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Using concrete examples, we discuss the current and potential use of stochastic ordinary differential
equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a min-
imal background knowledge in probability and stochastic processes, we focus on aspects that distinguish
SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain
how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in
chemical kinetics, population dynamics and, most topically, systems biology. We outline some key issues
in existence, uniqueness and stability that arise when SDEs are used as physical models and point out
possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and ex-
plain how both weak and strong convergence properties are relevant for highly efficient multilevel Monte
Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially
on non-linear models, parameter estimation, uncertainty quantification, model comparison and multiscale
simulation.

Keywords stochastic computation; modelling; systems biology; finance.

1. Introduction

In the context of modelling physical systems, uncertainty may arise in several ways.
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o Directly observable quantities may be subject to measurement error, for example, initial levels in a
population model may not be known exactly.

uip3 Jo

e Parameters that cannot be directly measured may be inferred by calibrating against observations &
the system, for example, unknown rate constants in a chemical kinetics model may be fitted agams‘%
a time series of concentration levels.

0 Jss

e Effects that would be unnecessarily expensive or complicated to measure or model may be sum=
marized stochastically, for example, rather than treating the roll of a die as a non-linear dynamical®
system, it may be adequate to represent the outcome in terms of a discrete random variable with si%
possible values.

RAVAS

There are, of course, many ways to introduce randomness into a mathematical model. We focus here
on the particular context of ordinary, initial value, stochastic differential equations (SDES§)fiorit.

This class of models is proving popular across a wide range of application areas. In particular, their

usefulness in mathematical finance and systems biology has dramatically raised the profile of SDEs.
Our aim here is to provide background information and give an overview of some of the key modelling
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and simulation issues that are likely to have the highest profile over the next few years, with the caveat
that we make no attempt to give an exhaustive coverage.

In keeping with the scope and readership of this journal, we have taken an applied mathematics view-
point. We assume that the reader is familiar with deterministic ordinary differential equations (ODES)
and their numerical approximation but only require a minimal level of familiarity with probability the-
ory (including basic concepts such as normal/Gaussian random variables, probability density functions,
independence, expected value, variance and Monte Carlo simulation). We generally focus on a pathwise,
or trajectory-based interpretation of an SDE solution, and, where possible, we contrast ideas and results
for SDEs with their ODE counterparts. Throughout, the capitalized mathematical font is reserved for
random variables, or more generally, stochastic processes.

For further background reading on SDEs we suggest, in roughly increasing order of technical dif-
ficulty (Mikosch 1998 Cyganowskiet al, 2002 Mao, 2007 Milstein & Tretyakoy 2004 Kloeden &

Platen 1999.

2. SDEs and their numerical simulation

Givenxg € R™ and a functionf : R™ — R™, the recurrence relation
Xn+1 = Xn + hf(xn) (1)

is familiar as an Euler approximation to the ODE systeitt) = f (x(t)). Here, the fixed parameter

h > 0 is called the stepsize, ang approximate(t,), wheret, = nh. Of course, {) is also an
extremely useful analytical tool; by considering the lithit—> O, it is possible to establish existence

and uniqueness results for the underlying ODE. In a similar manner, we may interpret an SDE as the
limiting process that arises from a discrete-time approximation. To do this, we will give each iterate in
(1) an appropriately scaled Gaussian ‘kick’ producing the Euler—-Maruyama iteration

Xnt+1 = Xn + hf(Xn) + vhg(Xn)Va, ()

where
e g:R™— R™d s a given function, and

e the {Vn}n>o are independent vector-valued random variables such that each dfitidependent
components o¥/, has the standard normal distribution.

We see that the magnitude of the random kick2nhdepends upon the current approximatikwvia the
value ofg(Xp). We also see that the kick scales ligd—this turns out to be the right amount of noise
to produce limiting trajectories that are continuous but not deterministic.

So, given appropriate functionk andg, and an initial conditionX (0), we can think of an SDE
solution X (t) as being whatever process arises when we také the 0 limit in (2). More precisely,
just as in the deterministic case, we cantfand consider the limit as — 0 of X whereNh = t. Of
course, for each fixe] this construction foiX (t) leads to a vector-valued random variable, and hence
ast variesX(t) is a vector-valuedtochastic processn summary, there are three main ingredients for
an SDE.

e The functionf: R™ — R™M, called thedrift coefficient plays a similar role to the right-hand side of
an ODE.
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e The functiong: R™ — R™d  called thediffusion coefficientgoverns how the current state of the
system affects the size of the noise contribution.

e The initial condition,X(0), may be deterministic, but more generally it is allowed to be a random
variable.

The standard notation for specifying such an SDE is
dX(t) = f(X()dt + g(X(t)dW(t), X(0) given ®3)

whereW(t) is a vector-valued process whase€omponents represent independent Brownian motions.
We will use this notation here, while emphasizing tht(t), dt and dV(t) have no meaning on their
own; we simply regard3) as a shorthand way of saying that the proc¥gt arises from thén — 0
limitin (2).

A simple and very widely used example is given by the scalae=(d = 1) linear case

f(x) =ax, g(x)=bx, 4)

wherea andb > 0 are constants. In Fid. we fix x(0) = 1,a = 0.06,b = 0.4 and takeh = 0.01 in
(2). The upper picture in FidL shows 50 different paths. So, in each case, a Gaussian incréneais
produced from a call to a standard normal pseudo-random number generator. In this manner, at the fin

Fifty trajectories
25 T T T T T T T T T

5 x 10* values at t=1
1.5 T T T T T T T
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FiG. 1. Upper: fifty paths from the iteratio2Y with x(0) = 1, f(x) = 0.06x, g(x) = 0.4x andh = 0.01. Lower: histogram of
5 x 10* binned values for timé = 1, with density function%) superimposed.
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time,t = 1, each path produces a single number that, irhthe O limit, may be regarded as a sample
from the distribution of the random variabk(1) describing the SDE solution &t= 1. In the lower
picture of Fig.1, we have shaded a histogram fox5.0* such samples.

