
IMA Journal of Applied Mathematics(2011)76, 449−474
doi:10.1093/imamat/hxr016
Advance Access publication on April 16, 2011

Stochastic ordinary differential equations in applied and computational
mathematics

DESMOND J. HIGHAM

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

d.j.higham@strath.ac.uk

[Received on 26 April 2010; revised on 18 January 2011; accepted on 21 February 2011]

Using concrete examples, we discuss the current and potential use of stochastic ordinary differential
equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a min-
imal background knowledge in probability and stochastic processes, we focus on aspects that distinguish
SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain
how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in
chemical kinetics, population dynamics and, most topically, systems biology. We outline some key issues
in existence, uniqueness and stability that arise when SDEs are used as physical models and point out
possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and ex-
plain how both weak and strong convergence properties are relevant for highly efficient multilevel Monte
Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially
on non-linear models, parameter estimation, uncertainty quantification, model comparison and multiscale
simulation.
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1. Introduction

In the context of modelling physical systems, uncertainty may arise in several ways.

• Directly observable quantities may be subject to measurement error, for example, initial levels in a
population model may not be known exactly.

• Parameters that cannot be directly measured may be inferred by calibrating against observations of
the system, for example, unknown rate constants in a chemical kinetics model may be fitted against
a time series of concentration levels.

• Effects that would be unnecessarily expensive or complicated to measure or model may be sum-
marized stochastically, for example, rather than treating the roll of a die as a non-linear dynamical
system, it may be adequate to represent the outcome in terms of a discrete random variable with six
possible values.

There are, of course, many ways to introduce randomness into a mathematical model. We focus here
on the particular context of ordinary, initial value, stochastic differential equations (SDEs) in Itô form.
This class of models is proving popular across a wide range of application areas. In particular, their
usefulness in mathematical finance and systems biology has dramatically raised the profile of SDEs.
Our aim here is to provide background information and give an overview of some of the key modelling
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450 D. J. HIGHAM

and simulation issues that are likely to have the highest profile over the next few years, with the caveat
that we make no attempt to give an exhaustive coverage.

In keeping with the scope and readership of this journal, we have taken an applied mathematics view-
point. We assume that the reader is familiar with deterministic ordinary differential equations (ODEs)
and their numerical approximation but only require a minimal level of familiarity with probability the-
ory (including basic concepts such as normal/Gaussian random variables, probability density functions,
independence, expected value, variance and Monte Carlo simulation). We generally focus on a pathwise,
or trajectory-based interpretation of an SDE solution, and, where possible, we contrast ideas and results
for SDEs with their ODE counterparts. Throughout, the capitalized mathematical font is reserved for
random variables, or more generally, stochastic processes.

For further background reading on SDEs we suggest, in roughly increasing order of technical dif-
ficulty (Mikosch, 1998; Cyganowskiet al., 2002; Mao, 2007; Milstein & Tretyakov, 2004; Kloeden &
Platen, 1999).

2. SDEs and their numerical simulation

Givenx0 ∈ Rm and a functionf : Rm → Rm, the recurrence relation

xn+1 = xn + h f (xn) (1)

is familiar as an Euler approximation to the ODE systemx′(t) = f (x(t)). Here, the fixed parameter
h > 0 is called the stepsize, andxn approximatesx(tn), wheretn = nh. Of course, (1) is also an
extremely useful analytical tool; by considering the limith → 0, it is possible to establish existence
and uniqueness results for the underlying ODE. In a similar manner, we may interpret an SDE as the
limiting process that arises from a discrete-time approximation. To do this, we will give each iterate in
(1) an appropriately scaled Gaussian ‘kick’ producing the Euler–Maruyama iteration

Xn+1 = Xn + h f (Xn) +
√

hg(Xn)Vn, (2)

where

• g: Rm → Rm×d is a given function, and

• the {Vn}n>0 are independent vector-valued random variables such that each of thed independent
components ofVn has the standard normal distribution.

We see that the magnitude of the random kick in (2) depends upon the current approximationXn via the
value ofg(Xn). We also see that the kick scales like

√
h—this turns out to be the right amount of noise

to produce limiting trajectories that are continuous but not deterministic.
So, given appropriate functionsf and g, and an initial conditionX(0), we can think of an SDE

solution X(t) as being whatever process arises when we take theh → 0 limit in (2). More precisely,
just as in the deterministic case, we can fixt and consider the limit ash → 0 of XN whereNh = t . Of
course, for each fixedt , this construction forX(t) leads to a vector-valued random variable, and hence
ast variesX(t) is a vector-valuedstochastic process. In summary, there are three main ingredients for
an SDE.

• The function f : Rm → Rm, called thedrift coefficient, plays a similar role to the right-hand side of
an ODE.
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SDEs IN APPLIED AND COMPUTATIONAL MATHEMATICS 451

• The functiong: Rm → Rm×d, called thediffusion coefficient, governs how the current state of the
system affects the size of the noise contribution.

• The initial condition,X(0), may be deterministic, but more generally it is allowed to be a random
variable.

The standard notation for specifying such an SDE is

dX(t) = f (X(t))dt + g(X(t))dW(t), X(0) given, (3)

whereW(t) is a vector-valued process whosed components represent independent Brownian motions.
We will use this notation here, while emphasizing that dX(t), dt and dW(t) have no meaning on their
own; we simply regard (3) as a shorthand way of saying that the processX(t) arises from theh → 0
limit in (2).

A simple and very widely used example is given by the scalar (m = d = 1) linear case

f (x) = ax, g(x) = bx, (4)

wherea andb > 0 are constants. In Fig.1 we fix x(0) = 1, a = 0.06, b = 0.4 and takeh = 0.01 in
(2). The upper picture in Fig.1 shows 50 different paths. So, in each case, a Gaussian incrementVn was
produced from a call to a standard normal pseudo-random number generator. In this manner, at the final

FIG. 1. Upper: fifty paths from the iteration (2) with x(0) = 1, f (x) = 0.06x, g(x) = 0.4x andh = 0.01. Lower: histogram of
5 × 104 binned values for timet = 1, with density function (5) superimposed.
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452 D. J. HIGHAM

time, t = 1, each path produces a single number that, in theh → 0 limit, may be regarded as a sample
from the distribution of the random variableX(1) describing the SDE solution att = 1. In the lower
picture of Fig.1, we have shaded a histogram for 5× 104 such samples.

The upper picture shows a trajectory-wise view of an SDE—individual paths are seen to evolve over
time. The lower picture applies at a fixed point in time and considers the distribution of values. From
the latter perspective, for this simple SDE it can be shown, given a deterministic initial condition,x(0),
that the random variableX(t) has alognormalprobability density function given by

p(y) =

exp

(
−
(
log(y/x(0))−

(
a− 1

2b2
)
t
)2

2b2t

)

yb
√

2π t
, for y > 0, (5)

and p(y) = 0 for y 6 0. This density function fort = 1 is superimposed in the lower picture of Fig.1,
and we see that it matches the histogram closely.

