
Deceptive Diffusion: Generating Synthetic
Adversarial Examples

Lucas Beerens1,2, Catherine F. Higham3 , and Desmond J. Higham1,2(B)

1 School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
d.j.higham@ed.ac.uk

2 Maxwell Institute, University of Edinburgh, Edinburgh EH8 9BT, UK
3 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Abstract. We introduce the concept of deceptive diffusion—training a
generative AI model to produce adversarial images. Whereas a tradi-
tional adversarial attack algorithm aims to perturb an existing image
to induce a misclassificaton, the deceptive diffusion model can create
an arbitrary number of new, misclassified images that are not directly
associated with training or test images. Deceptive diffusion offers the
possibility of strengthening defence algorithms by providing adversarial
training data at scale, including types of misclassification that are oth-
erwise difficult to find. In our experiments, we also investigate the effect
of training on a partially attacked data set. This highlights a new type
of vulnerability for generative diffusion models: if an attacker is able
to stealthily poison a portion of the training data, then the resulting
diffusion model will generate a similar proportion of misleading outputs.

Keywords: Image classification · Generative AI · Stability

1 Motivation

In this work, we combine two types of algorithm that have come to prominence
in artificial intelligence (AI): adversarial and generative. Adversarial attack algo-
rithms are designed to reveal vulnerabilities in classification systems; for example
by perturbing a chosen image in a way that is imperceptible to the human eye,
but causes a change in classification [13, 31]. Generative models are designed to
create outputs that are similar to, but not simply copies of, the examples on
which they were trained [8, 16]. Here, we show that by training on data that
consists of adversarially perturbed images, a generative diffusion model can be
made to create fresh examples of adversarial images that do not correspond
directly to any underlying real images.

In Sect. 2 we give some background information on the two main ingredi-
ents of our work: adversarial attack algorithms and generative diffusion models.
Section 3 describes the results of computational experiments where we investi-
gate the idea of training a diffusion model on adversarially-perturbed data. We
finish with a brief discussion in Sect. 4.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
T. A. Bubba et al. (Eds.): SSVM 2025, LNCS 15667, pp. 322–333, 2025.
https://doi.org/10.1007/978-3-031-92366-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-92366-1_25&domain=pdf
http://orcid.org/0000-0002-2580-4115
http://orcid.org/0000-0002-6635-3461
https://doi.org/10.1007/978-3-031-92366-1_25

Deceptive Diffusion: Generating Synthetic Adversarial Examples 323

1.1 Related Work

We refer to [5] for an overview of recent attempts to use generative AI tools to
produce adversarial inputs. The AdvDiffuser algorithm of [5] appears to be the
first and only approach to generating new, synthesized, examples of adversar-
ial images using a diffusion model. In that work, the authors take an existing,
trained diffusion model and adapt the denoising, or backward, process by adding
adversarial perturbations at each time step. This change increases computational
complexity, since an extra gradient step is required at each time point. Our app-
roach differs by building a new diffusion model, which then generates images
with a standard de-noising algorithm. In addition to lowering the computational
cost, our deceptive diffusion method reveals a new type of security threat that
arises when standard generative diffusion models are created on training data
that has been attacked. In particular, we find that the drop in classification suc-
cess is in direct proportion to the fraction of training data that is adversarially
perturbed. Hence, if an attacker is able to poison some portion of the training
data, the builders of a generative diffusion model may inadvertently create a tool
that produces a corresponding proportion of adversarial images.

In the conceptually different, and more traditional, setting of computing an
adversarial perturbation to an existing image, we mention that the DiffAttack
algorithm [4] also makes use of a diffusion model. We also note that the earlier
work [12], which is not concerned with generative AI, showed that adversarial
examples can be effective for data poisoning.

2 Background
2.1 Adversarial Attack Algorithms

State of the art image classification tools are known to possess inherent vul-
nerabilites. In particular, they can be fooled by adversarial attacks, where an
existing image undergoes a small perturbation that would not be noticeable to
a human, but causes a change in the predicted class. Since this effect was first
pointed out, [13, 31], a wide range of attack and defence strategies have been put
forward, [1, 2, 24, 25], and bigger picture questions concerning the inevitability
of attack success have been investigated, [7, 11, 28, 29, 32, 33]. The susceptibility
of AI systems to attack is a serious issue in many application areas and it is
pertinent to the recent calls for AI regulation. For example, the amendment of
June 2023 [10] to Article 15 - paragraph 4 - subparagraph 1 of the EU AI act [9]
requires that: “High-risk AI systems shall be resilient as regards to attempts by
unauthorised third parties to alter their use, behaviour, outputs or performance
by exploiting the system vulnerabilities.”