The upper picture shows a trajectory-wise view of an SDE—individual paths are seen to evolve over
time. The lower picture applies at a fixed point in time and considers the distribution of values. From
the latter perspective, for this simple SDE it can be shown, given a deterministic initial congi®n,
that the random variablX (t) has dognormalprobability density function given by

(et

2b2t

py) = fory > 0, (5)

yb/2rt ’

and p(y) = 0 for y < 0. This density function fot = 1 is superimposed in the lower picture of Fig.
and we see that it matches the histogram closely.

Of course, the hand-waving arguments leading fr@jid (3) are not valid for arbitrary choices of
drift and diffusion coefficient. Generally, the question of existence and uniqueness of solutions for SDEs
is more delicate than the ODE case. Most standard texts impose the conditidnahéiy in (3) are
globally Lipschitz—there is assumed to be a constastich that

Liju—ol, (6)

(RECIERICHES
| <Lllu—ol, ()

lg) — g(@)|

for all u,» € R™ (see, for exampleKloeden & Platen1999 Mao, 2007). In the ODE case, the right-
hand side of a typical ODE model will not satisfy the conditiéj, put it is often natural to argue that
alocal Lipschitz conditiorwill hold—a suitable constart = L (R) will exist for any ball of radiusR
about the origin. In this way, physical arguments may suggest that the ODE solution will stay bounded,
in which casef may be redefined to be zero outside an appropriately large ball, and the local Lipschitz
condition can be extended to a global one. This type of reasoning is much harder to justify in the SDE
setting. Introducing noise opens up the possibility that trajectories may take arbitrarily large excursions,
and establishing existence and uniqueness results is a delicate business, typically hinging on the fact
that increasingly large solution values are increasingly less probable.

Similar comments apply when, as in the next section, we analyse numerical methods for simulating
SDEs—the textbook global Lipschitz conditions place severe constraints on the class of problems that
can be analysed.

3. Stability and convergence of numerical simulations

Numerical methods are traditionally studied in asymptotic regimes. Convergence looks at the error over
a finite time interval [0 T] ash — 0 and stability looks at the approximate solution with a fikeas
t — oo. In both cases, because a random variable is an infinite-dimensional object, the choice of nhorm
is crucial.

The two most widely used convergence concepts are referredweasand strong Weak error
measures how well a numerical method reprodugles(t)] (or, more generallyE[¢ (X (t))], where
¢(-) is some polynomially bounded function). Under appropriate conditions, which usually include
global Lipschitz bounds on the drift and diffusion, the Euler—Maruyama method can be shown to have
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weak order one so that

sup (E[X(nh)] — E[Xn]) = O(h). 8)
0<nh<T

£

Strong error, on the other hand, measures the mean of the absolute difference between the two rand
variables, and Euler—Maruyama achieves only an order of one half in this sense:

Using the Borel-Cantelli lemma, it is possible to pass from strong error to pathwise error. For ex-
ample, inKloeden & Neuenkirct{2007), it is shown that given any > 0, there exists a path-dependent
constantk = K (¢) such that, for all sufficiently smafi,

3

5

2

1 g

E| sup [X(nh)— X :O(h?). (9) 5
0<nh<T 3

EX

More generally, for anyn > 1 and sufficiently smalh there is a constar@@ = C(m) such that 2
g

W)

Q.

]E|: sup |X(nh) — xn|m} < Ch™?, (10) g
0<nh<T o

o

5

8

sup [X(nh) — Xn| < K (€)h3¢.
o<nh<T

In the ODE setting, rates such aghp and qh%) might be dismissed as impractical, but for SDE
computations, they are frequently tolerated because

e asdiscussed in Sectidi statistical error generally dominates over discretization error, and

/@'366LQZ/GVV/Q/QL/GIQ!UQ/IEUJELU!/LU

e higher order methods for general SDEs, especially in the strong sense, carry heavy overhea
(Kloeden & Platen1999.

Hence, although special-purpose higher order methods can be developed for particular circumstanc
(Anderson & Mattingly 2011), Euler—Maruyama, or one of its implicit variants, is at the heart of most
practical SDE computations.

The linear SDE4) has proved to be a good starting point for the study of basic long-term behaviour,
not least because it gives a natural extension of the classic test problem for numericalHRIDEs&
Wanner 1996. For the SDE itself, there are simple characterizations for mean square stability

1
lim E[X(t))]=0 < a+-b><0
t—>o0 2

and asymptotic stability
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. : . 1
lim |X(t)| = 0, with probability one < a— =b? < 0.
t—o00 2
A typical one-step numerical method produces recurrences of the form

Xnt1 = Xn(P+aVh), (11)
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where the coefficientp andq depend orh and on the SDE parameteesandb. Mean square stability
of this discrete iteration is neatly characterized as

; 2 _ 2, 42
nI|_>mOOIEXn_O S pr+gi <l (12)

but, perhaps surprisingly, the corresponding property of asymptotic stability has a less tractable form;
from the strong law of large numbers and the law of the iterated logarithm, weHigdldm 2000

nIi_)m | Xn| = 0, with probability one < E[log|p+qWal] <O. (13)

In Fig. 2, the white bounded area of tle q plane is the region of asymptotic stability, that is, where
the right-hand inequality in1@) holds. The unit circle, marked with a dashed line, is the boundary
for mean square stabilitylp). Both regions are symmetric about tpeandq axes, so we only show
p,q > 0. To emphasize that the two stability concepts are different, we have marked with a cross in
Fig. 2 the pointp = g = 1.1. Here, the iteration is asymptotically stable but not mean square stable—
every path must tend to zero as time increases, but for any large time, there are enough ‘bad’ paths to
make the variance huge. FiglBshows how one path ¢K,,| evolves in this case, with the vertical axis
on a logarithmic scale. The iterates decay, albeit far from monotonically.

