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Abstract. We introduce the concept of deceptive diffusion—training a 
generative AI model to produce adversarial images. Whereas a tradi-
tional adversarial attack algorithm aims to perturb an existing image 
to induce a misclassificaton, the deceptive diffusion model can create 
an arbitrary number of new, misclassified images that are not directly 
associated with training or test images. Deceptive diffusion offers the 
possibility of strengthening defence algorithms by providing adversarial 
training data at scale, including types of misclassification that are oth-
erwise difficult to find. In our experiments, we also investigate the effect 
of training on a partially attacked data set. This highlights a new type 
of vulnerability for generative diffusion models: if an attacker is able 
to stealthily poison a portion of the training data, then the resulting 
diffusion model will generate a similar proportion of misleading outputs. 

Keywords: Image classification · Generative AI · Stability 

1 Motivation 

In this work, we combine two types of algorithm that have come to prominence 
in artificial intelligence (AI): adversarial and generative. Adversarial attack algo-
rithms are designed to reveal vulnerabilities in classification systems; for example 
by perturbing a chosen image in a way that is imperceptible to the human eye, 
but causes a change in classification [ 13, 31]. Generative models are designed to 
create outputs that are similar to, but not simply copies of, the examples on 
which they were trained [ 8, 16]. Here, we show that by training on data that 
consists of adversarially perturbed images, a generative diffusion model can be 
made to create fresh examples of adversarial images that do not correspond 
directly to any underlying real images. 

In Sect. 2 we give some background information on the two main ingredi-
ents of our work: adversarial attack algorithms and generative diffusion models. 
Section 3 describes the results of computational experiments where we investi-
gate the idea of training a diffusion model on adversarially-perturbed data. We 
finish with a brief discussion in Sect. 4. 
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1.1 Related Work 

We refer to [ 5] for an overview of recent attempts to use generative AI tools to 
produce adversarial inputs. The AdvDiffuser algorithm of [ 5] appears to be the 
first and only approach to generating new, synthesized, examples of adversar-
ial images using a diffusion model. In that work, the authors take an existing, 
trained diffusion model and adapt the denoising, or backward, process by adding 
adversarial perturbations at each time step. This change increases computational 
complexity, since an extra gradient step is required at each time point. Our app-
roach differs by building a new diffusion model, which then generates images 
with a standard de-noising algorithm. In addition to lowering the computational 
cost, our deceptive diffusion method reveals a new type of security threat that 
arises when standard generative diffusion models are created on training data 
that has been attacked. In particular, we find that the drop in classification suc-
cess is in direct proportion to the fraction of training data that is adversarially 
perturbed. Hence, if an attacker is able to poison some portion of the training 
data, the builders of a generative diffusion model may inadvertently create a tool 
that produces a corresponding proportion of adversarial images. 

In the conceptually different, and more traditional, setting of computing an 
adversarial perturbation to an existing image, we mention that the DiffAttack 
algorithm [ 4] also makes use of a diffusion model. We also note that the earlier 
work [ 12], which is not concerned with generative AI, showed that adversarial 
examples can be effective for data poisoning. 

2 Background 
2.1 Adversarial Attack Algorithms 

State of the art image classification tools are known to possess inherent vul-
nerabilites. In particular, they can be fooled by adversarial attacks, where an 
existing image undergoes a small perturbation that would not be noticeable to 
a human, but causes a change in the predicted class. Since this effect was first 
pointed out, [ 13, 31], a wide range of attack and defence strategies have been put 
forward, [ 1, 2, 24, 25], and bigger picture questions concerning the inevitability 
of attack success have been investigated, [ 7, 11, 28, 29, 32, 33]. The susceptibility 
of AI systems to attack is a serious issue in many application areas and it is 
pertinent to the recent calls for AI regulation. For example, the amendment of 
June 2023 [ 10] to Article 15 - paragraph 4 - subparagraph 1 of the EU AI act [ 9] 
requires that: “High-risk AI systems shall be resilient as regards to attempts by 
unauthorised third parties to alter their use, behaviour, outputs or performance 
by exploiting the system vulnerabilities.” 

