was actually fewer than he needed. However, after some quick recaloulati
he found he could do it if the posts weren apart. How long was the side of the building
site?
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Intersecting squares

Vv Puzzle 3

Two squares intersect as shown in the diagram. The smallersdas side lengtB0 cm,
the larger40 cm, and the top left corner of the larger square sits at thdreeof the
smaller square.

Find the area of the intersection of the two squares.

Solution

This can either be answered with basic trigonometry, or licimg that the triangle cut off by3 in
the top half ofA is congruent to the triangle left b in the bottom-right quadrant of. Thus the
area removed is independent of the angle between the s@rates its value i$52 cn?, or 225 cnr.

A

The lateral thinking solution is to note that the angle tRais rotated with respect tal is not
given. By meta-inference (Example task 6, Section 2.1)ntloa concluded that the angle does not
matter. One may therefore assume that the sides of the sca@r@arallel to one-another; it is then
clear that the area of intersection is a quarter of the aré@ea$maller square.

Extensions and Commentary

Source: Townsend (1994).

For a STEM context, this puzzle could be written about sqbaiielings or other facilities. Real-
ising that one might assume the sides of the squares ardepsmadach other provides students with
a real “Eureka” moment.
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Beware of the Road Sign

Vv Puzzle 4

This road sign means “Beware of the Road Sign”. What is thimrat the area of the
smaller triangle to that of the larger?

Solution

Rotate the inner triangle biB0°. Its vertices bisect the sides of the larger triangle fronicWlit can
be seen that the ratio {s

Alternatively, let the radius of the circle heaunit. The height of the large triangle3dsunits because
the incentre of an equilateral triangle%sof the length of the bisector from the base. Similarly, the
height of the smaller triangle 5 units. As the areas are proportional to the squares of tightsei
the ratio ist.

Extensions and Commentary

Source: Maslanka (1990). Either solution to this puzzle teag to further discussion as neither in
its current form is entirely mathematically rigorous.

It is also possible to argue that the smaller triangle is éndame proportion by area to the incircle
as the larger is to the excircle, which has a radius of 2 uagain leading to the answer that the ratio
is 1.

v Puzzle 4 variant

A gyrangle is a structure built from hollow triangles, sona,fsome folded. See
(http://wwv. geor gehart. conmf DC/ i ndex. ht m ). If the geometry of a flat
hollow triangle is as shown in the figure, what fraction byaad a solid triangle is
removed to make the hollow version?
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Holey Road Sign

v Puzzle 5

This holey road sign has a circular hole in its middle, cutngsthe equilateral triangle
inscribed into the larger circle as a guide. What is the raticthe area of the smaller
circle to that of the larger?

Solution

Let the radius of the inner circle Heunit. The radius of the larger circle will Bzunits and therefore
the ratio of the area of the smaller circle to that of the laxgitl be a .

Using the result of Puzzle 4, inscribing an equilaterahigia in the smaller circle and noting that
the smaller triangle is in the same proportion by area to thaller circle as the larger triangle is to
its excircle, the ratio must bg.

Extensions and Commentary

Source: Maslanka (1990).
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A Packing Puzzle

¥ Puzzle 6

You have some objects that need packing in containers. lpgok24 objects per
container, you will have one of the objects left over. If yaok®25 objects per container,
you will have one container left over. How many objects antaioers do you have?

Solution

Consider the situation when you ha®& objects per container and one container left over. Take one
object from each (packed) container leavilyobjects per container. You would neéd of those
objects to pack the spare container @Adf you are to have one object left over. You must therefore
have taken objects fro2b containers and with the spare, you must havedtacbntainers altogether.
It follows there were6 x 24 + 1 = 625 apples.

Algebraically: let the number of objects be n and the numibepntainers béV. Then

24N +1=n

and
25(N —1) =n

Solving these simultaneous equations gikées- 26 andn = 625.

Extensions and Commentary

Source: Maslanka (1990).

In this case, the algebraic solution might be considerettetisan the lateral thinking solution
and likely to be less error prone. However, this could be grodpnity to emphasise to students the
need to check solutions.

The original puzzle concerned apples and boxes but can beitten with any objects and any
containers. In a realistic case, the objects would be idainéis would be the containers but this is not
essential given the formulation of the problem. The numibepatainers could also be changed. This
can therefore lead to many puzzles with a STEM context. Famgie:

v Puzzle 6 variant

Some columns are to be loaded with chromatography beafskdfof beads are packed in
each column, one column will be left unfilled. However, ifyéhkg of beads are put in
each column] kg of beads will be left over. What weight of beads must benpeg¢ch
column so that every column contains the same amount of laeadthere are no left over
beads?
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Lasers

Vv Puzzle 7

Two lasers are mounted above a detector in such a way thatlibams are orthogonal.
The beams are switched on simultaneously. The light frofmtieeiches a particular point
on the surface of a flat detector, also simultaneously. Thegoelicular distance from the
plane of the detector to one of the laserd 2sm and to the othet6 m. What is the
distance between the lasers?

Solution

om 16 m

The velocity of light is the same for both laser beams andefoee the distance from laser to
detector along the beams must also be the same. As the beaorstengonal, the two triangles in the
figure must be congruent, each with two (perpendicular)ssafdengthsi2 m and16 m. The path
length for either beam i§/122 + 162 = 20 m. It follows that the distance between the laser20ig2
m =~ 28.3 m.

Extensions and Commentary

Source: Maslanka (1990).
This is a puzzle rather than just a problem because it is maitirely obvious that the triangles
are congruent. Clearly more mathematically experiencadiesits will find this less puzzling.
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Buckets

v Puzzle 8

You have two buckets; one ®fitres and one o8 litres, and a tap for water. How can you
measuret litres?

Solution

Fill the 5 litre bucket and pour it into th&litre bucket. Empty the 3 litre bucket and pour the remaining
2 litres from theb litre bucket into it. Fill theb litre bucket again, and use the water in it to top up the
3 litre bucket. As there was alrea@ylitres in it, only one litre will be removed from thiglitre bucket,
leaving four litres.

Extensions and Commentary

This puzzle was made famous in the 1995 film Die Hard with a ¥ange, though variations on it
have appeared in many puzzle books and on the web. The eagliesence we could find was in
O’Beirne (1965).

It is interesting to see which volumes of water one can meassing two jugs; it can be proved
that any multiple of the highest common factor of the two jogs be measured, up to the capacity of
the largest jug.

The essence of this puzzle is the containers of differeniraeb. It could easily be adapted to
other contexts. For example, there might be two fermematassels and a supply of fermentation
medium.
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Moisture Content

v Puzzle 9

Fresh apricots have a moisture conten®86fs. When left in the sun to dry they 1058%
of their moisture content. What is the moisture content mfcdapricots?

Solution

Let w indicate a unit of water and indicate a unit of apricot flesh, then a (non-dimensional8sl

apricot consists of%w + %a. If the water content is reduced 5%% then the dried apricot is

1 80 20 20 20

17 100" T 100"~ 100" T 100"

Hence the moisture content is n®®&% of the remaining units.