Of course, the hand-waving arguments leading from (2) to (3) are not valid for arbitrary choices of
drift and diffusion coefficient. Generally, the question of existence and uniqueness of solutions for SDEs
is more delicate than the ODE case. Most standard texts impose the condition thatf andg in (3) are
globally Lipschitz—there is assumed to be a constantL such that

‖ f (u) − f (v)‖6 L‖u − v‖, (6)

‖g(u) − g(v)‖6 L‖u − v‖, (7)

for all u, v ∈ Rm (see, for example,Kloeden & Platen, 1999; Mao, 2007). In the ODE case, the right-
hand side of a typical ODE model will not satisfy the condition (6), but it is often natural to argue that
a local Lipschitz conditionwill hold—a suitable constantL = L(R) will exist for any ball of radiusR
about the origin. In this way, physical arguments may suggest that the ODE solution will stay bounded,
in which casef may be redefined to be zero outside an appropriately large ball, and the local Lipschitz
condition can be extended to a global one. This type of reasoning is much harder to justify in the SDE
setting. Introducing noise opens up the possibility that trajectories may take arbitrarily large excursions,
and establishing existence and uniqueness results is a delicate business, typically hinging on the fact
that increasingly large solution values are increasingly less probable.

Similar comments apply when, as in the next section, we analyse numerical methods for simulating
SDEs—the textbook global Lipschitz conditions place severe constraints on the class of problems that
can be analysed.

3. Stability and convergence of numerical simulations

Numerical methods are traditionally studied in asymptotic regimes. Convergence looks at the error over
a finite time interval [0, T ] ash → 0 and stability looks at the approximate solution with a fixedh as
t → ∞. In both cases, because a random variable is an infinite-dimensional object, the choice of norm
is crucial.

The two most widely used convergence concepts are referred to asweakandstrong. Weak error
measures how well a numerical method reproducesE[X(t)] (or, more generally,E[φ(X(t))], where
φ(∙) is some polynomially bounded function). Under appropriate conditions, which usually include
global Lipschitz bounds on the drift and diffusion, the Euler–Maruyama method can be shown to have
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SDEs IN APPLIED AND COMPUTATIONAL MATHEMATICS 453

weak order one so that

sup
06nh6T

(E[X(nh)] − E[Xn]) = O(h). (8)

Strong error, on the other hand, measures the mean of the absolute difference between the two random
variables, and Euler–Maruyama achieves only an order of one half in this sense:

E

[

sup
06nh6T

|X(nh) − Xn|

]

= O
(
h

1
2

)
. (9)

More generally, for anym > 1 and sufficiently smallh there is a constantC = C(m) such that

E

[

sup
06nh6T

|X(nh) − Xn|
m

]

6 Chm/2. (10)

Using the Borel–Cantelli lemma, it is possible to pass from strong error to pathwise error. For ex-
ample, inKloeden & Neuenkirch(2007), it is shown that given anyε > 0, there exists a path-dependent
constantK = K (ε) such that, for all sufficiently smallh,

sup
06nh6T

|X(nh) − Xn| 6 K (ε)h
1
2−ε .

In the ODE setting, rates such as O(h) and O
(
h

1
2
)

might be dismissed as impractical, but for SDE
computations, they are frequently tolerated because

• as discussed in Section6, statistical error generally dominates over discretization error, and

• higher order methods for general SDEs, especially in the strong sense, carry heavy overheads
(Kloeden & Platen, 1999).

Hence, although special-purpose higher order methods can be developed for particular circumstances
(Anderson & Mattingly, 2011), Euler–Maruyama, or one of its implicit variants, is at the heart of most
practical SDE computations.

The linear SDE (4) has proved to be a good starting point for the study of basic long-term behaviour,
not least because it gives a natural extension of the classic test problem for numerical ODEs (Hairer &
Wanner, 1996). For the SDE itself, there are simple characterizations for mean square stability

lim
t→∞

E[X(t)2] = 0 ⇔ a +
1

2
b2 < 0

and asymptotic stability

lim
t→∞

|X(t)| = 0, with probability one ⇔ a −
1

2
b2 < 0.

A typical one-step numerical method produces recurrences of the form

Xn+1 = Xn(p + qVn), (11)
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454 D. J. HIGHAM

where the coefficientsp andq depend onh and on the SDE parameters,a andb. Mean square stability
of this discrete iteration is neatly characterized as

lim
n→∞

EX2
n = 0 ⇔ p2 + q2 < 1, (12)

but, perhaps surprisingly, the corresponding property of asymptotic stability has a less tractable form;
from the strong law of large numbers and the law of the iterated logarithm, we find (Higham, 2000)

lim
n→∞

|Xn| = 0, with probability one ⇔ E[log |p + qVn|] < 0. (13)

In Fig.2, the white bounded area of thep, q plane is the region of asymptotic stability, that is, where
the right-hand inequality in (13) holds. The unit circle, marked with a dashed line, is the boundary
for mean square stability (12). Both regions are symmetric about thep andq axes, so we only show
p, q > 0. To emphasize that the two stability concepts are different, we have marked with a cross in
Fig. 2 the pointp = q = 1.1. Here, the iteration is asymptotically stable but not mean square stable—
every path must tend to zero as time increases, but for any large time, there are enough ‘bad’ paths to
make the variance huge. Figure3 shows how one path of|Xn| evolves in this case, with the vertical axis
on a logarithmic scale. The iterates decay, albeit far from monotonically.

Given a test problem, we would like our method to reproduce stability for the biggest possible range
of stepsizes. A stochastic extension of the trapezoidal rule

Xn+1 = Xn +
1

2
h f (Xn) +

1

2
h f (Xn+1) +

√
h g(Xn) Vn, (14)

is easily shown, via (12), to have perfect mean square stability behaviour—given anya andb, and any
stepsizeh, the method matches the stability/instability of the SDE. For asymptotic stability, however,

FIG. 2. Stability regions for the iteration (11) for p, q > 0. The dashed line along the unit circle is the boundary for mean square
stability (12). The solid line is the boundary for asymptotic stability (13). The choicep = q = 1.1 used for Fig.3 is marked with
a cross.
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FIG. 3. One instance of the sequence|Xn| for the iteration (11) with p = q = 1.1. This process is asymptotically stable but not
mean square stable.

analysis via (13) is more awkward, and we are not aware of any general purpose method that can be
guaranteed, for allh > 0, to preserve asymptotic stability of the SDE.