2.2 Generative Diffusion Models 

A generative diffusion model for creating realistic, but synthetic, images can be 
built by first training a neural network to de-noise a collection of noisy images, 
and then asking the network to de-noise a new sample of pure noise [ 3].
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In Algorithms 1 and 2 we summarize the basic unconditional diffusion model 
setting from [ 16]; see also [ 15, 23] for detailed explanations of the steps involved. 
Here, the αt are parameters taking values between zero and one. They have the 
form αt = 1  − βt, where the predetermined sequence β1, β2, . . . , βT is known as 
the variance schedule. In [  16], linearly increasing values from β1 = 10−4 to βT = 
0.02 are used. We also let αt =

∏t 
i=1 αi, and  σ2 

q (t) = (1−αt)(1−αt−1)/(1−αt). 
In step 5 of Algorithm 1, εθ denotes the output from a neural network. Given 

a version of the noisy image, 
√

αt x0 +
√
1 − αt ε, corresponding to a time t, the  

job of the network is to predict the noise ε. Here, a simple least-squares loss 
function is used. 

Algorithm 1. Training with the forward process [ 16] 
1: repeat 
2: x0 ∼ q(x0) � choose an image from training set 
3: t ∼ Uniform({1, 2, . . . , T}) 
4: ε ∼ N(0, I) � standard Gaussian sample 
5: Take gradient step w.r.t. θ on ‖ε − εθ(

√
αt x0 + 

√
1 − αt ε, t)‖2 

2 

6: until converged 

Algorithm 2 from [ 16] summarizes the sampling process. Here, a set of pure 
noise pixel values is de-noised from time T to time 0 in order to produce a new 
synthetic image. 

Algorithm 2. Sampling with the backward process [ 16] 
1: xT ∼ N(0, I) � standard Gaussian sample 
2: for t = T,  T  − 1, . . . ,  1 do 
3: z ∼ N(0, I) � standard Gaussian sample 
4: xt−1 =

1√
αt

(
xt − 1−αt√

1−αt
εθ

)
+ σq(t) z 

5: end for 
6: return x0 

3 Experimental Results 

We now outline the key components in our computational experiments. 
We use the MNIST data set [ 21], which contains 60,000 training images and 

10,000 test images of handwritten digits, with labels indicating the categories: 
‘0’, ‘1’,‘2’,. . . ,‘9’. 

As a classifier, we use a convolutional neural network (CNN) based on the 
architecture of LeNet [ 19, 20]. The exact architecture can be found in our code. 
After training, this classifier achieves an accuracy of 99.02% on the test images.
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For the adversarial attack algorithm we use PGDL2 [ 17], a PyTorch imple-
mentation of the projected gradient method from [ 24]. This attack algorithm uses 
a robust optimization approach to seek an optimal perturbation in an �2 sense, 
using gradients of the loss function. We use the default setting in PGDL2 where 
an attack is declared successful if it finds a sufficiently small class-changing per-
turbation within a specified number of iterations of a first order gradient method. 
The bound on the �2 norm of the attack was set to 2 (each of the 784 pixels 
takes values between 0 and 1). We chose a large bound of 1000 on the number 
of iterations in order to maximize the size of the attacked image dataset for 
training the diffusion model. We used PGDL2 in untargeted mode, so that any 
change of classification is acceptable. 

In the diffusion model, we used a neural network with a UNet2DModel 
architecture from https://huggingface.co/docs/diffusers/en/api/models/unet2d 
which is motivated by the original version in [ 27]. 

3.1 Initial Sanity Check 

Before moving on to adversarial images, we first report on an initial test which 
confirms that the diffusion model is capable of producing outputs that are accept-
able to the classifier. 

In this test, we train the diffusion model using the original MNIST training 
data. We supply the labels during the training process, so we use a conditional 
version of Algorithm 1, where in step 5 the network learns to remove noise and 
produce an image when given both a time t and a label. This is built in to the 
UNet2DModel. A trainable encoder maps the label into the same space as the 
timestep. These two quantities are then added and passed to the model in the 
same way that the time is usually passed [ 26]. 