Extensions and Commentary

This puzzle is classical and there are many variations antti@me. Such problems with ratios are
notoriously difficult. Except for the difficulty many studsrhave in formulating the correct equation
to solve this puzzle, it might be considered just a problem.

A diagrammatic solution is helpful here.

20 units 20 units
20 units

80 units PO I—

75% evaporates

Whilst processing of apricots may be considered part otatitiral or food engineering, it seems
likely that this could be put into several STEM disciplineesific contexts by choice of a material to
be dried and the change in the method of drying. For example:

v Puzzle 9 variant 1

A wet precipitate of calcium carbonate has a moisture camd&g0%. When heated in an
oven at105° C for 2 h, the precipitate lose85% of its moisture content. What is the
moisture content of the dried precipitate?

Vv Puzzle 9 variant 2

Wet cells have a moisture content’0fs. When heated in an oven #15° C for 2 h, the
cells lose75% of their moisture content. What is the moisture content efdtied cells?
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Walking

v Puzzle 10

A man walked hours, first along a level road, then up a hill, then he turnednd and
walked back to his starting point along the same route. Hésvamiles per hour on the
level,3 uphill, and6 downhill. Find the distance walked.

Solution

Let x be the total distance walked apde the distance uphill. The walk has four parts: level, uphil
downhill, level. The time taken can be written as
z/2—-y 'y Yy z/2-y

i Tstet T T

One equation in two unknowns — appears insufficient! Butectlike terms to get

T _5
15

Hencez = 20 miles.

Extensions and Commentary

Source: “Knot I” of “A Tangled Tale”, by Lewis Carroll Carra|1936).

This puzzle appears not to have all the required informatioih and indeed most variations on
the speeds render the puzzle insoluble. It could be reeariftbr any moving object. The discovery
that this puzzle can be solved with apparently insufficiefdgrimation should lead students to question
how this can work and to consider what combination of speeglsena solution possible.

There is a “meta-inference” solution to this puzzle. Thegtbnof the road on the hill is not
specified so we can assume the solution is independent détigeh. If the length is zero, the man
walks5 h at4 miles per hour i.e20 miles.
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Buying Pipes

v Puzzle 11

A pipe engineer had a budget $f1000. She could ordet0 m lengths of pipe at'50 each,
6 m lengths at£30 each, and2 m lengths at£5 each, but she could only buy whole
numbers of each pipe length. She ordered at least one of épeliemgth, and used the
entire budget. If she boughtO lengths of pipe, how many of each length did she buy to
ensure she bought the longest total length of pipe possibikwhat length was that?

Solution

Let us assume the engineer boughti 0 m pipe lengthsp 6 m lengths ang 2 m lengths, where,
m andp are integers.
m+n+p=100, n>1,m>1p>1. (2)

Let the total cost of the pipes bér.
¢ = 50m + 30n + 5p, )

where
¢ < 1000. (4)

Let the total length of length of pipe Banm.
Il =10m + 6n + 2p. (5)

[ has to be as large as possible.
There doesn't seem to be enough information to solve thislgne. We need to find, n, m and
p but only have3 equations, (2), (3) and (5). From (3) and (4)

50m + 30n + 5p < 1000
and from (2)p = 100 — m — n so that
50m + 30n + 5(100 — m — n) < 1000

or
9m + 5n < 100. (6)

Now 10 m pipes are the same cost per méa® pipes and given the overall limit on the number of
pipes it is best to buy as many m pipes as possible. However,has to be at least as the pipe
engineer buys at leadtof each type. This gives» = 10 andn = 2. From equation (2)p = 88.
From equation (5), = 100 + 12 + 176 = 288 m. Therefore, the cost i§(500 + 60 + 440) = £1000

as required.

Extensions and Commentary

Source: Snape and Scott (1991). This problem is easily addptSTEM scenarios, as we have done
here.
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Fermenters

v Puzzle 12

When asked about the laboratory fermenters she had in steekendor jokingly replied
that they were alb L working volume except fdr7, all 10 L exceptl1, and all20 L except
20. How many of each working volume did she have?

Solution

In adding together all the fermenters that are fidt, not 10 L and not20 L, each fermenter has
effectively been counted twice. Hence the total numbéegj® = 24. There are therefore sevérL
fermenters, thirteem0 L fermenters and fou20 L fermenters. As a checki + 13 + 4 = 24, which
is OK.

Alternatively, let the number of fermenters beé Then the number di L fermenters iV — 17,
of 10 L fermentersNV — 11, and20 L fermentersN — 20. Adding these together should give the total
number of fermentera/.

N—-17T+N-11+4N-20=N

S02N = 48 and N = 24.

5L fermenters:N — 17 = 7.

10 L fermenters:N — 11 = 13.

20 L fermenters:N — 20 = 4.

As a check:7 + 13 + 4 = 24, which is OK.

Extensions and Commentary

Source: Maslanka (1990). This problem is easily adapted ®\Mscenarios, as we have done here.
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Frustum Cone

v Puzzle 13

A large (right circular) cone require@d L of paint to cover all its surfaceg, L for the
curved surface and L for the base. It was then decided that the conical top of tmec
would be removed and discarded, leaving a frustum of halh#ight of the original cone.
All surfaces of the frustum were then painted or repaintedwhhuch paint was needed?

Solution

Consider the discarded conical top. Being half the heidts, had a surface areg}iof that of the
original cone. The curved surface of this smaller cone wbalk required.5 L to paint. Subtracting
this from the original requirement leaves L of paint needed for the curved surface of the frustum
and its base. However, the frustum also has a top surface h@ikithe same area as the bottom surface
of the discarded top, i.e. an aréa)f that of the base of the original cone. That would reqQigs L

to paint. Total paint needed 2.75 L.

Extensions and Commentary

Source: Maslanka (1992).
This puzzle can be solved by tedious calculation. The soiutibove provides scope for discus-
sions of geometric similarity and the concept of a frustum.

32



Rectangle 2

v Puzzle 14

Which of the two shaded rectangles is biggest?

Solution

The diagonal cuts the shape in half. Identical white triaagre removed, so the areas are the same.
Algebra is also possible.

Extensions and Commentary

Source: Borovik and Gardiner (2005).

This puzzle has both an uninspired algebraic solution amddiat lateral one given above. Further,
given that the problem is posed without defining the sizeb@fathite rectangles, one may assume by
meta-inference (Example task 6, Section 2.1) that theyh@reame size and meet at the centre of the
large rectangle. From this one concludes that the two gretamgles have the same area as, in this
particular instance, they are the same size and shape.

This could also be expressed as a puzzle concerning a sheetalf
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Wall Slide

v Puzzle 15

A ladder stands on the floor and against a wall. It slides altdmgfloor and down the wall.
What curve does the midpoint of the ladder move along?

Solution

The midpoint moves along the arc of a quarter circle.

There are two ways to approach this puzzle. The first is to eefdordinates with the origin at the
intersection of the wall and floor, which respectively defimer andy axes. Then assign coordinates
P = (z,y) to the point in the middle of the ladder and to define the ladii&e length2!.

P = (z,y)

A straightforward application of similar triangles and fgthagorean Theorem leads to
(22)% + (29)* = (21)%,

or 22 4+ y? = 2 which is the equation for a circle, centred at the origin.

