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Conditions on Runge-Kutta algorithms can be obtained which ensure smooth
stepsize selection when stability of the algorithm is restricting the stepsize. Some
recently derived results are shown to hold for a more general test problem.

1. Introduction

IN THE papers [1,2], a theory was developed for analysis of the step-selection
mechanisms of commonly used Runge-Kutta codes. Numerical experiments show
that, for certain choices of problems and methods, when the step-size is restricted
by stability, such mechanisms produce smooth solutions. In other cases, an erratic
sequence of steps is observed, some inside and some outside the stability region
of the method, including frequent step rejections, with consequent loss of
smoothness in solution components. Conditions on the method were obtained,
using simple test problems, which enabled this behaviour to be better understood
and predicted. The purpose of this paper is to show that these conditions are still
valid for a more general test problem.

We consider the problem

y'=Ay, AeUs*s, (1.1)

where A is assumed to be nondefective. The real Jordan form of A ([3: p. 242]) is
then

...,Bl) (1.2)

where P e RSXl and each Bk is either a 1 x 1 block containing a real eigenvalue of
A, or a 2 x 2 block of the form

corresponding to a complex conjugate pair of eigenvalues /} ± iy, with y #0 .
An explicit Runge-Kutta algorithm applied to (1.1) takes the form (see [1])

yn+l = s(hnA)yn, en+1 = e(hnA)yn, hn+i = (d6j\\en+l\\)
Vqhn, (1.3)

where the polynomials s and e are characteristic of the method. The above form
assumes that control is by the criterion of absolute error per step, aiming at a
fraction 6 of the tolerance 6,ol. If the criterion of error per unit step is used, then
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for a certain polynomial 5. Our conclusions then remain valid with e replaced
by 6.

In Section 2, we consider the case where the dominant eigenvalues, relative to
the stability region of the method, are a complex conjugate pair. This means that
this pair of eigenvalues would be the first to give a violation of the condition of
absolute stability as the stepsize is increased. The corresponding analysis for the
case of a dominant real eigenvalue was already given in [1]. Section 3 briefly
reviews this result and includes comments on the interpretation of the two cases.

2. Dominant complex eigenvalues

Suppose that the dominant eigenvalues are A and X, where A = /3 + \y, and let
these be the eigenvalues of the 2 x 2 block Bk in (1.2). Denote the eigensystem of
B b y

((A, u); (A, u); (A,, ut): i = 3 ,..., s),

where

so that

uJu = 0, uTu = 1,

and, from the form of B,

uT
Ul = uJ

Ui = 0 (i = 3,... ,s).

Further, if the corresponding eigenvectors of A are v, v and vt (i = 3,..., s),
where v = P~lu etc., then these relations can be expressed as

vTPTPv=0, vTPTPv = \, vTPTPvi = vTPTPvi = 0 (i = 3,...,s). (2.1)

For the analysis of this section, the norm in (1.3) is the P norm, defined by

II'IIPHI^IU-

The practical effects of this choice are discussed in Section 3.

LEMMA 1. Let f(») be any polynomial with real coefficients, and consider
w = av + av. Then

\\t(hA)w\\P = \t{hk)\\\w\\P.

Proof

\\t(hA)w\\2
P= [at(hX)vJ+ at(h%)vJ]PJ P[at(hK)v + d-f(/iA~)t>]

= 2aat(hX)t(hX) (from (2.1)).

The special case t = 1 gives ||M>||P = 2aa, and the result follows. D

Using this lemma, we can write down a particular solution of the recurrence
(1.3), referred to as the steady-state solution. This is given by

| s (M) l = l, \eihLX)\\\wn\\P=e8M. (2.2)
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Here the stepsize is constant at /iL, and the solution wn = anv + anv e RJ is of
constant norm: ||ifn||p = (2anan)l =: dL, since it follows from Lemma 1 and (2.2)
that Hifn+illp = \\Wn\\p = dh. The points hhk and hLX are on the boundary of the
stability region of the method, and the dominance assumption implies that

Remark. In interpreting results obtained for the test problem (1.1) on general
problems, the solution y of (1.1) represents the global error (see [1]). Hence the
global error in the steady-state solution is in the span of the dominant
eigenvectors v and v.

Whether the steady-state solution defined by (2.2), with its associated
smoothness, will be realized in a practical computation depends on the stability of
this solution of (1.3) with respect to small perturbations in the stepsize and
solution components. In the remainder of this section, we carry out this analysis.