Given a test problem, we would like our method to reproduce stability for the biggest possible range
of stepsizes. A stochastic extension of the trapezoidal rule

1 1
Xng1 = Xn+ Shf(Xn) + Shf(Xas1) + vhg(Xn) Vi, (14)

is easily shown, vial2), to have perfect mean square stability behaviour—giveneaarydb, and any
stepsizeh, the method matches the stability/instability of the SDE. For asymptotic stability, however,

1.8¢
1.67
1.4
1.2

0.8 A
0.6 .
0.4+ 3

0.2} :

0.5 1 1.5
P
FIG. 2. Stability regions for the iteratiori{) for p, g > 0. The dashed line along the unit circle is the boundary for mean square

stability (12). The solid line is the boundary for asymptotic stabilityd), The choicep = q = 1.1 used for Fig3 is marked with
a cross.
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FiG. 3. One instance of the sequer®| for the iteration 11) with p = g = 1.1. This process is asymptotically stable but not
mean square stable.
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analysis via 13) is more awkward, and we are not aware of any general purpose method that can bes

guaranteed, for alh > 0, to preserve asymptotic stability of the SDE.

Although convergence theory under global Lipschitz assumptions and stability theory for a lin-
ear test problem give a useful baseline, the study of non-linear SDEs raises new issues and ca

doubt on the usefulness of Euler—Maruyama. Several auligreamet al. (2002 2007, Hutzenthaler

et al. (2011, Mattingly et al. (2002, Milstein & Tretyakov (2005 andTalay (1999 have shown that

Euler—-Maruyama can fundamentally break down for non-linear and/or long-time computations.
For example, the scalar SDE

dX(t) = =X ()3 dt + dw(t),

with any deterministic initial conditiorX (0), has a well-defined solution. Howevétutzenthaleet al.
(2011, Theorem 1) shows that over any compact intervall[p) the strong error in an Euler—Maruyama
approximation to this SDE blows up & — 0. Similarly, Highamet al. (2007 shows that on the
example

dX(t) = (X(t) — X(1)3)dt + 2X (t)dW(t),

for which

1
limsup—log|X(t)| < —1, with probability 1,
t

—oo t
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given anyh > 0O there is a non-zero probability that a path generated by an Euler—Maruyama simulation

will blow up ast — oo. Although these results deal with different types of behaviour, in both cases, their

proof relies on the fact that the Gaussian increments used by the numerical method may occasionally
perturb the iterates into a region where the non-linear drift has a repulsive effect, and it is clear that any

other explicit numerical method can suffer the same fate.
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This brings us to a key point. Unlike in the deterministic ODE case, for non-linear SDEs, we intro-
duce implicitness not in the hope of improving efficiency by allowing larger stepsize, but in the hope of
obtaining a method that satisfies the fundamental requirements of accuracy and stability.

Although some general results are available for specific non-linear structures, for example, one-
sided Lipschitz constantslighamet al,, 2002 Mattingly et al., 2002, many SDE models do not fit into
standard categories. Challenges may arise not only through faster than linear growth of the coefficients
at infinity but also through unbounded derivatives at the origin—in particular, we will see in Séction
that square roots arise naturally in models of chemical kinetics. In a specific example motivated by an
empirically fitted interest rate model 8iit-Sahalia(1999, strong convergence of specially constructed
implicit methods is considered Bzpruchet al. (2011) for the problem class

dX (1) = (a—1 X)L = ag + a1 X(t) — aaX ()" )dt + o X (t)? dW(t),

where they; are positive constants angdp > 1.

With regard to long-time behaviour, the simple fixed poiit) = O for the linear test equatiod)
is a very special case of amvariant measurgand this more general concept can be studied for various
classes of non-linear SDB@ttingly et al,, 2002 201Q Talay, 1999.

4. SDEs as chemical Langevin equations: part 1, motivation

To motivate the use of stochastic models in systems biology, we begin with a simple deterministic
example. InErbanet al. (2006, a stylized model is given for the levels of two types of protein that are
mutually repressive—an increase in the level of profiimbhibits the production of proteiR®, andvice

versa Letting z1(t) andzx(t) denote the levels dP; and P, at timet, respectively, a mass action ODE
system for this two-gene network takes the form

dz; 1 Y
4 —oz1 ), 15
dt 1+x21(1+wz§ 1) (15)

where the equation far is found by swapping; andz in (15). Using parameter values= 2 x 1074,
5 =75x10"% o =2 x 10%andy = 1.14, it can be shown that this ODE system has two linearly
stable steady states; one lzaet) = z; &~ 481 and the othexy (t) = z, &~ 1039. This type of bistability,
predicting that cells may evolve into more than one possible state, is of great biological importance
(Hastyet al,, 2000. However, for deterministic models such a§)( it may be argued as unrealistic that
(a) the cell's fate is completely specified by the initial condition and (b) a cell cannot switch dynamically
between states. A major benefit of stochastic models is that they can allow naturally for the scenario
where the system spends time in more than one ‘attractive’ region of state space.

In Fig. 4, which is based orbanet al. (2006 Fig. 5), we show thé>; protein level arising from
a simulation that uses a stochastic analogu€lb). (Full details are given later in this section, at this
stage, we simply mention that the simulation produces an integer numBgpobteins along a discrete
set of timest. Every 1000th such value is plotted as a dot in the figure, starting with 600 molecules
and running up to timé = 10’. We see that thé; level spends time close to each of the two stable
steady-state values that exist for the ODE version of the model. It is, of course, possible to study the
statistics of the stochastic model further, for example, the typical time for a ‘transition’ between the two
levels may be of interesEfbanet al,, 20086.

Bistability, and more general, multistability behaviour for stochastic models is, of course, also of
great interest for many other physical and mechanical systems.
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FiG. 4. Number ofP; molecules over time, from a stochastic model of a genetic toggle switch. The underlying deterministic
approximation has stable steady levels at 481 and 1039.

The stochastic simulation in Figk is based on what is often called tebemical master equa-
tion (CME) regime, whereas the ODE moddl5] corresponds to the mass actionreaction rate
equation(RRE) setting. Between these two extremes, there is a diffusion limihemical Langevin
equation(CLE) regime that takes the form of an SDE. The CLE regime has the benefit of retaining
the stochastic nature of the underlying CME framework, while making simulation and analysis more
tractable.