We found that 99.5% of the outputs from the trained model were classified 
with the intended label. 

3.2 Deceptive Diffusion Model 

Our aim is now to build a deceptive diffusion model that takes a label i and 
generates a new image that looks like digit i but is misclassified. 

Using PGDL2 for untargeted attacks on the 60,000 MNIST training images 
gave a success rate of 86.5%, thereby producing 51,918 perturbed images that 
are classified differently to their nearby original images. We trained the diffu-
sion model on these adversarial images, using the original labels. Figure 1 illus-
trates the process. Here, the image of the three on the left is from the MNIST 
training set, and the image in the middle arises from a successful attack by 
PGDL2 (classified as an eight). After training the diffusion model on all 51,918 
adversarial images, asking for an output from the ‘3’ category produced the 
result shown (classified as a five). 

After using the trained diffusion model to generate 100 new images from each 
of the ten categories and passing these through the CNN classifier, we found that

https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
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Fig. 1. Building the deceptive diffusion model. Images that were successfully attacked 
by PGDL2 are used as training data, with the original labels retained. The trained 
diffusion model, Gθfinal , produces adversarial images associated with a given a label. 
(For the images in this diagram, the image from PGDL2 is classified as an ‘8’ and 
the image from the deceptive diffusion model, which was supplied with the label ‘3’, is 
classified as a ‘5’.) 

93.6% of the outputs were classified differently to their requested labels. Figure 2 
gives a confusion matrix showing the performance by category. For comparison, 
Fig. 3 shows a confusion matrix for the PGDL2 attacks on the 60,000 training 
images. 

Table 1 shows the correlation between the rows of the confusion matrices 
in Figs. 2 and 3. The high correlation values indicate that the two confusion 
matrices are similar. We emphasize that PGDL2 was used in untargeted mode: 
an image from category i can be perturbed so that the classifier predicts any 
new category j �= i. From Table 1 we see that although the deceptive diffusion 
model was not provided with a target class j, it tends to produce new i �→ j 
misclassifications of the same type as PGDL2. 

Fig. 2. Confusion matrix for the deceptive diffusion model. For a given label (row) 
we show the frequency with which the classifier assigned each label (column) to the 
output. Entries on the diagonal therefore correspond to unsuccessful attempts to create 
an adversarial image. Overall misclassification rate is 93.6%.
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Fig. 3. Confusion matrix for PGDL2 attacks on the 60,000 MNIST training images. 
With training images corresponding to each label (row) we show the frequency with 
which the classifier assigned each label (column) after the attack. Entries on the diag-
onal therefore correspond to unsuccessful attacks. Overall success rate is 86.5%. 

Table 1. Correlation of confusion matrix rows for PGDL2 attack and generated data. 

Class 0 1 2 3 4 5 6 7 8 9 
Correlation 0.90 0.97 0.88 0.79 0.96 0.98 0.82 0.96 0.96 0.96 

To give a feel for the outputs from the deceptive diffusion model, Fig. 4 
(upper) shows 100 independent outputs corresponding to the label ‘9’. We note 
from Fig. 2 that 0% of such outputs are classified as nines. Hence, we see that the 
model is capable of producing convincing adversarial images. For comparison, 
Fig. 4 (lower) shows the results of PGDL2 on images from the ‘9’ category. 

Partial Attacks. So far, we have looked at two options for the training data. 
Either all training data was attacked, or all training data was clean. Now we 
look at a third case: partially attacked training data. Again we choose the same 
MNIST images that were successfully attacked using PGDL2. Consider p ∈ 
{0, 20, 40, 60, 80, 100}. For each class, we replace p% of the clean images with 
their successfully attacked counterpart. Now using these six datasets, we train 
six models. 