Although convergence theory under global Lipschitz assumptions and stability theory for a lin-
ear test problem give a useful baseline, the study of non-linear SDEs raises new issues and casts
doubt on the usefulness of Euler–Maruyama. Several authorsHighamet al. (2002; 2007), Hutzenthaler
et al. (2011), Mattingly et al. (2002), Milstein & Tretyakov(2005) andTalay (1999) have shown that
Euler–Maruyama can fundamentally break down for non-linear and/or long-time computations.

For example, the scalar SDE

dX(t) = −X(t)3 dt + dW(t),

with any deterministic initial conditionX(0), has a well-defined solution. However,Hutzenthaleret al.
(2011, Theorem 1) shows that over any compact interval [0, T ], the strong error in an Euler–Maruyama
approximation to this SDE blows up ash → 0. Similarly, Higham et al. (2007) shows that on the
example

dX(t) = (X(t) − X(t)3)dt + 2X(t)dW(t),

for which

lim sup
t→∞

1

t
log |X(t)| 6 −1, with probability 1,

given anyh > 0 there is a non-zero probability that a path generated by an Euler–Maruyama simulation
will blow up ast → ∞. Although these results deal with different types of behaviour, in both cases, their
proof relies on the fact that the Gaussian increments used by the numerical method may occasionally
perturb the iterates into a region where the non-linear drift has a repulsive effect, and it is clear that any
other explicit numerical method can suffer the same fate.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/76/3/449/751992 by U

niversity of Edinburgh user on 19 June 2021



456 D. J. HIGHAM

This brings us to a key point. Unlike in the deterministic ODE case, for non-linear SDEs, we intro-
duce implicitness not in the hope of improving efficiency by allowing larger stepsize, but in the hope of
obtaining a method that satisfies the fundamental requirements of accuracy and stability.

Although some general results are available for specific non-linear structures, for example, one-
sided Lipschitz constants (Highamet al., 2002; Mattingly et al., 2002), many SDE models do not fit into
standard categories. Challenges may arise not only through faster than linear growth of the coefficients
at infinity but also through unbounded derivatives at the origin—in particular, we will see in Section5
that square roots arise naturally in models of chemical kinetics. In a specific example motivated by an
empirically fitted interest rate model ofAit-Sahalia(1999), strong convergence of specially constructed
implicit methods is considered inSzpruchet al. (2011) for the problem class

dX(t) = (α−1X(t)−1 − α0 + α1X(t) − α2X(t)r )dt + σ X(t)ρ dW(t),

where theαi are positive constants andr, ρ > 1.
With regard to long-time behaviour, the simple fixed pointX(t) ≡ 0 for the linear test equation (4)

is a very special case of aninvariant measure, and this more general concept can be studied for various
classes of non-linear SDE (Mattingly et al., 2002, 2010; Talay, 1999).

4. SDEs as chemical Langevin equations: part 1, motivation

To motivate the use of stochastic models in systems biology, we begin with a simple deterministic
example. InErbanet al. (2006), a stylized model is given for the levels of two types of protein that are
mutually repressive—an increase in the level of proteinP1 inhibits the production of proteinP2 andvice
versa. Lettingz1(t) andz2(t) denote the levels ofP1 andP2 at timet , respectively, a mass action ODE
system for this two-gene network takes the form

dz1

dt
=

1

1 + κz1

(
γ

1 + ωz2
2

− δz1

)

, (15)

where the equation forz2 is found by swappingz1 andz2 in (15). Using parameter valuesκ = 2×10−4,
δ = 7.5 × 10−4, ω = 2 × 10−6 andγ = 1.14, it can be shown that this ODE system has two linearly
stable steady states; one hasz1(t) ≡ za ≈ 481 and the otherz1(t) ≡ zb ≈ 1039. This type of bistability,
predicting that cells may evolve into more than one possible state, is of great biological importance
(Hastyet al., 2000). However, for deterministic models such as (15), it may be argued as unrealistic that
(a) the cell’s fate is completely specified by the initial condition and (b) a cell cannot switch dynamically
between states. A major benefit of stochastic models is that they can allow naturally for the scenario
where the system spends time in more than one ‘attractive’ region of state space.

In Fig. 4, which is based onErbanet al. (2006, Fig. 5), we show theP1 protein level arising from
a simulation that uses a stochastic analogue of (15). Full details are given later in this section, at this
stage, we simply mention that the simulation produces an integer number ofP1 proteins along a discrete
set of timest . Every 1000th such value is plotted as a dot in the figure, starting with 600 molecules
and running up to timet = 107. We see that theP1 level spends time close to each of the two stable
steady-state values that exist for the ODE version of the model. It is, of course, possible to study the
statistics of the stochastic model further, for example, the typical time for a ‘transition’ between the two
levels may be of interest (Erbanet al., 2006).

Bistability, and more general, multistability behaviour for stochastic models is, of course, also of
great interest for many other physical and mechanical systems.
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FIG. 4. Number ofP1 molecules over time, from a stochastic model of a genetic toggle switch. The underlying deterministic
approximation has stable steady levels at 481 and 1039.

The stochastic simulation in Fig.4 is based on what is often called thechemical master equa-
tion (CME) regime, whereas the ODE model (15) corresponds to the mass action orreaction rate
equation(RRE) setting. Between these two extremes, there is a diffusion limit orchemical Langevin
equation(CLE) regime that takes the form of an SDE. The CLE regime has the benefit of retaining
the stochastic nature of the underlying CME framework, while making simulation and analysis more
tractable.

Before discussing the general setting, we will illustrate the main ideas on the extremely simple case
of unimolecular decay

S
cS
→ ∅. (16)

Here, we have a single species,S, in our system, and the only event that can take place at any time is
that one molecule ofSmay decay. The rate constantc > 0 quantifies the strength of the decay process.
We suppose that initially, at timet = 0, the number of molecules ofS is known to beN. We also note
that this system would be called a pure death process in the context of stochastic population modelling
(Renshaw, 1991).

In the CME regime, the state of the system at timet is described by a non-negative integerZ(t),
representing the number of molecules ofS present. Hence,Z(t) may take any of the valuesN, N −
1, N − 2, . . . , 1, 0. Given that there areZ(t) molecules present at timet , first principle modelling ar-
guments show that the time we must wait before the next reaction takes place (that is, the next time we
lose a molecule ofS) has an exponential distribution with expected value 1/(cZ(t)). This is intuitively
reasonable—as the number of molecules,Z(t), decreases, we must typically wait longer for the next
one to disappear. Similarly, for a system with a smaller rate constant,c, we would typically wait longer
between events. Furthermore, the exponential distribution makes the waiting time between eventsmem-
oryless; the chance of the next event occurring within the next second does not depend upon how long
ago the last event took place. Because exponentially distributed samples can be easily constructed by
log-transforming uniformly distributed samples, it is a very simple matter to compute a path forZ(t).
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The following pseudocode summarizes an appropriate algorithm, assuming that the initial state,Z(0),
is given.