The other, lateral thinking solution, is to place an idesltiadder to form anX-shape with the
ladders crossing d@®. As the ladders move, thi¥ opens and closes. Since one end of the new ladder
is fixed at the corner formed by the wall and the floor, the distafrom the midpoint is a constant
distance from the corner and it is clear that the midpointtimgeed move along a curve centred at
the origin.

Extensions and Commentary

Source: Gutenmacher and Vasilyev (2004).

This problem would be recognized by most STEM students amdnachanism which is implicit
here is widely used. The solution appears to many studerits tmunter-intuitive and therefore can
engender useful discussions and investigations.
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Life Jacket

v Puzzle 16

Two identical motor boats set off from the same pier headingpposite directions along a
river. A lifejacket, which is dropped off the end of the pilats downstream just as the
two boats set off. An hour later both boats reverse their sesiin pursuit of the lifejacket.
Which boat gets to the lifejacket first?

Solution

If the river is flowing at- km h~! and the boats travel atkm h~! on calm water then the downstream
boat will be travelling at + km h™ for the first hour and — - km h~! until it reaches the lifejacket.
Thus it will be travelling away from the lifejacket at+ » — » = s km h~! until it turns around and
s —r +r = s km h™! on the return journey, therefore taking an hour to reachitamtket. The
equations are reversed for the upstream boat; hence thedoiat at the lifejacket at the same time.

Extensions and Commentary

Source: Michalewicz and Michalewicz (2008).

A meta-inference solution (see the discussion of Examjle 6a Section 2.1) could be that be-
cause no speeds are specified, zero speed is an acceptablmthat case, the lifejacket and boats all
float downstream together for an hour and both boats “redehlifejacket together. This is effectively
a “reduce to rest” solution.
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Cube Faces

v Puzzle 17

Diagonals of two faces of a cube meet at a vertex. What is thkedretween the
diagonals?

Solution

60°. The block is a cube so its faces are all the same size andhbuliagonals of each face are the
same length. Thus the diagonals will form an equilaterahtyle.

As a vector solution, let the cube sides be unit length. S&Eartesian coordinates with one
vertex of the cube at the origi@ and the axes along the sides meeting at the vertex. Consider t
angle between linedO and AB. The coordinates ol are(1,0,1) and of B are(0, 1,1). The vector
afromAtoOis[-10 —1] andb from A to B is [-1 1 0]. It follows that the angle between these

vectors is b
-1 (& ) -1 o
Cos =cos " (1/2) = 60°.
(Iallbl
Y B
A
b
A
a z
> T
O

Extensions and Commentary

Source: Townsend (1994).
This puzzle has been used in a problem class of one of therautRor Chemical Engineering

students, for example:
Vv Puzzle 17 variant 1

As part of her plant layout, as shown in Figure 1, a chemicaieeer has a pipe going
from pointA on a cubical tank up to poinB and then across to poirt'. What angle does
the pipe have to be bent to fit the tank?

Figure 1: A schematic of the tank design (omitted)

For Mechanical Engineering students, this might read:

Vv Puzzle 17 variant 2

As part of his latest engine block design shown in Figure 1eahmanical engineer has a
pipe going from point in his cubical block up to poinB and then across to poirt'.
What angle does the pipe have to be bent to fit the block?

Figure 1: A schematic of the engine block (omitted)
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For Chemistry students we might have:

Vv Puzzle 17 variant 3

Sodium chloride crystallises into a face centred cubicattrre. The unit cell has sodium
ions at each corner. Diagonals on two faces of the unit cetftmaé one of the corner ions.

What is the angle between the diagonals?
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Bees and trains

v Puzzle 18

Two model trains are travelling toward each othersétm ! on the same track. When
they are50 metres apart, a bee sets off #t km ! from the front of one train, heading
toward the other. If the bee reverses its direction evergtinmeets one of the trains, how
far will it have travelled before it must fly upwards to avoig@sly demise?

Solution

The trains are travelling at the same speed, so each wilk@odestance 0f5 m before they collide.
The bee is travelling twice as fast as one of the trains andilboaver twice as far, i.e50 m.
Let the speed of the trains heand the bee:. For a typical train to train leg of the bee’s flight,

let the initial distance between the trainsihe Then the time taken for that legis = ul—;fv Given
the bees is flying at a speed the distance the bee flies in this typical leglis= ut,, = 5_@”. In the

time taken for the leg, the trains moget,, closer, so for the next lely 1 = I,, — 2vt,, = t,(u — v).
Henced,, 1 = ut, =2 = d,%=2. The first leg when the trains stattapart isd; = J—va This gives

" utv u+v
a geometric series, which can be summed to get the totahdestaavelled. Therefore the bee travels
id _ulL 1 _ulL
n — — —_— .
o u+vl— ZJrg 2v

In the puzzlep = 5kmh™!, v = 10 km h™!, L = 50 m so the bee travels) m.

Extensions and Commentary

Allegedly posed by a dinner party guest to either Norbertrigkeisee Gilkey (1990)) or John von
Neumann (see Nalebuff (1990)) who, it is claimed, summediifigte series in their head so quickly
that the questioner believed them to have settled on thereasithod.

The difficulty in formulating a practical version of this ple is the need to find a creature or
object (e.g. a bee) that can move between the two approaobjagts (e.g. trains) at a greater speed
than the objects are moving (hence model trains in the veigi@n here). There is a version of this
puzzle in which a dog runs between a couple out for a walk. THaids to a possible STEM version
such as:

v Puzzle 18 variant

Two XXXs are out for a walk with a dog. At a particular momeetr¢hare50 m apart and
are walking at5 km h! towards each other. At that moment, the dog sets out from one o
the XXXs towards the other. If the dog reverses its direcigary time it reaches one of the
XXXs, how far will it have travelled before they meet?

XXX could be chemists, physicists, engineer or any otherH®Y discipline. This customisation is,
of course, trivial but may nevertheless make the puzzle tooke discipline specific.

This puzzle has to be idealised to generate the infiniteserigdeed to reach the lateral thinking
solution. In particular, it must be assumed the bee or doghbghgible size and that it can reverse
its direction instantaneously. Which way is the bee facitip@ end? This can lead to an interesting
discussion with students about the use of abstraction ittipgh problem solving.
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Tunnel

v Puzzle 19

An Icelandic civil engineer is in charge of laying a pipe beém a geothermal power
plant A and a townB. Betweernd and B there is a small straight mountain range of
uniform width3 km. The pipe must go through a straight tunnel through thentzons
perpendicular to the edges of the latter. The perpendicdistance ofA from the
mountains i3 km andB is 6 km away. The distance between the town and the power
plant, as the crow flies, i$5 km. Where should the tunnel be built to minimise the pipe
length?

Solution

Let O be the point on a line through (the power plant) perpendicular to
the mountains and on a line through (the town) parallel to the mountains.
3km | N OA =12 km and as4B = 15 km and scOB = 9 km. Let the distance from

Yy O A along the mountains to the tunnel bekm. Then the length of the pipe
. Mountains from A to B, I km, is given by:

l=V3+22+3++/(9—12)%+62

The minimum length will be whett =0, i.e.