2.2 Generative Diffusion Models

A generative diffusion model for creating realistic, but synthetic, images can be
built by first training a neural network to de-noise a collection of noisy images,
and then asking the network to de-noise a new sample of pure noise [3].

324 L. Beerens et al.

In Algorithms 1 and 2 we summarize the basic unconditional diffusion model
setting from [16]; see also [15, 23] for detailed explanations of the steps involved.
Here, the αt are parameters taking values between zero and one. They have the
form αt = 1 − βt, where the predetermined sequence β1, β2, . . . , βT is known as
the variance schedule. In [16], linearly increasing values from β1 = 10−4 to βT =
0.02 are used. We also let αt =

∏t
i=1 αi, and σ2

q (t) = (1−αt)(1−αt−1)/(1−αt).
In step 5 of Algorithm 1, εθ denotes the output from a neural network. Given

a version of the noisy image,
√

αt x0 +
√
1 − αt ε, corresponding to a time t, the

job of the network is to predict the noise ε. Here, a simple least-squares loss
function is used.

Algorithm 1. Training with the forward process [16]
1: repeat
2: x0 ∼ q(x0) � choose an image from training set
3: t ∼ Uniform({1, 2, . . . , T})
4: ε ∼ N(0, I) � standard Gaussian sample
5: Take gradient step w.r.t. θ on ‖ε − εθ(

√
αt x0 +

√
1 − αt ε, t)‖2

2

6: until converged

Algorithm 2 from [16] summarizes the sampling process. Here, a set of pure
noise pixel values is de-noised from time T to time 0 in order to produce a new
synthetic image.

Algorithm 2. Sampling with the backward process [16]
1: xT ∼ N(0, I) � standard Gaussian sample
2: for t = T, T − 1, . . . , 1 do
3: z ∼ N(0, I) � standard Gaussian sample
4: xt−1 =

1√
αt

(
xt − 1−αt√

1−αt
εθ

)
+ σq(t) z

5: end for
6: return x0

3 Experimental Results

We now outline the key components in our computational experiments.
We use the MNIST data set [21], which contains 60,000 training images and

10,000 test images of handwritten digits, with labels indicating the categories:
‘0’, ‘1’,‘2’,. . . ,‘9’.

As a classifier, we use a convolutional neural network (CNN) based on the
architecture of LeNet [19, 20]. The exact architecture can be found in our code.
After training, this classifier achieves an accuracy of 99.02% on the test images.

Deceptive Diffusion: Generating Synthetic Adversarial Examples 325

For the adversarial attack algorithm we use PGDL2 [17], a PyTorch imple-
mentation of the projected gradient method from [24]. This attack algorithm uses
a robust optimization approach to seek an optimal perturbation in an �2 sense,
using gradients of the loss function. We use the default setting in PGDL2 where
an attack is declared successful if it finds a sufficiently small class-changing per-
turbation within a specified number of iterations of a first order gradient method.
The bound on the �2 norm of the attack was set to 2 (each of the 784 pixels
takes values between 0 and 1). We chose a large bound of 1000 on the number
of iterations in order to maximize the size of the attacked image dataset for
training the diffusion model. We used PGDL2 in untargeted mode, so that any
change of classification is acceptable.

In the diffusion model, we used a neural network with a UNet2DModel
architecture from https://huggingface.co/docs/diffusers/en/api/models/unet2d
which is motivated by the original version in [27].

3.1 Initial Sanity Check

Before moving on to adversarial images, we first report on an initial test which
confirms that the diffusion model is capable of producing outputs that are accept-
able to the classifier.

In this test, we train the diffusion model using the original MNIST training
data. We supply the labels during the training process, so we use a conditional
version of Algorithm 1, where in step 5 the network learns to remove noise and
produce an image when given both a time t and a label. This is built in to the
UNet2DModel. A trainable encoder maps the label into the same space as the
timestep. These two quantities are then added and passed to the model in the
same way that the time is usually passed [26].

We found that 99.5% of the outputs from the trained model were classified
with the intended label.

3.2 Deceptive Diffusion Model

Our aim is now to build a deceptive diffusion model that takes a label i and
generates a new image that looks like digit i but is misclassified.