A. Draw a uniform (0,1) pseudo-random sample,ξ .

B. Setτ = ln(1/ξ)/(cZ(t)) to be the waiting time before the next reaction.

C. Update the system toZ(t + τ) = Z(t) − 1 and update the current timet to t + τ .

D. Return to Step A ifZ(t) > 0 and you wish to continue.

In the CLE setting for the reaction (16), we use an SDE to represent the level of speciesSpresent at
time t . So, at each timet , we have a continuous-valued random variable,X(t). The CLE takes the form
of the Itô SDE

dX(t) = −cX(t)dt −
√

cX(t)dW(t). (17)

The RRE, or mass action, formulation for (16) is simply the scalar ODE dz(t)/dt = −cz(t), where
z(t) is a deterministic real-valued quantity representing the amount ofSpresent at timet .

In Fig.5, we illustrate the three regimes in the case of ten initial molecules. (The CLE was simulated
numerically using Euler–Maruyama.) It is immediately apparent that the CLE path does not respect the
inherent monotonicity of this simple reaction. Unlike the RRE solution, however, any CLE path will,
eventually, attain the value zero. Figures6 and7 repeat the exercise with 50 and 200 initial molecules,
respectively. We see that the fluctuations are less significant when the molecule count is high—this idea
will be formalized shortly when we consider the thermodynamic limit.

In the CME regime for (16), at every timet the stateZ(t) is a random variable with a discrete set
of possible values 0, 1, 2, . . . , N. We may then letpi (t) denote the probability thatZ(t) = i . It follows
that{pi (t)}N

i =0 satisfy an ODE, or master equation, of the form

d

dt
pi (t) = c(i + 1)pi +1(t) − cipi (t), for i = N − 1, N − 2, . . . , 0, (18)

FIG. 5. Simulations of the simple reaction (16), starting with 10 molecules.
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FIG. 6. Simulations of the simple reaction (16), starting with 50 molecules.

FIG. 7. Simulations of the simple reaction (16), starting with 200 molecules.

where PN+1(t) is taken to be zero. This has the intuitive interpretation that the rate of change of
pi (t) has

• a positive contributionc(i + 1)pi +1(t), which corresponds to the fact that we enter statei via one
decay from statei + 1, and

• a negative contribution−cipi (t) due to the fact that we leave statei when a decay takes place.
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The linear ODE system (18) has solution

pi (t) =
N!

i !(N − i )!
e−ci t (1 − e−ct)N−i , for i = 0, 1, 2, . . . , N, (19)

and it follows that the mean,E[Z(t)] and variancevar[Z(t)] have the form

E[Z(t)] = N e−ct and var[Z(t)] = N e−ct(1 − e−ct). (20)

For the CLE (17), because the drift coefficient−cX(t) is linear, it follows immediately thatE [X(t)]
satisfies the ODE that arises when the noise is switched off, giving

E[X(t)] = N e−ct. (21)

To find the second moment, we may apply Itô’s lemma, see, for example,Mao (2007), to get

d

dt
E[X(t)2] = −2cE[X(t)2] + cE[X(t)],

from which it follows that

var[X(t)] = N e−ct(1 − e−ct). (22)

So the CLE reproduces the mean and variance of the CME.
The RRE matches the mean of the CME, that is,z(t) = E[Z(t)] = N e−ct. Being deterministic,z(t)

of course has zero variance.
Studying the first and second moments in this way outlines one sense in which the CLE may be

regarded as an intermediate model that approximates the CME more accurately than the RRE. In the
next section, we look at this issue in more detail.

5. SDEs as CLE: part 2, theory and challenges

Suppose we have a general system withR chemical species,S1, S2, . . . , SR, taking part inM different
chemical reactions. In the CME formulation, we then have a state vectorZ(t) ∈ RR whosei th com-
ponent denotes the number of molecules ofSi present at timet . In this setting, unlike in the molecular
dynamics regime (Leimkuhler & Reich, 2005), we are not concerned with the location or velocity of
each molecule, we simply wish to record the total number for each species. Having settled on this level
of detail, we must accept that the most accurate description of how the system evolves must be stochas-
tic. After making some reasonable assumptions (such as a fixed volume for the system and a constant
temperature)Gillespie (1976, 1977) used first principle modelling arguments to derive the CME for
Z(t). For each 16 j 6 M , the CME involves

• astoichiometric vector, ν j ∈ RR, and

• apropensity function, aj (Z(t)),

such that thej th reaction takes place over the infinitesimal interval [t, t+dt) with probabilityaj (Z(t))dt
and causes the changeZ(t) 7→ Z(t)+ν j to the state vector. Gillespie showed how to derive appropriate
propensity functions for standard chemical reactions.
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Letting P (z, t) denote the probability thatZ(t) = z, the CME is given by the ODE system

dP(z, t)

dt
=

M∑

j =1

(aj (z − ν j )P(z − ν j , t) − aj (z)P(z, t)). (23)

We note that the same form of ODE has been derived in many other modelling contexts, notably popu-
lation dynamics (Renshaw, 1991), and is often referred to as theforward Kolmogorov equation.

For the simple reaction (16), we haveR = 1 species,ν1 = −1 anda1 (x) = cx, and we see that
(23) reduces to (18).

Generally, sincez ranges over the set of all possible systems states, the CME represents a massive
(albeit linear, constant coefficient) ODE system that is too large to compute with and visualize; although
progress is being made for some non-trivial examples (Jahnke, 2010).

As an alternative to computingP (z, t) directly, Gillespie showed that it is possible to compute sam-
ple paths that respect these probabilities. In this approach, on each step, we draw two random numbers.
One is used to choose a waiting time until the next reaction takes place—this is exponentially distributed
with mean given by the inverse of the sum of the values of propensity functions, so the higher the propen-
sities the shorter the typical waiting times. The other is used to choose which of theM reactions to fire.
The chance that reactionj fires is proportional to its propensity. Overall, the resulting algorithm can be
summarized very simply in the following pseudocode, given an initial stateZ(0), which generalizes the
special case outlined in Section4 for unimolecular decay.

1. Evaluate{ak(Z(t))}M
k=1 andasum(Z(t)) :=

∑M
k=1 ak(Z(t)).

2. Draw two independent uniform (0,1) random numbers,ξ1 andξ2.

3. Set j to be the smallest integer satisfying
∑ j

k=1 ak(Z(t)) > ξ1asum(Z(t)).