Before discussing the general setting, we will illustrate the main ideas on the extremely simple cas

1/6Y1/€/9/ /8101 1ewewl/woo dnoolwapese//:sdiy woll papeojumod
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of unimolecular decay é;'
s%¥y. (16) z

7

Here, we have a single speci&,in our system, and the only event that can take place at any time is E’
that one molecule o may decay. The rate constant- 0 quantifies the strength of the decay process.
We suppose that initially, at time= 0, the number of molecules &is known to beN. We also note S
that this system would be called a pure death process in the context of stochastic population modelling'
(Renshaw1991). =
In the CME regime, the state of the system at titrrie described by a non-negative integé(t), o
representing the number of molecules®present. HenceZ (t) may take any of the valued, N — g
1,N—-2,...,1 0. Given that there ar&(t) molecules present at tinte first principle modelling ar- 3
guments show that the time we must wait before the next reaction takes place (that is, the next time w%r
lose a molecule 0§) has an exponential distribution with expected valyéZ(t)). This is intuitively e
reasonable—as the number of moleculgé), decreases, we must typically wait longer for the next S

one to disappear. Similarly, for a system with a smaller rate constang would typically wait longer
between events. Furthermore, the exponential distribution makes the waiting time betweemevents
oryless the chance of the next event occurring within the next second does not depend upon how long
ago the last event took place. Because exponentially distributed samples can be easily constructed by
log-transforming uniformly distributed samples, it is a very simple matter to compute a paffthor
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The following pseudocode summarizes an appropriate algorithm, assuming that the initiaZ €ate,
is given.

A. Draw a uniform (0,1) pseudo-random samgie,

B. Setr =In(1/¢)/(cZ(t)) to be the waiting time before the next reaction.

C. Update the system 0(t + 7) = Z(t) — 1 and update the current timé¢ot + z.
D. Returnto Step AiZ(t) > 0 and you wish to continue.

In the CLE setting for the reactioi§), we use an SDE to represent the level of speSipsesent at
timet. So, at each timg we have a continuous-valued random variallé,). The CLE takes the form
of the It SDE

dX (t) = —cX(t)dt — /CXO)dW(L). 17)

The RRE, or mass action, formulation fdrj is simply the scalar ODEz{t)/dt = —cz(t), where
Z(t) is a deterministic real-valued quantity representing the amouBipoésent at time.

In Fig. 5, we illustrate the three regimes in the case of ten initial molecules. (The CLE was simulated
numerically using Euler—-Maruyama.) It is immediately apparent that the CLE path does not respect the
inherent monotonicity of this simple reaction. Unlike the RRE solution, however, any CLE path will,
eventually, attain the value zero. Figuand?7 repeat the exercise with 50 and 200 initial molecules,
respectively. We see that the fluctuations are less significant when the molecule count is high—this idea
will be formalized shortly when we consider the thermodynamic limit.

In the CME regime for 16), at every timet the stateZ(t) is a random variable with a discrete set
of possible values,@, 2, ..., N. We may then lep; (t) denote the probability that (t) =i. It follows
that{ p; (t)}i'\‘:0 satisfy an ODE, or master equation, of the form

%pi(t)zc(i+1)pi+1(t)—cipi(t), fori=N-1,N-2,...,0, (18)
12 T T T T T T T
= RRE
, : —CME
10§ oo e ¢ CLE

Z(t)

FiG. 5. Simulations of the simple reactioh6), starting with 10 molecules.
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FIG. 6. Simulations of the simple reactiobf), starting with 50 molecules.

=—=RRE
—CMEH
¢ CLE

FiG. 7. Simulations of the simple reactiobf), starting with 200 molecules.

where Py 1(t) is taken to be zero. This has the intuitive interpretation that the rate of change of
pi (t) has

e a positive contributiort(i + 1) pi+1(t), which corresponds to the fact that we enter statm one
decay from state+ 1, and

e anegative contributior-cip; (t) due to the fact that we leave staterhen a decay takes place.

120z dunr G uo Jasn ybinquips Jo Asioaun Ad 2661.52/677/€/9./a101EABWEWYWOD dNO"dIWspeoe)/:Sdjy WOI) POPEOJUMOQ



460 D. J. HIGHAM

The linear ODE systemlg) has solution

| . .
pi(t) = iI(,\l'\'—'i)|<e-°'t(1 —eHN=1 " fori =0,1,2,..., N, (19)

and it follows that the mear[ Z (t)] and variancesar[ Z (t)] have the form
E[Zt)] =Ne® and var[Z(t)] = Ne (1 —e . (20)

For the CLE (7), because the drift coefficientc X (1) is linear, it follows immediately thdk [ X (t)]
satisfies the ODE that arises when the noise is switched off, giving

E[X(t)] = Ne™. (21)

To find the second moment, we may applystliemma, see, for exampliglao (2007, to get
d
a1[<:[X(t)2] = —2cE[X(t)?] + cE[X (D],

from which it follows that

var[X(t)] = Ne (1 — e ). (22)

So the CLE reproduces the mean and variance of the CME.

The RRE matches the mean of the CME, thaz(s) = E[Z(t)] = N e . Being deterministicz(t)
of course has zero variance.

Studying the first and second moments in this way outlines one sense in which the CLE may be
regarded as an intermediate model that approximates the CME more accurately than the RRE. In the
next section, we look at this issue in more detail.