A

3 km

6 km 15 km

0 T B 9—=x _0
Vaz+9  \/(9-x)2+36

from whichz = 3 is the only positive root. The tunnel should b&m from OA.

The following is an alternative lateral thinking solution.

Call the axis throughD and B the X axis and througtD and A the A
Y axis. As the pipe crosses the mountains, there is no chanitge_h
coordinate. Therefore imagine the situation with no maimstaThis is
equivalent to movingd 3 km down theY axis. The shortest route for the
pipeline would then be the straight line framto B. OB is still 9 km so 6 km
by symmetry, the tunnel should Be&km along the mountain fror® A.

3 km

Extensions and Commentary 0

Source: Cooper (2010).
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Pyramid

v Puzzle 20

A 100 m high pyramid with a square base of side lentjih m has a straight line running
around the pyramid diagonally across each face as shownemikgram.

If the slope of the line i$ metre gained for every0 metres horizontal travel, how long is
the line?

Solution

This puzzle would be very tedious to answer by summing thgtlenof the line over each of the
individual sides. However, if we note that the pyramid @ m high and the slope of the line (s1,
the length of the line i$100/0.1)(1 + 0.1)% ~ 1005 m.

Extensions and Commentary

This is a variation on a puzzle in Townsend (1994).

STEM variants might include asking for the amount of asphakded to pave a path up the
pyramid. As an extension one might ask if the shape of thetstrel affects the length of the line
and/or what happens if the structure is a triangular pyrami cone?
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Gears

v Puzzle 21

There are two gears of the same size and number of teethngtatound one-another.
Relative to the second gear, the first gear rotates aroundéoend until it returns to its
starting point. How many revolutions does the first gear makist doing this?

Solution

Because both gears are the same size, they have the sanmafenence. Relative to the surface of
the second gear the first gear rotates once. However, trecewf the second gear makes a complete
revolution about its centre (as it is a circle) and so the fjestr rotates twice as it moves around the
second.

Extensions and Commentary

Source: Bolt (1984). Most STEM students would recognizerd¢ievance of this puzzle.
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Marriage

v Puzzle 22

Alice looks at Bob and Bob looks at Clare. Alice is married Gldre is not. Prove that a
married person looks at an unmarried person.

Solution

Bob is either married or unmarried. If Bob is married then Bmiks at Clare. If Bob is unmarried
then Alice looks at Bob. In both situations a married persmké$ at an unmarried person.

Extensions and Commentary

The point of this puzzle is that you can solve it without knogwvhich person looks at a married or
unmarried person.

There is an interesting more mathematical use of this kindg€: prove that an irrational power
of an irrational number can be rational.

V2 is irrational. Consider\/iﬁ. If this is rational we are done. Assume this is irrationadl an

consider v
(ﬁﬂ> V2 (V2 =2

which is rational.
The simplicity of this puzzle means that trying to put it i@ EM discipline specific context
could destroy much of its value. See also Puzzle 27 and agdiszuat the beginning of Section 5.
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Balancing balls

v Puzzle 23

You are given a set of 27 ball bearings and a balance. One di¢heings is known to be
heavier than the others, which weigh the same. In how fewnbakcan the heavy ball be
determined?

Solution

Three. Divide the bearings into three sets of 9; then balawoesets. If they are equal, the third
set has the heavy ball, otherwise it is the heavy set. Takbdhey set and divide it in three again,
balancing two sets. Take the heavy set again and balanceafigo Bither one is the heavy ball or the
remaining ball is the heaviest.

Extensions and Commentary

Source: Bolt (1984).

Variations of this puzzle are seen in several mathematizgleuooks; a variation using 9 balls
and two weighings is Problem 55 of Eastaway and Wells (1985)43. The solution we provide here
is essentially a careful and systematimumeration of case®all bearings are sufficiently familiar to
all STEM students that this puzzle does not need modificationake it STEM specific. However, a
suitable variant is given below.

v Puzzle 23 variant

You have27 samples containing mixtures of oil and water. You know tHaha samples
have the same volume but that one weighs less than the otheaade it contains a higher
mass fraction of oil. Using a beam balance, in how few balargan the anomalous
sample be identified?
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Burning Rope

Vv Puzzle 24

You have two lengths of rope, each of which will burn for anthsBlowever, each rope will
not burn at a constant rate along its length; so you cannotiassthat half a rope burns in
half an hour. You may have as many lighters as you want, howa@ameasure 45
minutes?

Solution

If you light one length of rope at both ends simultaneoushyiit burn out in half an hour. Thus, if
you light one length of rope at both ends amidthe same timéght the other rope at one end only,
half an hour of that rope will have burnt. Thus, when the fiogter has run out, light the second rope
from the other end and it will have burnt out in another 15 rtésu

Extensions and Commentary

It is very difficult to put this into a specific STEM contexttlaugh rope is of course familiar to all
students. One possibility for chemists or mining engineeight be:

v Puzzle 24 variant

William Bickford (1774-1834) invented the safety fuse && im mining. These fuses had a
core of gunpowder wrapped in jute and then varnished for ypad@fing. You have two
such fuses, each of which will burn for an houir...
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Rectangle

v Puzzle 25

You have two rectangles, one within the other, as shown bdlbere are no dimensions
given, and you must not measure the diagram.

Explain, with justification, how to draw a single straightdi which divides both the
smaller rectangle and the ‘L’-shaped area in half.

Solution

Any line which cuts a rectangle in half goes through the @entdence, the line goes through the
centre of the large rectangle and the small rectangle.

Extensions and Commentary

Source: Hubbard (1955).

In practice many students initially attempt to impose cowtks and use algebra, which is usually
fruitless. A STEM version of this puzzle might involve twdrned pieces of metal. A variant of this
puzzle if given in Example Task 6 on page 4.

There are various extensions to this wherertteghodwill still work. Any two shapes which have
acentre of areacan be used in place of the rectangles. An extension to thisdadae require students
to place a third rectangle that is also bisected by the $trdiige. There is a much deeper problem
here, with arbitrary sets. Givem measurable sets of finite measurenifdimensional space, it is
possible to divide all of them in half (with respect to theieasure) with a singlén — 1)-dimensional
hyperplane. This is sometimes called the Stone-Tukey ¢émepsee Stone and Tukey (1942), or the
“ham sandwich theorem”.
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Table

v Puzzle 26

Imagine a square table, with legs placed half way along eadb, sather than at the
corners. What is the maximum mass which can be placed on onerdmefore the table
tips over?

Solution

Imagine we have the table viewed from above, with legd,aB, C' and D, as shown in the diagram
below. We assume that a mass is placed at the cdfriarorder to topple the table.

C
N /’
\ /
\7
N
4 N
7 NN
D¥ o 2B
N s
NP~
/)(\
/ AN
o
A X

This can be solved most easily by thinking laterally, redgdt to a one-dimensional problem by
taking moments along the diagonal through

The weight of the table including the legs, acts throughD. Let the weight causing the table to
tip over belV. When the table is about to tip over there is no reaction exerted by the floor) on
the legs atC and D. Taking moments along the diagonal throufjlabout the point?, givesWW = w,
as the distance fro®@ to P equals the distance froif to X.