4. Setτ = ln(1/ξ2)/asum(Z(t)).

5. SetZ(t + τ) = Z(t) + ν j and updatet to t + τ .

6. Return to Step 1 or terminate.

In Fig. 4, we used this algorithm withR = 2 species,M = 4 reactions, stoichiometric vectors of the
form

ν1 =
[

1

0

]
, ν2 =

[
−1

0

]
, ν3 =

[
0

1

]
, ν4 =

[
0

−1

]

and propensity functions

a1(z) =
γ

(1 + κz1)(1 + ωz2
2)

,

a2(z) =
δz1

1 + κz1
,

a3(z) =
γ

(1 + κz2)(1 + ωz2
1)

,

a4(z) =
δz2

1 + κz2
.

We should also mention that although, as any search engine will reveal, Gillespie’s algorithm is now
extremely well cited in the chemistry and biochemistry fields, other application areas use similar ideas
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under different names, including the residence-time algorithm (Cox and Miller, 1965), kinetic Monte
Carlo (Young & Elcock, 1966) and, more generally, discrete event simulation and Petri nets (Wilkinson,
2006).

Because Gillespie’s algorithm faithfully reproduces the statistics of the CME, it is forced to take
account of every reaction along a path—the propensity functions must be reevaluated at each new state.
If we make an approximation by freezing the propensity functions over some time period,τ , then we
can argue that the number of typej reactions taking place arises from a simple counting process and
will follow a Poisson distribution with parameteraj (Z(t))τ . (A Poisson random variable with parameter
λ>0 takes the valuei with probability e−λλi /(i !) for i = 0, 1, 2, . . ..) If we further argue thataj (Z(t))τ
is large, then this Poisson update to the state vector can be approximated by a Gaussian with the same
mean and variance. This leads us to the recurrence

Y(t + τ) = Y(t) + τ

M∑

j =1

ν j aj (Y(t)) +
√

τ

M∑

j =1

ν j

√
aj (Y(t))ξ j , (24)

where theξ j are independent standard Gaussians and hence eachY(t) is a real-valued random variable.
We see from (2) that this has the form of an Euler–Maruyama iteration, and hence, for smallτ , we could
approximate this system with the SDE

dX(t) =
M∑

j =1

ν j aj (X(t))dt +
M∑

j =1

ν j

√
aj (X(t))dWj (t). (25)

This is the CLE model for the chemical system. We saw the simple case (17) for the pure decay reac-
tion (16).

We note also that the iterations of the type (24) are of independent practical interest (see for, example,
Andersonet al., 2011; Gillespie, 2001).

To discuss the sense in which the CLE approximates the CME, it is usual to rescale the processZ(t)
to Ẑ(t) = Z(t)/V , whereV � 1. Typically, V is regarded as the product of the Avagadro constant
and the volume in litres, so that̂Z(t) measures moles per litre. If we similarly scale the CLE solution
to X̂(t) = X(t)/V , then, under the assumption that the propensity functions satisfyaj (V x) = O(V)
asV → ∞, which holds for standard chemical kinetics,Kurtz (1981) has shown that over a finite time
interval [0, T ], the largest deviation of̂Z(t) − X̂(t) is typically O(log(V)/V) (see, also, for example,
Andersonet al., 2011; Ball et al., 2006, for more details).

As V → ∞, which is the so calledthermodynamic limitthat we illustrated in Figs5–7, the deter-
ministic RRE

dx(t)

dt
=

M∑

j =1

ν j aj (x(t)), (26)

also approximates the discrete stochastic model in the sense thatx̂(t) = x(t)/V matcheŝZ(t) pathwise
to O(1/

√
V).

We have outlined how the CLE can be derived from the CME under certain modelling assumptions
and mentioned accuracy over compact time intervals in the thermodynamicV → ∞ limit. It is perhaps
not surprising, however, that issues arise when the modelling assumptions are not valid and when long-
time behaviour is studied. For an illustration, we may use the simple reversible reaction example,

S1

k1
�
k2

S2, (27)
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which has stoichiometric vectors

ν1 =
[

1
−1

]
, ν2 =

[
−1
1

]

and propensity functionsa1(z) = k1z2, a2(z) = k2z1. Since the only possible events are that a molecule
of S1 converts to a molecule ofS2 , or vice versa, it is clear that in the CME framework the total
number of molecules is preserved. Further, if we start with a deterministic numberZ1(t) + Z2(t) = K
of molecules, then bothZ1(t) and Z2(t) must take integer values in the range{0, 1, 2, . . . , K − 2,
K − 1, K }.

The CLE for this model has the form

dX1(t) = (−k1X1(t) + k2X2(t))dt −
√

k1X1(t)dW1(t) +
√

k2X2(t)dW2(t), (28)

dX2(t) = (k1X1(t) − k2X2(t))dt +
√

k1X1(t)dW1(t) −
√

k2X2(t)dW2(t). (29)

Looking at (28), we see that forX1(t) close to zero, the right-hand side has a deterministic contribu-
tion k2X2(t)dt pushingX1(t) back into the positive orthant, but it also has a stochastic contribution√

k2X2(t)dW2(t) which is equally likely to have a positive or negative effect. Similar comments apply
to the caseX2(t) ≈ 0, and, overall, solutions to (28) and (29) cannot be guaranteed to remain posi-
tive. If the molecule count for speciesX1 or X2 becomes small—in which case, the assumptions used
to derive the CLE are invalid—the SDE model breaks down because the diffusion coefficients involve
square roots of negative arguments. For this reason, analysis of general CLE systems requires care, and
modifications to the basic CLE may be required simply to produce a well-defined mathematical object
(Szpruch & Higham, 2010).

Wilkie & Wong (2008) noted that the CLE can produce negative concentrations and suggested a fix
that involves deleting the offending diffusion coefficients. For the simple example (27), their modified
CLE takes the form

dX1(t) = (−k1X1(t) + k2X2(t))dt −
√

k1X1(t)dW1(t), (30)

dX2(t) = (k1X1(t) − k2X2(t))dt −
√

k2X2(t)dW2(t). (31)

However, we would argue that all four diffusion terms in (28) and (29) have a role to play in capturing
the fluctuations of the underlying Poisson processes about their mean, and we would not recommend
making a global change to fix a difficulty that is localized to the boundary.