Using PGDL2 for untargeted attacks on the 60,000 MNIST training images
gave a success rate of 86.5%, thereby producing 51,918 perturbed images that
are classified differently to their nearby original images. We trained the diffu-
sion model on these adversarial images, using the original labels. Figure 1 illus-
trates the process. Here, the image of the three on the left is from the MNIST
training set, and the image in the middle arises from a successful attack by
PGDL2 (classified as an eight). After training the diffusion model on all 51,918
adversarial images, asking for an output from the ‘3’ category produced the
result shown (classified as a five).

After using the trained diffusion model to generate 100 new images from each
of the ten categories and passing these through the CNN classifier, we found that

https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d
https://huggingface.co/docs/diffusers/en/api/models/unet2d

326 L. Beerens et al.

Fig. 1. Building the deceptive diffusion model. Images that were successfully attacked
by PGDL2 are used as training data, with the original labels retained. The trained
diffusion model, Gθfinal , produces adversarial images associated with a given a label.
(For the images in this diagram, the image from PGDL2 is classified as an ‘8’ and
the image from the deceptive diffusion model, which was supplied with the label ‘3’, is
classified as a ‘5’.)

93.6% of the outputs were classified differently to their requested labels. Figure 2
gives a confusion matrix showing the performance by category. For comparison,
Fig. 3 shows a confusion matrix for the PGDL2 attacks on the 60,000 training
images.

Table 1 shows the correlation between the rows of the confusion matrices
in Figs. 2 and 3. The high correlation values indicate that the two confusion
matrices are similar. We emphasize that PGDL2 was used in untargeted mode:
an image from category i can be perturbed so that the classifier predicts any
new category j �= i. From Table 1 we see that although the deceptive diffusion
model was not provided with a target class j, it tends to produce new i �→ j
misclassifications of the same type as PGDL2.

Fig. 2. Confusion matrix for the deceptive diffusion model. For a given label (row)
we show the frequency with which the classifier assigned each label (column) to the
output. Entries on the diagonal therefore correspond to unsuccessful attempts to create
an adversarial image. Overall misclassification rate is 93.6%.

Deceptive Diffusion: Generating Synthetic Adversarial Examples 327

Fig. 3. Confusion matrix for PGDL2 attacks on the 60,000 MNIST training images.
With training images corresponding to each label (row) we show the frequency with
which the classifier assigned each label (column) after the attack. Entries on the diag-
onal therefore correspond to unsuccessful attacks. Overall success rate is 86.5%.

Table 1. Correlation of confusion matrix rows for PGDL2 attack and generated data.

Class 0 1 2 3 4 5 6 7 8 9
Correlation 0.90 0.97 0.88 0.79 0.96 0.98 0.82 0.96 0.96 0.96

To give a feel for the outputs from the deceptive diffusion model, Fig. 4
(upper) shows 100 independent outputs corresponding to the label ‘9’. We note
from Fig. 2 that 0% of such outputs are classified as nines. Hence, we see that the
model is capable of producing convincing adversarial images. For comparison,
Fig. 4 (lower) shows the results of PGDL2 on images from the ‘9’ category.

Partial Attacks. So far, we have looked at two options for the training data.
Either all training data was attacked, or all training data was clean. Now we
look at a third case: partially attacked training data. Again we choose the same
MNIST images that were successfully attacked using PGDL2. Consider p ∈
{0, 20, 40, 60, 80, 100}. For each class, we replace p% of the clean images with
their successfully attacked counterpart. Now using these six datasets, we train
six models.

For each class, 100 images are generated using each of the trained models. In
Fig. 5 we show the resulting accuracy of the classifier on these generated images
for the models trained on varying levels of poisoned data. We see that the clas-
sification accuracy degrades roughly in proportion with the amount of poisoned
training data. This result is intuitively reasonable, under the assumption that
all training images carry equal weight when the diffusion model is created.

328 L. Beerens et al.

Fig. 4. Upper: example of 100 images arising when the deceptive diffusion model was
given the label ‘9’. Lower: example of 100 images arising from successful PGDL2 attacks
on images that had label ‘9’.

Deceptive Diffusion: Generating Synthetic Adversarial Examples 329

Fig. 5. Classification accuracy (vertical axis) for output from a deceptive diffusion
model where a fraction of the training data (horizontal axis) is replaced by its adversar-
ially attacked counterpart. The slope representing linear proportionality is also shown.