Therefore the maximum weight that can be placed(ais the weight of the table, or (as the
acceleration due to gravity is a cancellable constant) thgimmum mass that can be placedXatis
the mass of the table.

Extensions and Commentary

Source: Austen (1880).

This puzzle appears not to have all the required informatidtn but it is relatively straightforward
to solve. It could be used as an introduction to moments aacctimcept of the centre of mass.
Alternatives for civil engineers could be when looking atraicture or scaffolds in three dimensions.
This puzzle should lead to a discussion of the differencedet “weight” and “mass”, the appropriate
(SI) units of each and how non-technical language is sonestsgientifically imprecise.
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Working Together

v Puzzle 27

Alice and Bob take two hours to dig a hole. Bob and Chris takeethours to dig the hole,
while Chris and Alice would take four hours. How long wouldythiake working together?

Solution

Let A, B, andC represent the number of holes dug per hour by Alice, Bob anis @spectively. As-
suming the holes are the same and independence of work wetheafalowing system of equations.
Note thatA represents theate of Alice’s work, etc.

24+2B = 1,
3B+3C = 1,
4A+4C = 1.

These equations can be solved in a number of ways giving

Bl al® oL
24 24 24

Extensions and Commentary

The difficulty of this puzzle is not the algebra, althouglsthiight cause problems, but rather the
modelling step in which the student needs to recognise Ahiata rate, not an amount of work. It
helps if they consider units of the variables they use.

This puzzle has a built in check. If students form equatiosirectly asd + B = 2, etc., then
working together takes longer than when working in pairserghis further discussion of this puzzle
at the beginning of Section 5.

STEM variants may be possible with a variety of zero ordecgsses, i.e. where the process rates
can be considered to be independent. Such a variant wasteéde the introduction to Section 5
(Example task 20 variant), although we do not believe thésmisnprovement on the original, because
of the loss of simplicity.

Alternatives using chemical kinetics:

Vv Puzzle 27 variant

X producesY catalyser byA + B in 2 hours,B + C in 3 hours andA + C'in 4 hours. All
processes are first order. What would be the rate if we comAing andC?
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The Pursuit

v Puzzle 28

A dog starts in pursuit of a hare at a distance36fof his own leaps from her. He takés
leaps while she takesbut covers as much ground Mas she ir8. In how many leaps of
each will the hare be caught?

Solution

We solve this by finding an equation to represent the sitnatia then solve it. If we say that the dog
takesx leaps to catch the hare, then we know that the hare will hmﬂed% X gx dog leaps in
the same time, since the hare covers two-thirds the amouwgroahd but does so 20% more quickly
than the dog. The hare begins thirty of the dog’s leaps aheagsadd those to the hare’s side of the
equation. The result is the solution of the equation

=30+ 2 X 0
Tr = 3 5(L‘
We solve the equation to find when the dog and the hare haveezbe® equal distance (including
the hare’s head-start); giving us 150 leaps.

Extensions and Commentary

Source: Hadley and Singmaster (1992).

The puzzle as we have given it is a classic problem in Europeatiiematics teaching whose
origin is Alcuin of York’s Propositiones Alcuini Doctoris Caroli Magni ImperatorisdaAcuendes
Juvenes more briefly tittedProblems to Sharpen the Yoyngritten around 775 (see Hadley and
Singmaster (1992) for an annotated translation). Alcui@se and hounds problem is thought to be,
see Swetz (1972), a version of a problens.& 4.4 (The Nine Chapters on the Mathematical JArt
a book compiled in the first century AD from texts dated betw&@00BC and 200BC. This problem
too regaled the reader with the story of a hound in pursuithwre.

The authors have not yet thought of a non-trivial STEM dilsegspecific example of this puzzle.
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Trains

v Puzzle 29

In a railway journey of0 kilometres an increase &fkilometres per hour in the speed of
the train decreases the time takenliyminutes. What is the speed of the slow train?

Solution

We define positioni to be the arc length along the track from start to destinatibimen we form a
system of equations using the formula= vt, i.e.

90 = tw,

90 = (v +5)(t — g).

Seeing that = % we can substitute in the second equation to give us

90 15

which we can rewrite as
0 = v + 5v — 1800.

This quadratic has solutions45 and40. The negative solution represents a train moving in therothe
direction, which we reject. As our answer must be positivecaaclude that the slower train was
travelling at40 km h—!,

Extensions and Commentary

This puzzle was created by the authors though it is unlikelipe unique. Except for the difficulty
many students have in formulating the correct equation keedshis puzzle, it might be considered
just a problem. Notice the units trap, with the velocity itoknetres per hour, but the time in minutes.
This sort of puzzle should be easily adapted to other movlrjgots or indeed rates of reaction as
below.

v Puzzle 29 variant

A chemical process is controlled to occur at a constant ratéha reactant concentration
decreases frorf.1 mol dn3 to 0.01 mol dnT3. Due to a process upset, the reaction rate
increased by x 10~3 mol dnT? and the time taken by the reaction decreased by
minutes. What was the rate of the reaction before the pragesst?
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Bricks

v Puzzle 30

A brick has faces with areasl0 cn?, 52.5 cn? and231 cn?. What is its volume?

Solution

If the brick has linear dimensiond cm, B cm andC' cm, the volume isABC cnm?. The volume
squared= A2B2?C? cm® = (AB)(BC)(AC) cmP. Regardless of the choice of which dimensions
match which area, the volume squared 10 x 52.5 x 231 cm® = 55 x 105 x 231 cm® =5 x 11 x
3x5x7Tx3x7x1lemb = (3x5x7x11)%cm® = 11552 cn. The volume is thereforgl55
cny.

Alternatively, letAB = 110, BC = 52.5 and AC' = 231. ThenB/A = 52.5/231 or B =
52.5A/231. Therefore52.5A42/231 = 110 and A = /25410/52.5 = 22. It follows thatB = 5 and
C = 10.5. The volume of the brick is therefo2 x 5 x 10.5 cm?® = 1155 cnr.

Extensions and Commentary

Source: Maslanka (1990).
The surprise in this puzzle is that the volume can be foundawit knowing the linear dimensions
of the brick. Bricks are of course familiar to all (STEM) sauds.
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Socrates and Meno

v Puzzle 31

Socrates and Meno each receive box-shaped presents. Etieth igith three loops of
string - one in each of the three possible directions. Ses‘atpackage has loops of
lengths 40 cm, 60 cm, 60 cm, while Meno’s package has loogsngtHs 40 cm, 60 cm, 80
cm. Decide whose package has the larger volume and find thenesl of the two packages.

Solution

Let Socrates’s package hecm byy cm by z cm. The first loop has lengtbw + 2y = 40, second
2y + 2z = 60, and the thir®z + 2x = 60. Adding givesdx + 4y + 4z = 160; SO

r=(x+y+z)—(y+z)=40—-30=10.