Because the propensity functions in this example are linear, we can study the issue further by obtain-
ing closed-form ODEs for the evolution of the moments. In the CME framework, the scaled, discrete-
valued, procesŝZ(t) has moments that evolve according to the linear ODE

d

dt












E[ Ẑ1]

E[ Ẑ2]

E[(Ẑ1)
2]

E[(Ẑ2)
2]

E[ Ẑ1Ẑ2]












=











−k1 k2 0 0 0

k1 −k2 0 0 0

k1/V k2/V −2k1 0 2k2

k1/V k2/V 0 −2k2 2k1

−k1/V −k2/V k1 k2 −(k1 + k2)






















E[ Ẑ1]

E[ Ẑ2]

E[(Ẑ1)
2]

E[(Ẑ2)
2]

E[ Ẑ1Ẑ2]












, (32)

see, for example,Gadgil et al. (2005) for details of how to derive these relations. For the modified
Langevin process (30) and (31), we may apply It̂o’s lemma (Mao, 2007) to the functionsX2

1, X2
2, X1X2
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and then take expectations, to obtain, in scaled form,X̂(t) = X(t)/V ,

d

dt













E[ X̂1]

E[ X̂2]

E[(X̂1)
2]

E[(X̂2)
2]

E[ X̂1X̂2]













=











−k1 k2 0 0 0

k1 −k2 0 0 0

k1/V 0 −2k1 0 2k2

0 k2/V 0 −2k2 2k1

0 0 k1 k2 −(k1 + k2)























E[ X̂1]

E[ X̂2]

E[(X̂1)
2]

E[(X̂2)
2]

E[ X̂1X̂2]













. (33)

In (33), we have underlined the zero coefficients in the ODE Jacobian that replace the non-zeros in the
master equation version (32). Making such an O(1/V) change to the entries will generally cause an
O(1/V) change in the ODE solution, over any finite time interval.

In Fig. 8, we show computations for the casek1 = k2 = 1, with deterministic initial dataXV
1 (0) = 4

andXV
2 (0) = 1. The picture on the left usesV = 1 and the picture on the right usesV = 10. We have

plotted the evolution of the second moment of the first species. The solid curve showsE[(Ẑ1)
2], for the

master equation formulation, and the thick dashed line showsE[(X̂1)
2] for the modified Langevin. The

thinner dashed curve, which is the same in both pictures, shows the corresponding deterministic curve
for the mass action ODE. We see that the modified Langevin (30) and (31) is no more accurate than

FIG. 8. Second moment ofX1 in the reversible isometry (27) for chemical master equation (solid), modified Langevin (thick
dashed) and mass action ODE (thin dashed). Left:V = 1. Right:V = 10.
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the simple mass action ODE in terms of reproducing the second moment from the master equation. We
repeated the computations for a range ofV values and recorded the error in the second moment at time

t = 4. For the modified Langevin, we obtained errors that scaled likeE[(Ẑ1)
2] −E[(X̂1)

2] = −4.06/V
and for the mass action ODE this became 1.25/V .

Using Itô’s lemma on the original Langevin equation (28) and (29), we recover the exact moment
equation (32)1. This makes it clear that the discrepancies underlined in (33) are a direct consequence of
setting particular noise terms to zero—a global perturbation to the Langevin equation has reduced its
accuracy down to that of the mass action ODE.

In general, dealing systematically with the multiscale interface between discrete-valued stochastic,
real-valued stochastic and real-valued deterministic models in order to make large-scale modelling and
computation a feasible proposition remains a very active and challenging field that naturally leads into
mixed, or hybrid, models that couple or extend the concept of an SDE (Andersonet al., 2011; Ball et al.,
2006; Caoet al., 2005; E et al., 2005; Intepet al., 2009; Leieret al., 2008).

6. Monte Carlo Simulations

Most of the computations that are performed on stochastic models can be cast in terms of a Monte Carlo
simulation to approximate an expected valueRipley(1987). In the case where SDEs are simulated there
is an inherent discretization error—each sample that we compute has a built-in bias because we do not
solve the SDE exactly.

For simplicity of exposition, we will suppose in this section that the SDE is scalar—the conclusions
hold for general systems. Suppose we wish to find the expected value of some function of the final time
solution of this scalar SDE; sayE[F(X(T))], whereF : R → R is assumed to be globally Lipschitz and
X(T) is the final time solution. For example, in the case where we wish to value a European call option
in mathematical financeHigham(2004) the SDE models the dynamics of an asset, under a risk-neutral
measure, and we have a piecewise linear ‘hockey-stick’ pay-off functionF(x) = max(x − E, 0), where
E is the exercise price.

Given a stepsizeh such thatK h = T , we could apply the Euler–Maruyama method (2) N times
to get approximate samples{X[i ]

K }N
i =1 from the distribution ofX(T). Here,X[i ]

K denotes the final time
Euler–Maruyama approximation from thei th path. Our computed approximation toE[X(T)] would
then be the sample mean

μ =
1

N

N∑

i =1

X[i ]
K .

The overall error splits naturally into two terms

E[X(T)] − μ = E[X(T) − XK + XK ] − μ

= E[X(T) − XK ] + E[XK ] − μ.

The termE[X(T) − XK ] represents the bias from the discretization error, and the weak error result (8)
for Euler–Maruyama shows that this is O(h). The termE[XK ] − μ represents the inherent statistical er-
ror associated with Monte Carlo, and, from the central limit theorem, the width of a confidence interval

1This exactness is a consequence of the linearity in the propensity functions; generally the error in the moments would be
O(1/V2).
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(to be concrete, we will assume that a 95% confidence interval is required) scales like O(1/
√

N). Hence,
allowing for both sources of error, we have an overall confidence interval of width O(h) + O(1/

√
N).

Suppose that we wish to obtain a prescribed target accuracy ofε. Then, to avoid unnecessary computa-
tion, it makes sense to balance the two terms, so thath scales likeε andN scales likeε−2. If we measure
computational cost in terms of either

• the number of pseudo-random numbers generated or

• the number of drift and diffusion coefficient evaluations required,

then the cost is proportional to the product of the number of steps per path, 1/h, and the number of
paths,N. Hence, the cost to obtain a confidence interval width bounded byε scales likeN/h = ε−3.

This conclusion, that for Monte Carlo/SDE simulations the cost varies inversely with the third power
of the required accuracy, appears in many standard references.

An obvious way to improve the complexity would be to use a numerical method with a higher weak
order. For example, under extra conditions on the SDE coefficients,Talay & Tubaro(1990) showed that
an extrapolated version of Euler–Maruyama could be used to increase the weak error rate to O(h2). This
would improve the computational complexity to O(ε−2.5).

However, a radically different approach that gives a complexity of O(ε−2(logε)2) was recently put
forward byGiles(2008), and it is this extremely promisingmultilevel Monte Carlo(MLMC) technique
that we describe here. We can motivate the approach heuristically by noting that is not necessary to
compute all paths with the same stepsizeh. Because a smallerh is more expensive, it might be beneficial
to compute many cheap, low-resolution samples, and then use a few high-resolution paths to fill in the
high-frequency detail. More precisely, Giles proposed a hierarchy of discretisation scales in a manner
reminiscent of a multigrid computation for a partial differential equation. Before outlining and justifying
the main ideas, we wish to emphasize that

• the technique does not rely on a special SDE discretization scheme or a special structure for the
SDE—the standard Euler–Maruyama method can be used and the analysis simply exploits its basic
weak and strong convergence properties,

• although our aim is to compute an expected value, the technique relies on both the weakand the
strongconvergence behaviour of the numerical method.