Fréchet Inception Distance. A widely used measure for generated image
quality is the Fréchet Inception Distance (FID) [14], where lower is better. It
compares a generated dataset to a ground truth dataset. First, a classifier is
used to extract features. Then the Fréchet distance between these feature sets is
computed. Typically the Inception v3 classifier [30] without its last layer is used.
To take into account that the generator is conditioned on the class, we use the
Class-Aware Fréchet Distance (CAFD), which computes the FID for every class
and takes the average [22].

Since our dataset is of low resolution, instead of Inception v3 we use the
classifier that we trained earlier, with its last layer removed. This way the output
is in R128.

In Fig. 6, the CAFD is shown for the diffusion models trained with partially
poisoned data. These values are compared with the CAFD for the test set and
the PGDL2 attacked training set. These are displayed at p = 0 and p = 1
respectively, because they represent samples from the ground truths for the clean
and attacked case respectively. To avoid bias, these two sets are limited to contain
the same number of samples as the generated sets, [6].

The results in Fig. 6 show that the CAFD increases monotonically as the
level of poisoning increases. This seems reasonable, because, as shown in Fig. 5,
higher levels of poisoning lead to higher levels of misclassification. The CAFD
relies on the feature extraction of an MNIST classifier. Since the attacks target
the classifier, it makes sense that the extracted features are different. The key

330 L. Beerens et al.

observation here is that the fully adversarial model (p = 1) corresponds to a
CAFD that is similar to that of the PGDL2 attacked data set, indicating that
deception diffusion can mimic adversarially attacked data successfully according
to this metric.

Fig. 6. Class-aware Fréchet Distance for a deceptive diffusion model where a percentage
of the training data (horizontal axis) is replaced by its adversarially attacked counter-
part. The ground truth dataset is MNIST. The straight line joins the CAFD for the
test set at p = 0 and the PGDL2 attacked training set at p = 1. These two sets contain
the same number of samples as the generated sets.

4 Conclusions

A traditional adversarial attack algorithm aims to perturb an existing image
across a decision boundary. Instead, by training a generative diffusion model on
adversarial data, we are able to create synthetic images that automatically lie on
the wrong side of a decision boundary. This observation, which we believe to have
been made for the first time in this work, reveals a new type of vulnerability for
generative AI: if a diffusion model is inadvertently trained on fully or partially
poisoned data then a tool may be produced that generates unlimited amounts
of classifier-fooling examples.

In common with the AdvDiffuser algorithm in [5], when deliberately trained
on adversarial data, a deceptive diffusion model has the potential to

– create effective adversarial images at scale, independently of the amount of
training and test data available,

Deceptive Diffusion: Generating Synthetic Adversarial Examples 331

– create examples of misclassification that are difficult to obtain with a tradi-
tional adversarial attack; for example, in a healthcare setting when certain
classes are underrepresented in the data [18].

This technique has applications for defence as well as attack, since it provides
valuable new sources of data for adversarial training algorithms that aim to
improve robustness.

There are many directions in which the deceptive diffusion idea could be pur-
sued; notably, testing on other types of labeled image data, generating adver-
sarial images that are successful across a range of independent classifiers, and
finding computable signatures with which to identify this new type of threat.

Acknowledgments. LB is supported by the MAC-MIGS Centre for Doctoral
Training under Engineering and Physical Sciences Research Council (EPSRC)
grant EP/S023291/1. CFH received funding under EPSRC grants EP/T00097X/1,
EP/R018634/1, and EP/T021020/1. DJH is supported by a fellowship from the Lev-
erhulme Trust.

Disclosure of Interests. The authors declare no competing interests.

Data Statement. Code for these experiments is available from https://github.com/
LucasBeerens/Deceptive_Diffusion.

Licencing Statement. For the purpose of open access, the authors have applied a
CC BY public copyright licence to any Author Accepted Manuscript version arising
from this submission.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. IEEE Access 6, 14410–14430 (2018)

2. Beerens, L., Higham, D.J.: Adversarial ink: componentwise backward error attacks
on deep learning. IMA J. Appl. Math. 89, 175–196 (2024)

3. Cao, H., et al.: A survey on generative diffusion models. IEEE Trans. Knowl. Data
Eng. 36, 2814–2830 (2024)

4. Chen, J., Chen, H., Chen, K., Zhang, Y., Zou, Z., Shi, Z.: Diffusion models
for imperceptible and transferable adversarial attack. IEEE Trans. Pattern Anal.
Mach. Intell. 47(2), 961–977 (2024)