Similarly
y=(@+y+z) —(z+2z) =40 — 30 = 10;

z=(x+y+z2) —(r+y) = 20.
So Socrates’s cuboid has volurh@ x 10 x 20x = 2000 cm?. If we do the same with Meno’s cm
by ¢ cm byr cm, we getp + 2q = 40, 2q + 2r = 60, 2r 4+ 2p = 80, SOp + q¢ + r = 45; SO
p={@+q+7r)—(¢+r)=45—30 = 15;

q=(@+q+7r)—(r+p) =45—40 = 5;
r=@+q+r)—(p+q =25
So Meno’s cuboid has volumi x 5 x 25 = 1875 cn.

Extensions and Commentary

This is an interesting puzzle with a highly counter intugtsolution, because “larger” in the sense of
volume does not mean “larger” in the sense of amount of streegied.
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Rugby

v Puzzle 32

In a rugby pitch you wish to kick a ball to convert a try. You gdace the ball any
distance from the try line, but must place it on the line pagpeular to the try line through
the point at which the try was scored. What is the positiomtues the angle between the
lines connecting the goal posts to the ball is maximised?

Solution

Let A, A’ be the goal posts and It lie on a line,/, perpendicular tod A’ outside segment A’.
Maximize ZAPA'.

Draw the circlec through thed, A’ and P, centered af) on the perpendicular bisector dfA’.

For any other poin®’ on c to the right of the goal line we note that WAPA" = ZAP'A’ and
(i) ZAOA' = 2/APA’. Hence to maximize AP A’ we need to move as close as possible to the
line AA’. This happens when circleis tangent td, shown in the diagram as a dashed circle with
centre(’.

From these observations a formula for the positioiPafan be derived and the argument can be
examined when the line lies betwedn!’.

Extensions and Commentary

This puzzle is an equivalent formulation of RegiomontariaXimum Problem, originally posed in

1471, see Dorrie (1965). We note that many similar probleooin ancient texts on gunnery.
However, it may be that this is not really a puzzle in the satescribed in Section 2.1. For less
experienced students, it may indeed be perplexing whiléhfuge familiar with geometry of circles it

may be routine.
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Sums of angles

v Puzzle 33

Assume these are squares. Prove that 5 + .

Solution C

/
// e o

Note thatABC'is a right angled isosceles triangle, so that BC' = «.

A

Extensions and Commentary

This puzzle has the “thinking out of the box” solution delked above.
The more prosaic solution notes that

tan(a) =1, tan(B) = %, tan(y) = %,

and then uses the identity

tan(5) + tan(y)
1 — tan(pB) tan(y)

tan(B + ) = =1 = tan(w).

v Puzzle 33 variant

The figure shows part of the (001) surface of Mg0 (witi*vignd G~ ions lying at
alternate vertices of a square lattice). Prove that the redringlesy, 5 and~ between

the ions satisfyy = 5 + ~.
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Diagonals

v Puzzle 34

A rectangle grid is covered with9 x 91 identical squares. How many squares are touched
by a line going from diagonally opposite corners of the grji&&peat this problem and
devise a general rule for a grid covered hyx m square tiles.]

Solution

The line leaves one square and enters the next by crossinggaroéthe square, either horizontally
or vertically, or through the corner of a squarenlandm areco-primethen the line does not cross a
corner of any square. Howeveryifandm have a common factor there will be a corner.

19 (is prime) and is co-prime to numericl = 7 x 13. So in our first example there are no
corners to cross. To get from the top to the bottom we ct@ss 1 = 18 edges. To get from the left
to the right the line crosses numeri€dl — 1 = 90 edges. So, in totdl08 edges are crossed. If there
are108 crossings, the line crosses 109 squares.

Whenn andm are co-prime the formula for the number of squares crossedtisn — 1. In
general, if a line crosses a corner it touches either no squartwo. To find a general formula we
need to agree a convention here.

Extensions and Commentary

Source: Borovik and Gardiner (2005).

The puzzle as it is stated makes certain assumptions abeyifgh and the tiles that remove it
from the real world. If the tiles have a gap between them fougand the pipe is not infinitely thin,
the problem requires a more pragmatic approach involvindettiog.

A STEM version of this puzzle might concern a pipe crossirited floor. Formulating the puzzle
in this way makes it appear less abstract and therefore it enggge better non-mathematicians.
However, it would be necessary (and interesting) to disaitssstudents that a real pipe has thickness
and to discuss how in some situations we might want to idealigeal situation to obtain a problem
solution.
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Fly on the wall

v Puzzle 35

How do you find the shortest path between two points on ogpasilis of a room,
travelling without leaving the walls?

Solution

The essence of the solution is to open up the net of the roonilateh it. The fly takes a straight
line.

Extensions and Commentary

This is the simple lateral solution.

An interesting extension activity is to ask whether it is gibke to open the net of the room in
different ways and whether this would affect the apparehoftest” path. If so, how is the “correct”
net opening to be chosen. Note that the shortest path nedxt ntique.

It is challenging to prove mathematically that the corrqméring of the net leads to the shortest
path.
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Handshaking

v Puzzle 36

Prove that, for any grapld-, the number of vertices of odd degree is even.

Solution

Each edge requires two vertices. Thus the sum of the vertgbeds, summed over all vertices, is
even. Any number of “even vertices” can be ignored, howewsy anevennumber of “odd vertices”
can have an even sum of vertex degrees, as an odd number wesultlin an odd total. Hence the
number of “odd vertices” is even.

Extensions and Commentary

This is a classic graph theory problem. Its extension to slaaking is shown below.

Vv Puzzle 36 variant 1

127 chemical engineers attend an event at their Institutiodiscuss the use of puzzles in
teaching. Prove that the number of them who shook hands anumither of times is even.

Such adaptations, although perhaps somewhat trivial, itiekpuzzle look more discipline specific,
adding to student engagement particularly for non-mattieiaas. An interesting variant for chem-
istry students is given below.

Vv Puzzle 36 variant 2

Fullerenes are closed polyhedral clusters of carbon, incllgach carbon atom is bonded
to three other carbons. Explain why fullerenes of differgnés always have an even
number of carbon atoms e.g. buckminsterfullereng)C
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Wason selection test

v Puzzle 37

Imagine you have a four cards on a table and every card haderleh one side and a
number on the other.

With the cards placed on a table, you see

D 3 K [/

Turn over the fewest cards to establish the truth of the falig statement Every card
which has aD on one side hasaon the othef.

Solution

Turn overD and3 only.

Extensions and Commentary

This puzzle is a classic and well studied logic test, devisd®66 by Peter Wason, see Wason (1968).
When put in the context of social relations, such as “If yaidninking alcohol then you must be over
18" people perform much better overall (Griggs and Cox, 198his suggests that it would not be
advantageous to put this puzzle into a STEM discipline figembntext.
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Circles inside circles

v Puzzle 38

Take a stationary circle and inside it put another of half themeter, touching the larger
one from within. Roll the smaller along the inside of the &rgircle without sliding.
Describe the path of a poirk’, on the small circle.

Solution

Every point on the small circles moves along a diameter ofeiger circle. l.e. it moves on a straight
line segment. To solve this you need to match up the arc levigtine small circle with that of the
large one.

Let C; have radius; and Cy have half the radius, sBro = 1. Begin with both horizontal
diameters coinciding. Oy mark two points,c whereCy and C, touch andp the point on the
perimeter ofCy which is also the centre af.