In its simplest form, MLMC uses a range of stepsizes of the formhl = 2−l T for levels l =
0, 1, 2, . . . , L. The number of levelsL is chosen so that

L =
log(ε−1)

log(2)
. (34)

This ensures that at the finest level,L, we have stepsizehL = O(ε). So the bias at this level has the
appropriate size.

Now, we let the random variablePl denote the result of applying Euler–Maruyama with stepsizehl

in order to approximate the pay-offF(X(T)). Rather than going forE[ PL ] directly, we will make use
of the trivial identity

E[ PL ] = E[ P0] +
L∑

l=1

E[ Pl − Pl−1]
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and estimate separately the terms on the right-hand side. To do this, at level 0, we will useN0 paths in
order to form the sample average

Y0 =
1

N0

N0∑

i =1

P[i ]
0 , (35)

and generally for levell > 1, we will useNl paths in order to compute

Yl =
1

Nl

Nl∑

i =1

(P[i ]
l − P[i ]

l−1), (36)

so that our overall estimator isY := Y0 +
∑L

l=1 Yl . We emphasize here thatP[i ]
l andP[i ]

l−1 are computed
from the same Brownian path. In other words, suppose that we are currently at timetn, wheren is even.
If the Euler–Maruyama computation with stepsizehl uses random increments

√
hl ξ [i ]

n and
√

hl ξ [i ]
n+1

during the two steps that update to timetn + 2hl , then the accompanying Euler–Maruyama computation
with stepsizehl−1 = 2hl uses

√
hl ξ

[i ]
n +

√
hl ξ

[i ]
n+1. Figure9 illustrates this scenario. For each pathi ,

we use independent random increments, and these increments are also independent across different
levels—so the pseudo-random numbers are not reused.

FIG. 9. An illustration of how the estimator (36) is constructed by applying Euler–Maruyama over the same Brownian path with
two different stepsizes,hl andhl−1 = 2hl .
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It remains to work out how many paths are required at each level in order to reduce the variance in
the overall estimate tovar[Y] = O(ε2), so that the final confidence interval has width of O(ε), and then
to check the resulting computational complexity.

Using the basic inequalityvar[X] = E[X2] − (E[X])2 6 E[X2] and the global Lipschitz property
of F , we have

var[ Pl − F(X(T))] 6 E[(Pl − F(X(T)))2] = O(E[(XK − X(T))2]).

It then follows from thestrongconvergence property (10) of Euler–Maruyama, withm = 2, that

var[ Pl − F(X(T))] = O(hl ).

Using this inequality along with the appropriate triangle inequality (‖X + Y‖2 6 ‖X‖2 + ‖Y‖2 for
‖X‖2 :=

√
E[X2]), we find that

var[ Pl − Pl−1] 6 (
√

var[ Pl − F(X(T))] +
√

var[ Pl−1 − F(X(T))])2 = O(hl ).

It follows that Yl in (36) has variance of O(hl /Nl ). Now, since the computations at each level are
independent, the overall variance of the estimatorY expands as

var[Y] = var[Y0] +
L∑

l=1

var[Yl ] = var[Y0] +
L∑

l=1

O(hl /Nl ).

The choice

Nl = O(ε−2Lhl )

is then seen to produce the required overall variance ofvar[Y] = O(ε2).
Now the computational complexity of this algorithm is given by the sum over all levels of the product

of ‘cost per step’ and ‘number of steps’, which becomes

L∑

l=0

Nl h
−1
L =

L∑

l=0

ε−2Lhl h
−1
l = L2ε−2.

From (34), this leads to a complexity of O(ε−2(logε)2).
In addition to proposing and justifying MLMC,Giles (2008) also implemented a practical version

that was seen to deliver the improved complexity on realistic problems in option valuation. Subsequent
work on this multilevel approach has looked at

• numerical methods with higher weak and strong order (Giles, 2007),

• various classes of ‘pay-off’ functionsF that are not globally Lipschitz and may even depend upon
X(t) along the whole path 06 t 6 T , for example, the case of barrier options (Avikainen, 2009;
Gileset al., 2009),

• MLMC combined with quasi-Monte Carlo methods that improve the statistical component of the
complexity (Giles & Waterhouse, 2009).
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To put MLMC in context, we emphasize that for standard Monte Carlo simulations

• samples are assumed to be exact, and

• variance reductiontechniques to speed up the computations typically exploit problem-dependent
structures.

By contrast, MLMC applies to the scenario where the samples have a built-in bias arising from an
SDE discretization and requires no extra knowledge of the problem structure. In the cases where it has
been shown to work, it makes the cost of the SDE simulation negligible—the asymptotic complexity is
effectively reduced to the level that would remain if we were able to evaluate the SDE solution exactly.
There are, of course, many promising avenues for this remarkable idea not only for SDE simulations but
also within the broader context of multiscale modelling and simulation.

7. Model calibration and inference problems

Any mathematical model can only be an approximate description of a physical system. Moreover, it is
often the case that some or all the parameters and initial conditions are unknown, and hence must be
inferred from experimental measurements. In the SDE case, where the model itself is stochastic, it is
natural to quantify this uncertainty by using statistical tools.

We give here a very simple illustration of a Bayesian approach to parameter estimation. We refer to
Jaynes(2003) andSivia & Skilling (2006) for general background information on Bayesian inference,
while noting that it is currently something of a novelty in the applied mathematics literature; we rec-
ommend the recent survey (Stuart, 2010) for further details about how these topics intersect. We will
consider a financial setting where daily observations of an asset are available. Suppose the asset,S(t),
is modelled by the simple linear SDE (4)—this assumption is at the heart of the classic Black–Scholes
theory for financial option valuation (Higham, 2004). SettingΔt = 1 day, the asset values{S(i Δt)}
may be converted into log-return data

Ri = log

(
S(i Δt)

S((i − 1)Δt)

)
. (37)

Under the SDE model (4), it follows that the{Ri } are independent samples from a Gaussian distribution
with mean

(
a − 1

2b2
)
Δt and varianceb2Δt . A key step in Black–Scholes option valuation is the esti-

mation of the volatility parameter,b, so we will aim to infer the value ofb and, for simplicity, assume
thata is known. More precisely, we seek aposterior distribution—a density function that quantifies our
degree of belief about possible values ofb.