5. Chen, X., Gao, X., Zhao, J., Ye, K., Xu, C.-Z.: AdvDiffuser: natural adversarial
example synthesis with diffusion models. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), October 2023, pp. 4562–4572
(2023)

6. Chong, M.J., Forsyth, D.: Effectively unbiased FID and inception score and where
to find them. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6070–6079 (2020)

7. Colbrook, M.J., Antun, V., Hansen, A.C.: The difficulty of computing stable and
accurate neural networks: On the barriers of deep learning and Smales 18th prob-
lem. Proceedings of the National Academy of Sciences (2021)

https://github.com/LucasBeerens/Deceptive_Diffusion
https://github.com/LucasBeerens/Deceptive_Diffusion
https://github.com/LucasBeerens/Deceptive_Diffusion
https://github.com/LucasBeerens/Deceptive_Diffusion
https://github.com/LucasBeerens/Deceptive_Diffusion

332 L. Beerens et al.

8. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems, vol. 34, pp. 8780–8794. Curran Asso-
ciates, Inc. (2021)

9. European Comission: Proposal for a regulation of the European parliament and
of the council laying down harmonised rules on artificial intelligence (artificial
intelligence act) and amending certain union legislative acts (2021)

10. European Parliament: Amendments adopted by the European parliament on 14
june 2023 on the proposal for a regulation of the european parliament and of
the council on laying down harmonised rules on artificial intelligence (artificial
intelligence act) and amending certain union legislative acts (2023)

11. Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers robustness to adversarial
perturbations. Mach. Learn. 107, 481–508 (2018)

12. Fowl, L., Goldblum, M., Chiang, P.-y., Geiping, J., Czaja, W., Goldstein, T.: Adver-
sarial examples make strong poisons. In: Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing
Systems, vol. 34, pp. 30339–30351. Curran Associates, Inc. (2021)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, San Diego, CA (2015)

14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In:
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan,
S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, Long
Beach, CA, USA, pp. 6626–6637 (2017)

15. Higham, C.F., Higham, D.J., Grindrod, P.: Diffusion models for generative artificial
intelligence: an introduction for applied mathematicians, SIAM Review (to appear)

16. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Pro-
ceedings of the 34th International Conference on Neural Information Processing
Systems, Red Hook, NY, USA. Curran Associates Inc. (2020)

17. Kim, H.: Torchattacks: a PyTorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950 (2020)

18. Ktena, I., et al.: Generative models improve fairness of medical classifiers under
distribution shifts. Nat. Med. 30, 1166–1173 (2024)

19. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551 (1989)

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

21. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits
(2010)

22. Liu, S., Wei, Y., Lu, J., Zhou, J.: An improved evaluation framework for generative
adversarial networks. arXiv preprint arXiv:1803.07474 (2018)

23. Luo, C.: Understanding diffusion models: a unified perspective. arXiv:2208.11970
(2022)

24. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. In: 6th International Conference on
Learning Representations, Vancouver, BC, OpenReview.net (2018)

25. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, NV, USA, pp. 2574–2582. IEEE Computer Society
(2016)

http://arxiv.org/abs/2010.01950
http://arxiv.org/abs/1803.07474
http://arxiv.org/abs/2208.11970

Deceptive Diffusion: Generating Synthetic Adversarial Examples 333

26. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

28. Shafahi, A., Huang, W., Studer, C., Feizi, S., Goldstein, T.: Are adversarial exam-
ples inevitable?. In: International Conference on Learning Representations, New
Orleans, USA (2019)

29. Sutton, O.J., et al.: Stealth edits for provably fixing or attacking Large Language
Models. In: Neural Information Processing Society (NeurIPS), Vancouver, Canada,
December 2024

30. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

31. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

32. Tyukin, I.Y., Higham, D.J., Bastounis, A., Woldegeorgis, E., Gorban, A.N.: The
feasibility and inevitability of stealth attacks. IMA J. Appl. Math. 89, 44–84 (2024)

33. Tyukin, I.Y., Higham, D.J., Gorban, A.N.: On adversarial examples and stealth
attacks in artificial intelligence systems. In: 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–6. IEEE (2020)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1312.6199

	Deceptive Diffusion: Generating Synthetic Adversarial Examples
	1 Motivation
	1.1 Related Work

	2 Background
	2.1 Adversarial Attack Algorithms
	2.2 Generative Diffusion Models

	3 Experimental Results
	3.1 Initial Sanity Check
	3.2 Deceptive Diffusion Model

	4 Conclusions
	References