Assume that’; has rolled around the inside 6f;, as shown on the right hand above. We now have a
new contact point;’ of C'; with Cy and we consider the angle which is the angle between the two
radii in Cy connecting the horizontal td. Assume there is no slipping between the two cirelgs
and (5, as they roll thearc lengthfrom ¢ to ¢ on C; must equal that froma to ¢ on Cs. Arc length
[ =trso

7“1751 == 7"2752.

Since2ry = rq,
2rot1 = rota,

so thatt, = 2t¢;. Hencec remains on the horizontal diameter@f asCs rolls.

Extensions and Commentary

Source: Gutenmacher and Vasilyev (2004).

Note that this puzzle is quite hard to solve. Key is the choiceoordinates. The solution is so
simple that one suspects that there must be a a lateraligiskiution but this has eluded the authors
so far.

This observation was really used as a mechanism with a simglivbeel inside a larger one to
generate straight line motion. For example, in 1801 JameiseVightented the following mechanical
device. However, in practice this mechanism places gresinstn the central bearing and it was not
particularly widely used. See, e.g. Bourne (1846).
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The puzzle could be redrafted for mechanical engineeringestts using reference to this mecha-
nism, possibly asking the students to consider why it wagadtcularly widely used.
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Pick's Theorem

v Puzzle 39

A piece of metal has small holes drilled in it on a square ¢&ttiBy cutting in straight
lines from hole to hole, polygon shaped pieces can be creafethy size and various
shapes. The holes at the ends of cuts do not have to be adjacemth other on the lattice
and the polygons can be concave in parts. What is the area olygpn expressed in
terms of the number of small holes remaining in the interithe piece of metal, the
number of holes on the perimeter of the piece through whithweare made and the
distance between adjacent holes.

Solution

Stripped of its context this might be rephrased as follows.

v Puzzle 39 variant

A simple grid-polygoris a closed chain of line segments constructed on a grid efent
coordinates in the plane which do not have points in commberdhan the common
vertices of pairs of consecutive segments. Find the areaswohple grid-polygon in terms
of the number of lattice points in the interior of polygon ahd number of lattice points
on the boundary.

Pick’s theorem provides a simple formula for calculating #reaA of this polygon in terms of the
number; of lattice points in the interior located in the polygon ahd humbe# of lattice points on
the boundary placed on the polygon’s perimeter

b
A=i+ - —1
z—|—2

This is an example where some experimentation will enabidestts for form a conjecture. Also, by
proving this formula for simple shapes, e.g. squares, mgita and triangles, the student can devise
a strategy for justifying why the formula holds in general.détailed worked solution is available
online at

http://ww. geonet er. or g/ mat hci r cl es/ pi ck. pdf.

Extensions and Commentary

Source: Pick (1899). This puzzle would not be appealingeatiajority of non-mathematicians in its
current form, mainly because the language. Pick’s Theommbe used to solve Puzzle 46, because
the area of an equilateral triangle of basds an irrational multiple of42, whereas an equilateral
triangle drawn on the lattice would have an integral area.
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Double weighings

v Puzzle 40

Four weights,A, B, C and D, were weighed in pairs. However, the two largest weights,
and D, were too heavy for the scales to be weighted together. @aljotlowing five
weights were recorded31.2 kg, 35.6 kg, 37.8 kg, 44.4 kg and46.6 kg.

What are the individual weights?

Solution

We have the following pairs of weighingst + B, A+ C, A+ D, B+ C, B + D. If we order the
weights by weightd < B < C < D, we do not know which of the paird + D or B + C will
be heaviest, though we do know that they will be the third andth heaviest. If we therefore add
together these to weighings, giving Us+ D + B + C we can subtract the lightest pait,+ B, to
determine the weight af’ + D. Hence

A+B+C+D=378+44.4 =822,

C+ D =2822-21.2=51.0.

Now we have a situation which reduces to standard simultenequations, an exercise.
Deciding thatA + D < B + C or vice-versa is not a valid answer because it is not known
beforehand which is the case.

Extensions and Commentary

This puzzle was an example posed to attendees to the Mooexy. &pnference, Washington D.C.,
June 2011.

This is usable in most STEM contexts. However, it should leaa discussion of the difference
between “weight” and “mass”, the appropriate (SI) units afkeand how non-technical language is
sometimes scientifically imprecise.
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Dice

v Puzzle 41

| have a set of three fair dice, Red, Green and Blue. The nwsrbetheir faces are
R 1,4, 4,4, 4,4
B 3,3,3,3,3,6
G 2,2,2,5 5,5

) ) ) )

Two people play the following game which begins by each pleygosing one of the die.
They then play an agreed number of rounds in which the high#stins. Which dice is
best?

Solution

On average(s beatsR, R beatsB and B beatsG, so there is no “best” die for pairwise comparison
games. However, the winning strategy is clearly to chooserse

We consider the three possible combinations of die and #wcaged probabilities of each player
winning. First consideR versesB. The symboM indicatesB wins.

R
1 4 4 4 4 4
31|
31|
B 3|1
31|
31|
6/l B B B B B

So B wins % while R wins % Next considerR versess. The symbol indicatesG wins.

R
1 4 4 4 4 4
2|l
2|l
G 2|1
5/!1 B B B B B
5/ B B B B B
5/ B B B B B
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SoG wins % while R wins % Last conside3 versesz. The symbol indicatesG wins.

B

33 3 3 3 6
2
2

G 2
51 B B B N
51 B B B N
5! B B B N

H 21 H H 15
So B wins 36 while G wins 36

Extensions and Commentary

With this particular set of dice there is a very interestingeasion game. Each player takes two
identical die. Each time they throw they add the numbersthageand the highest total in each round
wins. What happens now?
The dice described in this problem can be bought at
http://ww. grand-ill usions.com acat al og/
Non_Transitive D ce- _Set 2. htm

Other sets are available from

http://ww. mat hsgear. co. uk/

A lateral thinking solution is to compare the times which ¢exee number will win or lose against
the numbers on the other die, then multiply up by the numbéhede face numbers. For a similar
problem with different values on the faces of the dice, selt 8884), pg. 57.

It is really difficult to see how at STEM version of this puzzieuld be created, at least one that
was not clearly an artifice.
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Monty Hall

v Puzzle 42

You are a contestant on a game show and are faced with theechbapening one of three
doors to choose your prize. You know that behind two of thesdbe prize is a goats and
behind the other a new car, but you do not know which prize figrigewhich door.

You pick a door, but before opening it the host opens one aittier two doors to reveal a
goat. They then give you the choice of changing to the thitxdhasen and unopened door.
Should you?

Solution

Yes, when faced with three doors the chances that the cahiiscbany one of them is/3. Therefore,
the chances that the car is behind a door that you did not peeR/@. When the game show host
reveals that there is a goat behind one of the two remainingsgd does not change the original odds
on those two doors having a car behind them. Thus the chahaethe car is behind the remaining
door are2/3.