For each class, 100 images are generated using each of the trained models. In 
Fig. 5 we show the resulting accuracy of the classifier on these generated images 
for the models trained on varying levels of poisoned data. We see that the clas-
sification accuracy degrades roughly in proportion with the amount of poisoned 
training data. This result is intuitively reasonable, under the assumption that 
all training images carry equal weight when the diffusion model is created.
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Fig. 4. Upper: example of 100 images arising when the deceptive diffusion model was 
given the label ‘9’. Lower: example of 100 images arising from successful PGDL2 attacks 
on images that had label ‘9’.
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Fig. 5. Classification accuracy (vertical axis) for output from a deceptive diffusion 
model where a fraction of the training data (horizontal axis) is replaced by its adversar-
ially attacked counterpart. The slope representing linear proportionality is also shown. 

Fréchet Inception Distance. A widely used measure for generated image 
quality is the Fréchet Inception Distance (FID) [ 14], where lower is better. It 
compares a generated dataset to a ground truth dataset. First, a classifier is 
used to extract features. Then the Fréchet distance between these feature sets is 
computed. Typically the Inception v3 classifier [ 30] without its last layer is used. 
To take into account that the generator is conditioned on the class, we use the 
Class-Aware Fréchet Distance (CAFD), which computes the FID for every class 
and takes the average [ 22]. 

Since our dataset is of low resolution, instead of Inception v3 we use the 
classifier that we trained earlier, with its last layer removed. This way the output 
is in R128. 

In Fig. 6, the CAFD is shown for the diffusion models trained with partially 
poisoned data. These values are compared with the CAFD for the test set and 
the PGDL2 attacked training set. These are displayed at p = 0  and p = 1  
respectively, because they represent samples from the ground truths for the clean 
and attacked case respectively. To avoid bias, these two sets are limited to contain 
the same number of samples as the generated sets, [ 6]. 

The results in Fig. 6 show that the CAFD increases monotonically as the 
level of poisoning increases. This seems reasonable, because, as shown in Fig. 5, 
higher levels of poisoning lead to higher levels of misclassification. The CAFD 
relies on the feature extraction of an MNIST classifier. Since the attacks target 
the classifier, it makes sense that the extracted features are different. The key
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observation here is that the fully adversarial model (p = 1) corresponds to a 
CAFD that is similar to that of the PGDL2 attacked data set, indicating that 
deception diffusion can mimic adversarially attacked data successfully according 
to this metric. 

Fig. 6. Class-aware Fréchet Distance for a deceptive diffusion model where a percentage 
of the training data (horizontal axis) is replaced by its adversarially attacked counter-
part. The ground truth dataset is MNIST. The straight line joins the CAFD for the 
test set at p = 0  and the PGDL2 attacked training set at p = 1. These two sets contain 
the same number of samples as the generated sets. 

4 Conclusions 

A traditional adversarial attack algorithm aims to perturb an existing image 
across a decision boundary. Instead, by training a generative diffusion model on 
adversarial data, we are able to create synthetic images that automatically lie on 
the wrong side of a decision boundary. This observation, which we believe to have 
been made for the first time in this work, reveals a new type of vulnerability for 
generative AI: if a diffusion model is inadvertently trained on fully or partially 
poisoned data then a tool may be produced that generates unlimited amounts 
of classifier-fooling examples. 

In common with the AdvDiffuser algorithm in [ 5], when deliberately trained 
on adversarial data, a deceptive diffusion model has the potential to 

– create effective adversarial images at scale, independently of the amount of 
training and test data available,



Deceptive Diffusion: Generating Synthetic Adversarial Examples 331

– create examples of misclassification that are difficult to obtain with a tradi-
tional adversarial attack; for example, in a healthcare setting when certain 
classes are underrepresented in the data [ 18]. 

This technique has applications for defence as well as attack, since it provides 
valuable new sources of data for adversarial training algorithms that aim to 
improve robustness. 

There are many directions in which the deceptive diffusion idea could be pur-
sued; notably, testing on other types of labeled image data, generating adver-
sarial images that are successful across a range of independent classifiers, and 
finding computable signatures with which to identify this new type of threat. 
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