5. SDEs as CLE: part 2, theory and challenges

Suppose we have a general system vidtbhemical speciess, S, . . ., Sr, taking part inM different
chemical reactions. In the CME formulation, we then have a state v&¢tore RR whoseith com-

ponent denotes the number of molecule§opresent at time. In this setting, unlike in the molecular
dynamics regimeleimkuhler & Reich 2009, we are not concerned with the location or velocity of

each molecule, we simply wish to record the total number for each species. Having settled on this level
of detail, we must accept that the most accurate description of how the system evolves must be stochas-
tic. After making some reasonable assumptions (such as a fixed volume for the system and a constant
temperatureGillespie (1976 1977 used first principle modelling arguments to derive the CME for
Z(t). For each I< j < M, the CME involves

e astoichiometric vecton | € RR, and
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e apropensity functionaj (Z(t)),

such that thg th reaction takes place over the infinitesimal interval §-dt) with probabilitya; (Z (t))dt
and causes the changét) — Z(t) +v| to the state vector. Gillespie showed how to derive appropriate
propensity functions for standard chemical reactions.
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Letting P (z, t) denote the probability that (t) = z, the CME is given by the ODE system

dP
PEY S 2P 110 - 2P0 *)

j=1

umoQ

We note that the same form of ODE has been derived in many other modelling contexts, notably popu
lation dynamics Renshaw1991), and is often referred to as tfierward Kolmogorov equatian

For the simple reactiorilg), we haveR = 1 speciesy; = —1 andaj (x) = cx, and we see that
(23) reduces to18).

Generally, since ranges over the set of all possible systems states, the CME represents a massiv
(albeit linear, constant coefficient) ODE system that is too large to compute with and visualize; although
progress is being made for some non-trivial examplasifke 2010.

As an alternative to computing (z, t) directly, Gillespie showed that it is possible to compute sam-
ple paths that respect these probabilities. In this approach, on each step, we draw two random number%.
One is used to choose a waiting time until the next reaction takes place—this is exponentially dlstnbutecg
with mean given by the inverse of the sum of the values of propensity functions, so the higher the propens
sities the shorter the typical waiting times. The other is used to choose which i thactions to fire.

The chance that reactignfires is proportional to its propensity. Overall, the resulting algorithm can be
summarized very simply in the following pseudocode, given an initial &b, which generalizes the
special case outlined in Sectidrfor unimolecular decay.

1. Evaluatelac(Z ()}, andasum(Z (1)) := 3 M4 a(Z(t)).

. Draw two independent uniform (0,1) random numbé&randds.

. Setj to be the smallest integersatisfyi@lj(:lak(Z(t)) > Sagum(Z(1)).
. Setr = In(1/&2)/asum(Z ().

. SetZ(t+ 1) = Z(t) +vj and updat¢ tot + .

6. Return to Step 1 or terminate.

peoe/: sgutqbwou papeo]

ga b~ W N

In Fig. 4, we used this algorithm witR = 2 speciesM = 4 reactions, stoichiometric vectors of the

form T 1 T i O L R LA

and propensity functions
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22 = 1+ le)y(l +oZ)
(2 = 1 —?—Z;izl’
%@ =7 zczz)y(l +wzd)’
D=

We should also mention that although, as any search engine will reveal, Gillespie’s algorithm is now
extremely well cited in the chemistry and biochemistry fields, other application areas use similar ideas
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under different names, including the residence-time algoritBox(and Miller, 1965, kinetic Monte
Carlo (Young & Elcock 1966 and, more generally, discrete event simulation and Petri Wétkigison,
20086.

Because Gillespie’s algorithm faithfully reproduces the statistics of the CME, it is forced to take
account of every reaction along a path—the propensity functions must be reevaluated at each new state.
If we make an approximation by freezing the propensity functions over some time periten we
can argue that the number of typeeactions taking place arises from a simple counting process and
will follow a Poisson distribution with parametay (Z(t))z. (A Poisson random variable with parameter
> 0 takes the valuewith probability e#A! /(i!) fori = 0, 1, 2, .. ..) If we further argue thaj (Z(t))r
is large, then this Poisson update to the state vector can be approximated by a Gaussian with the same
mean and variance. This leads us to the recurrence

M M
Y(t+7)=Y®) +7 > viaj (Y1) + /7 > vj/aj(Y(1)s, (24)
j=1 j=1

where thej are independent standard Gaussians and hencergads a real-valued random variable.
We see fromZ) that this has the form of an Euler—Maruyama iteration, and hence, for spwedi could
approximate this system with the SDE

M M
dX(t) = D vjap(X(t)dt + D vj,/aj(X(t)dw (t). (25)

j=1 j=1

y WwoJy papeojumoq

This is the CLE model for the chemical system. We saw the simple d&$éof the pure decay reac-
tion (16).

We note also that the iterations of the ty@d)(are of independent practical interest (see for, example,
Andersoret al, 2011, Gillespig 2007).

To discuss the sense in which the CLE approximates the CME, it is usual to rescale the gioress
to Z(t) = Z(t)/V, whereV > 1. Typically, V is regarded as the product of the Avagadro constant
and the volume in litres, so th:ﬁ(t) measures moles per litre. If we similarly scale the CLE solution
to ?(t) = X(t)/V, then, under the assumption that the propensity functions satji§%x) = O(V)
asV — oo, which holds for standard chemical kinetiégyrtz (1981 has shown that over a finite time
interval [0, T], the largest deviation oZ (t) — ?(t) is typically O(log(V)/V) (see, also, for example,
Andersoret al, 2011, Ball et al,, 2006 for more details).

As 'V — oo, which is the so callethermodynamic limithat we illustrated in Fig§—7, the deter-
ministic RRE

M
d);?) = vjay(x), (26)
j=1

also approximates the discrete stochastic model in the sensgthat x(t)/V matches?(t) pathwise
to O(1//V).

We have outlined how the CLE can be derived from the CME under certain modelling assumptions
and mentioned accuracy over compact time intervals in the thermodyharsicoo limit. It is perhaps
not surprising, however, that issues arise when the modelling assumptions are not valid and when long-
time behaviour is studied. For an illustration, we may use the simple reversible reaction example,
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S =S, (27)
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(i) w3

and propensity functions, (z) = k122, a2(z) = koz;. Since the only possible events are that a molecule
of S converts to a molecule of , or vice versait is clear that in the CME framework the total
number of molecules is preserved. Further, if we start with a deterministic nufmer+ Z>(t) = K

which has stoichiometric vectors

of molecules, then botiZ,(t) and Z,(t) must take integer values in the ranfiz 1,2,..., K — 2,
“ _T#eKC}II_E for this model has the form
dX1(t) = (—keXa(t) + keXa®)dt — ke Xs @ dWA (D) + Ve XaO)dWa (), (28)
dXa(t) = (ki X1 (t) — kaXa()elt + vk X1 (O)dWa (1) — VieXa(H)dWa(t). (29)