Extensions and Commentary

This is a classic puzzle based on the U.S. game dletis Make a Dealthe puzzle itself was first
posed in a letter by Steve Selvin to the American StatistiagiaSelvin (1975). Its usual formulation
was given by Marilyn vos Savant in vos Savant (1990) as

Suppose you're on a game show and you're given the choicaed thoors: Behind one
door is a car; behind the others, goats. You pick a door, say Nand the host, who
knows what'’s behind the doors, opens another door, say Nehi8h has a goat. He then
says to you, “Do you want to pick door No. 2?” Is it to your adiage to switch your

choice?

This is such a classic puzzle, which in its original form gates so much discussion, that it is not
worthwhile considering STEM discipline specific examples.
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Snails

v Puzzle 43

Three small snails are each at the vertex of an equilateiahtgle of sides0 cm. The first
sets out toward the second, the second toward the third, lemthird toward the first, each
with a uniform speed df cm/min. During their motion, each snail always heads towesd
respective target. How much time elapses and how far dodswatl travel before they
all meet?

Solution

The way to find the time taken is to begin to resolve one srgiéed towards either the snail chasing
it, or towards the centre. For this solution we will go backaods the previous snail. Resolvingin
the horizontal place (forming,):

vy = v1 8in(60°) = %

The 60° is from the equilateral triangle and thus snail 3 is approagcknail 1 along the bottom line
of the triangle at the relative speed of

(% _ 3’[)1
v + 5 = 5
We know that the snail speed is 5 cm/min, so
v 3(5) .
— = —~ =7.5cm/min
2 2

It can now be said the time taken for the snails to meet is thtawice of the bottom side of the triangle
divided by the relative approach speed, so

. 60 :
time = — = 8 minutes
7.5
Given the snails’ speed 6fcm/min the distance each travelstiscm.

Extensions and Commentary

Source: Gnadig et al. (2001). We are unsure if this can besrted to a puzzle rooted in STEM. This
is because each snalil is attracted to only one of the othds svizereas objects or particles in similar
physical situations would be mutually attractive or woutd have three-fold symmetry.
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Stacking Blocks

v Puzzle 44

You have an unlimited supply of identical blocks. You staekan top of the other and
make the stack lean in one direction. What is the maximunztotal distance you can
cover before the stack collapses? (No glue, no nails etc...)

Solution

We construct a balancing stack by induction, assuming Heatvidth of each block i8 “units”. Our
strategy is this: at each stage we consider an existing dialastack ofrn blocks which has its centre
of mass a distance, from its left hand edge. Obviousk, < 2 for all n as the centre of mass is to
be above the bottom domino! We then place this stactoprof a new block a distanc&, from the
left of the domino.

[ ]

E The new domino

There will clearly be no toppling if
On +cp, <2 foralln. @)

The new centre of mass of the whole stack:of 1 blocks will bec,; from the left of the bottom

block where
(0n +cp)n+1

n+1
Using (7), the maximum displacement without toppling,is= 2 — ¢,. Combining this with (8) and
solving foré,, (the displacements) givés = 1 and

Cny1 = with ¢y =1 (one domino). (8)

(0n +cn)n+1 5 (Op +2—=0p)n+1 _ 1
n+1 n+1 n+1

5n+1:2_cn+1:2_

So that for alln, §,, = % The question becomes, what is the value of

N
111 1 1
1+ -4+ -4 -4... _:E Z 9
T3t3TIT TN L ®)

for large N? This is theharmonic serieswhich diverges. l.e. it is possible to make the sum (9) as
large as one would wish so in theory we can produce an arbjttarge horizontal displacement.
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Extensions and Commentary

Source: A classic, going back to 1850, see Winkler (2007}eiisions to this problem are given by
Paterson and Zwick (2009) and Paterson et al. (2009). Thid@aan be made more STEM discipline
specific by giving a context, for example build a structureas a river. One could also consider what
is possible if the stack has to support a load as would be gewih a real bridge.
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NIM

v Puzzle 45

This is a competitive game, to be played between two plageast with three heaps of
any number of objects. The two players alternate taking amghber of objects from any
one heap. The goal is to be the last to take an object. What is@ing strategy and why?

Solution

This is a classical game, which has been solved for any nuwibiaitial heaps and objects. It is
possible to determine which player, first or second to mové,win and what winning moves are
open to that player.

The key is the binary digital sum, also known as “exclusive(ror), of the heap sizes. This is
the sum (in binary) neglecting all carries from one digit tmther. The winning strategy is to finish
every move with a binary digital sum of zero.

Extensions and Commentary

Clearly the game, as stated, uses only three heaps. Any mafheaps is possible, without changing
the theory. A full explanation is given by, for example, Reizall (1960).

We note in passing that games such as this are enjoyable andaresusceptible to a complete
analysis. Such games are a fruitful source of puzzles. Amgtharticularly simple game with in-
teresting puzzling questions is known as “Hex”, see Browa@0Q). This is a puzzle for which the
simplicity provides clarity that would be lost by artifidialputting it into a specific STEM context.
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Lattice triangle

v Puzzle 46

Below is part of an infinite integer lattice. lAttice triangleis a triangle where the
coordinates of all vertices are integers.

What is the size of the smallest equilateral lattice tria®l

Solution

There are no equilateral lattice triangles. For a justificabf why see Puzzle 39.

Extensions and Commentary

This puzzle may be considered unfair as students are likedgsume that there is such a triangle to be
found. Notice that a lattice triangle in three dimensionsgsentially given in Puzzle 17. Extensions
to other triangles and higher dimensions are found in Be€sagR).

A STEM discipline specific version of this might be too aridice.g. cutting out an equilateral
triangle from a piece of metal, with each side of the triadggginning and ending at pre-drilled holes
arranged in a lattice pattern.
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Why Bother with Proof?

v Puzzle 47

Draw an integral number of points on the circumference ofreleiand join every pair of
points with a segment. What is the greatest number of regitasvhich the circle can be

-
W

This is a well-known puzzle. You will get the sequence, 4, 8, 16 for the number of regions.
Now considel6 dots. It would seem only reasonable that there shoulRRlregions. In fact there are
31. For7 dots there aré7 regions instead of thét we might have expected.

If N is the number of regions andthe number of points then the number of regieris given by

Solution

N=C}+C3+1= %(n4—6n3+23n2—18n—|—24).
There is a real challenge in finding the correct formula andewstanding why the first instances
agree with the formula&y = 271,

For many puzzles, especially those with a lateral solutiba,solver will be guided by intuition
or prior experience, with little or no attempts at proof. §puzzle is useful to remind students why
mathematicians often insist on formal and rigorous proofs.
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VC10

v Puzzle 48

As the sun was setting in a clear African sky, it was noticeal Super VC10 flying north
that the outline of the westward windows was projected orother side of the cabin
about 6 inches above the window on that side. Estimate rgugkl height of the aircraft.

Solution

This problem cannot be solved with the given information.

Extensions and Commentary

Source: Brian Thwaites, SMP A-level mathematics exam.

This problem needs extra information. It may therefore roalproper puzzle as with puzzles
there is implied contract with the puzzle-setter is thatghezle can be solved (see the discussion in
Section 2.1). As an estimation problem it might be solved diineating the width of the aircraft and
using prior knowledge of the radius of the Earth. Howevers iéntertaining and with no solution
without extra information, perplexing.
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