Our SDE model allows us to calculate the probability of any data set{Ri } arising, given a value for
b. Bayes’ theorem makes it possible to turn this around and calculate the probability of any particular
value ofb arising, given a set of observations{Ri }. The key relationship is

P(b|{Ri }) ∝ P({Ri }|b)P(b). (38)

Here,

• P(b|{Ri }) is the probability of, ordegree of belief in, the parameterb, given the data{Ri }. Our aim
is to quantify thisposterior probabilityover possible values ofb, and the right-hand side of (38)
makes this feasible.
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• P({Ri }|b) is the probability of the data{Ri } arising, given the value of the parameterb. This
likelihood is made available to us by the model. In our case, it has the form

∏
i>1 p(Ri ; (a −

b2/2)Δt, b2Δt), where p(x; λ,μ2) = exp(−(x − λ)2/(2μ2))/
√

2πμ2 is the density for a
Gaussian with meanλ and varianceμ2.

• P(b) is the probability or degree of belief that we assign tob before we see the data. Specifying this
prior probability is an unavoidable requirement in a Bayesian analysis.

In Fig. 10, we illustrate this idea. Rather than take real financial data, we generated synthetic data
using the SDE model withS(0) = 1, a = 0.06 andb = 0.4. In this way, we may judge the quality of
our inference. The upper picture shows data for one year, that is, 240 working days. We used a prior
distribution that is uniform over(0.2, 0.6)—so, before seeing the data we took the view thatb must be
between 0.2 with 0.6 with all values being equally probable. In other words,P(b) in (38) is constant for
0.2 < b < 0.6 and zero elsewhere. In the lower picture, we show the posterior distribution that arises
when we use the first three months (dotted), six months (dashed) and one year (solid) of data. To make
the pictures easier to interpret, we have normalized the densities to have maximum value of one, rather
than unit area. For this synthetic experiment, we know that the ‘correct’ value isb = 0.4. We see from
the figure that as more data are used, the posterior distribution becomes more sharply peaked and begins
to focus on this value.

In this very simple setting, the Bayesian picture is very closely related to the more traditional
computational mathematics approach of forming a least-squares objective function (analogous to the

FIG. 10. Upper: one year of asset data from an SDE model. Lower: posterior distribution of the volatility based on three months,
six months and one year of data, using a uniform prior distribution.
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log-likelihood), adding a penalty function (analogous to the log of the prior) and optimizing to find a
single best parameter value (analogous to computing a point that maximizes the posterior). However,
working in terms of the complete posterior density, rather than just presenting an optimal parameter and
possibly computing local sensitivity around that value, has benefits when there is more than one region
of likely values. Also, by sampling parameter values from the posterior, we can display a set of ‘likely’
trajectories from the model.

A further advantage of the Bayesian approach is that higher levels of inference can be performed.
If there are two or more plausible models, then there is a systematic framework for simultaneously
calibrating and comparing them, even when the models have different numbers of parameters.Model
selectioncomputations of this nature have been performed on realistic ODE models in systems biology
(Vyshemirsky & Girolami, 2008) and much less realistic ODE models in science fiction (Calderhead
et al., 2011), and, in principle could be used in the SDE setting.

Many challenges must be overcome if Bayesian inference and model selection are to become main-
stream activities in the SDE context. Perhaps, the biggest hurdle is high dimensionality. IfN parameters
are to be inferred then the posterior distribution is a scalar-valued function ofN variables. Search-
ing throughRN in order to find regions where the posterior takes on significant values is, in general,
a huge task—in many inference contexts, this task is more challenging than deterministic global op-
timization overRN in the sense thatall regions of significant behaviour are required since we must
(a) normalize the posterior to have unit area and (b) integrate the posterior across several of the dimen-
sions. Hand in hand with the computational complexity, there is also a visualization issue. How do we
display a 25-dimensional random variable to our colleagues? 1D or 2D slices through the posterior, or
marginals, where all but 1D or 2D have been integrated out, can be useful, but they necessarily com-
press information—for example, the globally most likely parameter set according to the full posterior
may be very different from the locations of the peaks in these lower dimensional analogues. More fun-
damentally, unlike the simple example in Fig.10, in general, the SDE model will not have a known
solution, and hence discretization methods will be required in order to construct an approximate likeli-
hood. Added complexity arises if the data itself is assumed to be in error, perhaps in a manner that is
correlated across time.

There are many other approaches to SDE model calibration, for example, the recent text (Iacus,
2008) gives examples, many of themad hocand based on the particular form of the problem, with an
emphasis on mathematical finance. This seems to be an area where a general set of principles, bringing
together ideas from statistics, applied mathematics and computer science, is yet to emerge. To emphasize
that there are possible pitfalls for the unwary, let us return to the asset data example, and suppose that
we wish to infer the mean of our log-returns. The intuitively appealing sample average

1

M

M∑

i =1

Ri

has the unfortunate property of telescoping down to

1

M

M∑

i =1

log S(i Δt) − log S((i − 1)Δt) =
1

M

M∑

i =1

log

(
S(MΔt)

S(0)

)
.

Hence, this quantity involvesonly the first and last observation, ignoring the vast majority of the data!
In discussing parameter inference in an SDE model, we came up against the task of sampling from

the density of a high-dimensional random variable. This general problem arises in many settings (Robert
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& Casella, 2004), and it is interesting to note that SDEs, and their numerical discretizations, can play a
role. A very useful example of a Markov chain Monte Carlo method known as theMetropolis-adjusted
Langevin algorithmcomputes samples fromπ : RN → R using the SDE

dX(t) = ∇ logπ(X(t))dt +
√

2dW(t).

Discretizing this SDE over a long time interval is one approach to sampling fromπ , and the bias can
be eliminated with a suitable acceptance/rejection strategy. There are many practical and theoretical
issues to be addressed, including the optimal choice of timestep (Beskoset al., 2009) and level of im-
plicitness (Beskoset al., 2008) in the numerical method, and the development of customized stochastic
integrators that preserve geometric structures (Girolami & Calderhead, 2011).

8. Outlook

Overall, this overview of the use of SDEs in applied mathematics, which is naturally biased towards the
author’s knowledge base and interests, has emphasized five main themes where future activity is likely
to have a high impact.

Theoretical issues regarding existence and uniqueness of solutions for non-linear problems, and
corresponding results on convergence, stability and the preservation of qualitative features for
numerical simulation.

The role of SDEs in multiscale modelling scenarios, especially in systems biology, which will require
new theory and tools for hybrid discrete/real-valued models.

More effective Monte Carlo computations in the SDE setting through the use of multilevel methods.

General purpose inference and model selection techniques for quantifying uncertainty.

The use of SDEs and their customized discretizations in a Markov chain Monte Carlo setting to
compute samples from a target distribution, typically within a parameter estimation or model
calibration exercise.
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