Looking at 8), we see that foiX1(t) close to zero, the right-hand side has a deterministic contribu-
tion ko X2(t)dt pushingX1(t) back into the positive orthant, but it also has a stochastic contribution
VKo Xo(t)dWa (1) which is equally likely to have a positive or negative effect. Similar comments apply
to the caseXz(t) ~ 0, and, overall, solutions t®8) and 9) cannot be guaranteed to remain posi-
tive. If the molecule count for specie§ or X2 becomes small—in which case, the assumptions used
to derive the CLE are invalid—the SDE model breaks down because the diffusion coefficients involve &
square roots of negative arguments. For this reason, analysis of general CLE systems requires care, afd
modifications to the basic CLE may be required simply to produce a well-defined mathematical object\,
(Szpruch & Higham2010.

Wilkie & Wong (2008 noted that the CLE can produce negative concentrations and suggested a fix

euwewl/wod dno olwapeoe//:sdyy woJj papeojumoq
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that involves deleting the offending diffusion coefficients. For the simple exar@g)etbeir modified §
CLE takes the form @
N

dX1(t) = (—ke X1(t) + kaXa(t))dt — vky X1 (t)dWa (1), (30) E

dXo(t) = (kaX1(t) — kaXa(t))dt — v'kaX2(t)dWa(t). (31) s

However, we would argue that all four diffusion terms 28 and @9) have a role to play in capturing E’
the fluctuations of the underlying Poisson processes about their mean, and we would not recommen@

making a global change to fix a difficulty that is localized to the boundary.
Because the propensity functions in this example are linear, we can study the issue further by obtai
ing closed-form ODEs for the evolution of the moments. In the CME framework, the scaled, discrete- 2

5?an|

valued, procesg(t) has moments that evolve according to the linear ODE E
o
(E[Zy] ] ki ke 0 0 0 [ E[Z4] .
E[Z>] kk —ka 0 0 0 E[Z5] %
Sla@a|=| wv kv -2 0 2 ||E@A|. @ F
E[(Z2)4] ki/V k/V 0 =2k 2k E[(Z2)4] -

|E[Z1Z5] | L-ki/V—ko/V ki ke —(ki+ka)] | E[Z1Z5] |

see, for exampleGGadgil et al. (2005 for details of how to derive these relations. For the modified
Langevin process30) and 31), we may apply i’'s lemma (ao, 2007) to the functionsx?, X%, X1X2
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and then take expectations, to obtain, in scaled f&(m) = X(t)/V,

[E[X4] —ki ko 0 0 0 (E[X:] ]

; E[X5] ki —k» 0 O 0 E[X2]

B0 | =|k/V 0 —2a 0 2 E[(X1)?] (33)
E[ (iz)z] 0 ky/V 0 =2k 2kg E[ (i 2)?]
_Eliliﬂ i S T _]E[ilizl i

In (33), we have underlined the zero coefficients in the ODE Jacobian that replace the non-zeros in the
master equation versiod3?). Making such an @./V) change to the entries will generally cause an
0O(1/V) change in the ODE solution, over any finite time interval.

In Fig. 8, we show computations for the cadge= ko = 1, with deterministic initial data(}’(O) =4
and X;’ (0) = 1. The picture on the left usds = 1 and the picture on the right us¥s= 10. We have
plotted the evolution of the second moment of the first species. The solid curve E[\(cﬁ@z], for the
master equation formulation, and the thick dashed line slitj\@1)?] for the modified Langevin. The
thinner dashed curve, which is the same in both pictures, shows the corresponding deterministic curve
for the mass action ODE. We see that the modified Lange@hdnd @1) is no more accurate than

V=10

16 T T T 16 T

15

Master Equation

= = = Modified Langevin
= = = Mass Action ODE

15

Master Equation
= m = Modified Langevin
= = = Mass Action ODE

25
1

<X

FIG. 8. Second moment oK1 in the reversible isometry2{) for chemical master equation (solid), modified Langevin (thick
dashed) and mass action ODE (thin dashed). Meft: 1. Right:V = 10.
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the simple mass action ODE in terms of reproducing the second moment from the master equation. We
repeated the computations for a rang&/ofalues and recorded the error in the second moment at time

t = 4. For the modified Langevin, we obtained errors that scaleddjk&1)?] — E[(X1)?] = —4.06/V

and for the mass action ODE this becam251V .

Using IH's lemma on the original Langevin equatiad2B( and @9), we recover the exact moment g
equation 82)*. This makes it clear that the discrepancies underline@34re a direct consequence of 5
setting particular noise terms to zero—a global perturbation to the Langevin equation has reduced it§
accuracy down to that of the mass action ODE. g

In general, dealing systematically with the multiscale interface between discrete-valued stochasticg
real-valued stochastic and real-valued deterministic models in order to make large-scale modelling ang
computation a feasible proposition remains a very active and challenging field that naturally leads into‘fz_'
mixed, or hybrid, models that couple or extend the concept of an 3Dégrsoret al, 2011 Ball et al, §
2008 Caoet al, 2005 E et al,, 2005 Intepet al,, 2009 Leieret al, 2008. §

_(_?;_
6. Monte Carlo Simulations §
Most of the computations that are performed on stochastic models can be cast in terms of a Monte Carl§
simulation to approximate an expected vaRipley (1987). In the case where SDEs are simulated there 5
is an inherent discretization erro—each sample that we compute has a built-in bias because we do nét
solve the SDE exactly. 2

For simplicity of exposition, we will suppose in this section that the SDE is scalar—the conclusions =
hold for general systems. Suppose we wish to find the expected value of some function of the final time2,
solution of this scalar SDE; s&{F (X (T))], whereF: R — R is assumed to be globally Lipschitz and 2
X(T) is the final time solution. For example, in the case where we wish to value a European call option£

in mathematical financligham (2004 the SDE models the dynamics of an asset, under a risk-neutral
measure, and we have a piecewise linear ‘hockey-stick’ pay-off fun&tien = max(x — E, 0), where
E is the exercise price.