LEMMA 2. Let y = z + e, where e is a vector of small perturbations. Then, to first
order of small quantities,

\\y\\P=\\z\\P(l + zTPTPe/zTPTPz).

Proof

2zJPTPe/zTPTPz) + O(eTe),

and the result follows. D

In the following, p' will denote the derivative of the polynomial p.

THEOREM 1. Consider a general real perturbation of the solution (2.2), which may
be written in the form

hn = fcL(l + £„), yn = an{\ + 6n)v + «„(! + 8n)v + t 6<?v,. (2.3)
( -3

Then, to first order of small quantities, the perturbations are propagated according
to

hLXs'{hvk)en+i — 11 ~ Re . .. )en Re on, &n+i'
\ q e(hi/.) ) q

(Note that, if some vt (i = 3,...,s) are complex, then the summation EJ_3<5<°tv
will include pairs of complex conjugate terms.)

Proof. (In the following we neglect all but first-order terms in small quantities
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without further comment.)

yn+1 = s(/iL(l + en)A)yn

= aH(l + 6n)s(h^)v + &H(1 + 8n)s(hJ.)v + t
i-3

+ en[anhLks'(h^k)v + anhhk~s'(hLX)v].

Comparing with

yn+1 = an+1(l + 6n+l)v + &n+1(l + Sn+1)v + 2 6
/=3

where wn+1 = an+lv + an+1v and an+1 = s(/iLA)arn, we obtain

<5n+1 = 6n + enhLXs'(hLX)/s(hLk), <5&i = sfa

as required.
Similarly we obtain

en+1 = e(h^)an(l + <pn)v + e(hLX)an(l + q>n)v + 2
i-3

where <pn = 5n + en/iLAe'(/iLA)/e(/iLA), which we write as
s

en+l = e(h^A)wn + an<pne(hLk)v + anyne{hj.)v + 2
/-3

Using Lemma 2 and (2.2), we find

lk»+illp = 06M(l + Ynle(hvk)e{hJ.)dl),

where

yn =

+ 2 eih^SPv)

= anane(hLk)e(hLX)(cpn + q>n)
(from (2.1)), and hence

since 2anan = a\. Note that the perturbations 6^ have no effect, to first order,
on HC+JII,,. FinaUy, from (1.3),

M l + e«+i) = (1 + Re <pn)-^/iL(l + eH),

so that en+1 = £„ - (1/?) Re q>n, which completes the proof. D

Using Theorem 1 we may generalize a result which was proved in [2] for a 2 x 2
test problem. In the following, p(») denotes the spectral radius.

THEOREM 2. The steady-state solution of (1.3) defined by conditions (2.2) is stable
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with respect to small perturbations if p(C) < 1 where

1
i —

c=\ q"~ 6(/ILA)

/»LAS'( / ILA)

Proof. Let <5n = pn + ion. Applying Lemma 2 to (2.3), we obtain

\\yH\\P = <*L[l + {anv
J + anv

J)PTp(an6nv + ajnv + f, ^

= dL(l + i5n + l8n) (using (2.1))

Therefore, from Theorem 1, perturbations to the constant stepsize and
constant norm of the steady-state solution are propagated according to

giving the desired result. •

3. Condustons

In the case where the dominant eigenvalue is real, the test problem (1.1) was
analyzed and Theorem 2 proved in [1]. The important distinction to make in this
case is that the result was shown to hold using any vector norm in (1.3). There is
therefore a clear advantage in using algorithms with p(C) < 1 at hLk where
[/iLA, 0] is the interval of absolute stability along the negative real axis.

The analysis of Section 2 shows that, for the complex case, it is necessary in
general to use the P norm to enable the smoothing effects of the condition
p(C) < 1 to be strictly realized. This is, of course, not a practical possibility.
However, for a number of widely used test problems, we have P = I, and
therefore the beneficial effects of p(C) < 1 will be realized in the Euclidean norm,
thus affecting results on comparisons of methods. More generally, we have
ll*l|p= II'IU whenever P is orthogonal, and hence whenever A is normal. (In this
case, (1.2) is the real Schur decomposition.) There are therefore practical
problems on which the condition p(C) < 1 and the use of the Euclidean norm
produce smooth solutions. The behaviour when the Euclidean norm is used and P
is not orthogonal, or when the max norm is used, was briefly illustrated in [2];
there can be beneficial effects although a true steady-state solution does not exist.

The authors are currently involved in the derivation of practical Runge-Kutta
formulae taking this theory into account.
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