Given a stepsizé such thatkh = T, we could apply the Euler—Maruyama meth@l N times
to get approximate sample{:xﬂ]}i’\‘:l from the distribution ofX(T). Here,Xﬂ] denotes the final time
Euler-Maruyama approximation from thth path. Our computed approximation X (T)] would
then be the sample mean

The overall error splits naturally into two terms

E[X(T)] = 1 =E[X(T) = Xk + Xx] — u
= E[X(T) = Xk] + E[X] — &.

120z dunr 6| uo Jasn ybinquipg jo Ausienun Ad z661.5./6

The termE[ X (T) — Xk] represents the bias from the discretization error, and the weak error @sult (
for Euler—Maruyama shows that this igl0). The termE[ Xk ] — u represents the inherent statistical er-
ror associated with Monte Carlo, and, from the central limit theorem, the width of a confidence interval

1This exactness is a consequence of the linearity in the propensity functions; generally the error in the moments would be
0o(1/V?).
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(to be concrete, we will assume that a 95% confidence interval is required) scaleélliké D). Hence,
allowing for both sources of error, we have an overall confidence interval of witth-©O(1/+/N).
Suppose that we wish to obtain a prescribed target accuracyldien, to avoid unnecessary computa-
tion, it makes sense to balance the two terms, satkatles like: andN scales like:~2. If we measure
computational cost in terms of either

the number of pseudo-random numbers generated or

the number of drift and diffusion coefficient evaluations required,

then the cost is proportional to the product of the number of steps per pdthaad the number of
paths,N. Hence, the cost to obtain a confidence interval width boundedsiples likeN/h = 3.

This conclusion, that for Monte Carlo/SDE simulations the cost varies inversely with the third power

of the required accuracy, appears in many standard references.

An obvious way to improve the complexity would be to use a numerical method with a higher weak

order. For example, under extra conditions on the SDE coeffici€almy & Tubaro(1990 showed that
an extrapolated version of Euler—-Maruyama could be used to increase the weak error (&t t@10s
would improve the computational complexity tqg%°).

However, a radically different approach that gives a complexity @ ®(log¢)?) was recently put

forward byGiles (2008, and it is this extremely promisingultilevel Monte CarldMLMC) technique

that we describe here. We can motivate the approach heuristically by noting that is not necessary to
compute all paths with the same stepgizBecause a smalléris more expensive, it might be beneficial

to compute many cheap, low-resolution samples, and then use a few high-resolution paths to fill in the
high-frequency detail. More precisely, Giles proposed a hierarchy of discretisation scales in a manner
reminiscent of a multigrid computation for a partial differential equation. Before outlining and justifying
the main ideas, we wish to emphasize that

the technigue does not rely on a special SDE discretization scheme or a special structure for the
SDE—the standard Euler—Maruyama method can be used and the analysis simply exploits its basic
weak and strong convergence properties,

although our aim is to compute an expected value, the technique relies on both thaniete
strongconvergence behaviour of the numerical method.

In its simplest form, MLMC uses a range of stepsizes of the form= 2~'T for levels| =

0,1, 2, ..., L. The number of level& is chosen so that

_log(e™h)

R (34)

This ensures that at the finest level, we have stepsizb. = O(¢). So the bias at this level has the
appropriate size.

Now, we let the random variabl@ denote the result of applying Euler—-Maruyama with stepkijze

in order to approximate the pay-dff(X(T)). Rather than going faE[ P_] directly, we will make use
of the trivial identity

L
E[PL] = E[Pg] + »_E[P — P 4]

=1
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and estimate separately the terms on the right-hand side. To do this, at level 0, we WY paths in
order to form the sample average

Yo= - > P, (35)

and generally for levdl > 1, we will useN; paths in order to compute

N
1 . .
=5 2@ =R, (36)
i=1

so that our overall estimator ¥ := Yo + Z|L:1 Y|. We emphasize here thafi] and F’l[i_]l are computed

from the same Brownian path. In other words, suppose that we are currently &t tinreeren is even.
If the Euler—Maruyama computation with stepsheuses random incrementgh, ér[,'] and./h/ g“rﬂl

during the two steps that update to titqet- 2h;, then the accompanying Euler-Maruyama computation
with stepsizeh_1 = 2h uses\/h_@,[]'] + JhTf,E'}rT Figure9 illustrates this scenario. For each path
we use independent random increments, and these increments are also independent across diffe

levels—so the pseudo-random numbers are not reused.

I I T T T T T
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X A 1 v
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t

FiG. 9. An illustration of how the estimatoB6) is constructed by applying Euler—Maruyama over the same Brownian path with

two different stepsizedy andh;_1 = 2h;.
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It remains to work out how many paths are required at each level in order to reduce the variance in
the overall estimate tear[Y] = O(¢?), so that the final confidence interval has width &) and then
to check the resulting computational complexity.

Using the basic inequalityar[ X] = E[X2] — (E[X])? < E[X?] and the global Lipschitz property
of F, we have

var[R — F(X(T))] < E[(R — F(X(T)))’] = OE[(Xk — X(T))?]).
It then follows from thestrongconvergence property Q) of Euler—Maruyama, wittm = 2, that
var[R — F(X(T))] = O(h).

Using this inequality along with the appropriate triangle inequalitf & Y|l2 < [ X2 + [|Y]l2 for
I Xll2 := vE[X?]), we find that

var[A — R_1] < (Vvar[R — F(X(T)] + vvar[A_1 — F(X(T))? = O(hy).

It follows that Y} in (36) has variance of O /N;). Now, since the computations at each level are
independent, the overall variance of the estimatexpands as

L L
var[Y] = var[Yo] + > var[Yi] = var[Yo] + >_ O(hi/Ny).
=1 I=1
The choice
N, = O(¢~Lh)

is then seen to produce the required overall variansagiy] = O(e?).
Now the computational complexity of this algorithm is given by the sum over all levels of the product
of ‘cost per step’ and ‘number of steps’, which becomes

L L

D N =>"ePLhih = L%

1=0 1=0

From (34), this leads to a complexity of @ ?(log ¢)?).

In addition to proposing and justifying MLMGGiles (2008 also implemented a practical version
that was seen to deliver the improved complexity on realistic problems in option valuation. Subsequent
work on this multilevel approach has looked at

e numerical methods with higher weak and strong orétes 2007,

e various classes of ‘pay-off’ functions that are not globally Lipschitz and may even depend upon
X(t) along the whole path & t < T, for example, the case of barrier optiods/ikainen, 2009
Gileset al, 2009,

e MLMC combined with quasi-Monte Carlo methods that improve the statistical component of the
complexity Giles & Waterhousg2009.
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To put MLMC in context, we emphasize that for standard Monte Carlo simulations

e samples are assumed to be exact, and

e variance reductiortechniques to speed up the computations typically exploit problem-dependent
structures.

eojumoqg

By contrast, MLMC applies to the scenario where the samples have a built-in bias arising from ang
SDE discretization and requires no extra knowledge of the problem structure. In the cases where it ha§
been shown to work, it makes the cost of the SDE simulation negligible—the asymptotic complexity is =
effectively reduced to the level that would remain if we were able to evaluate the SDE solution exactly. 3
There are, of course, many promising avenues for this remarkable idea not only for SDE simulations bug
also within the broader context of multiscale modelling and simulation.

7. Model calibration and inference problems

0'0IWBpeok//:s

Any mathematical model can only be an approximate description of a physical system. Moreover, it |sg
often the case that some or all the parameters and initial conditions are unknown, and hence must k@
inferred from experimental measurements. In the SDE case, where the model itself is stochastic, it é
natural to quantify this uncertainty by using statistical tools.

We give here a very simple illustration of a Bayesian approach to parameter estimation. We refert
Jayneq2003 andSivia & Skilling (2009 for general background information on Bayesian inference,
while noting that it is currently something of a novelty in the applied mathematics literature; we rec-
ommend the recent survegtiiart 2010 for further details about how these topics intersect. We will
consider a financial setting where daily observations of an asset are available. Suppose i8¢ gsset,
is modelled by the simple linear SDEB){—this assumption is at the heart of the classic Black—Scholes
theory for financial option valuatiorHjgham 2004). Setting 4t = 1 day, the asset valudS(i 4t)}
may be converted into log-return data

- S(i 4t)
A 'Og(sm - 1)At))' 0

wew

Under the SDE modely, it follows that the{ R; } are independent samples from a Gaussian distribution
with mean(a - —b2) At and variancé? At. A key step in Black—Scholes option valuation is the esti-
mation of the volatility parameteb, so we will aim to infer the value df and, for simplicity, assume
thata is known. More precisely, we seelpasterior distributior—a density function that quantifies our
degree of belief about possible valuedof

Our SDE model allows us to calculate the probability of any datg@Rgtarising, given a value for
b. Bayes' theorem makes it possible to turn this around and calculate the probability of any particular
value ofb arising, given a set of observatiofi®; }. The key relationship is

Banquip3 jo Ayssenun Aq 366L91/6V17/€/9U9I0!U9/

P(bI{R}) o< P({Ri}[b)P(b). (38)

Lg0z aunr gl uo Jasn y

Here,

e P(b|{R}) is the probability of, odegree of belief inthe paramete, given the datdR; }. Our aim
is to quantify thisposterior probabilityover possible values df, and the right-hand side 088)
makes this feasible.
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e P({R}|b) is the probability of the datdR;} arising, given the value of the parameterThis
likelihood is made available to us by the model. In our case, it has the ﬁ@l p(Ri; (a —
b?/2) At, % At), where p(x; 4, u?) = exp(—(x — 1)?/(2u?))//2z u? is the density for a
Gaussian with meah and variance:?.

e P(b) is the probability or degree of belief that we assigih tuefore we see the data. Specifying this
prior probability is an unavoidable requirement in a Bayesian analysis.

In Fig. 10, we illustrate this idea. Rather than take real financial data, we generated synthetic data
using the SDE model witls(0) = 1,a = 0.06 andb = 0.4. In this way, we may judge the quality of
our inference. The upper picture shows data for one year, that is, 240 working days. We used a prior
distribution that is uniform ovef0.2, 0.6)—so, before seeing the data we took the view thatust be
between @ with 0.6 with all values being equally probable. In other worEgb) in (38) is constant for
0.2 < b < 0.6 and zero elsewhere. In the lower picture, we show the posterior distribution that arises
when we use the first three months (dotted), six months (dashed) and one year (solid) of data. To make
the pictures easier to interpret, we have normalized the densities to have maximum value of one, rather
than unit area. For this synthetic experiment, we know that the ‘correct’ value-i9.4. We see from
the figure that as more data are used, the posterior distribution becomes more sharply peaked and begin
to focus on this value.

In this very simple setting, the Bayesian picture is very closely related to the more traditional
computational mathematics approach of forming a least-squares objective function (analogous to the

1.8 T T T T T T T

S(t)

posterior

0 L N - il
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

FIG. 10. Upper: one year of asset data from an SDE model. Lower: posterior distribution of the volatility based on three months,
six months and one year of data, using a uniform prior distribution.
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log-likelihood), adding a penalty function (analogous to the log of the prior) and optimizing to find a
single best parameter value (analogous to computing a point that maximizes the posterior). However,
working in terms of the complete posterior density, rather than just presenting an optimal parameter and
possibly computing local sensitivity around that value, has benefits when there is more than one region
of likely values. Also, by sampling parameter values from the posterior, we can display a set of ‘likely’ 9
trajectories from the model.

A further advantage of the Bayesian approach is that higher levels of inference can be performedm
If there are two or more plausible models, then there is a systematic framework for S|multaneouslyQ
calibrating and comparing them, even when the models have different numbers of paraihetiais.
selectioncomputations of this nature have been performed on realistic ODE models in systems b|ologyj
(Vyshemirsky & Girolamj 2008 and much less realistic ODE models in science fictiGal@erhead
et al, 2017), and, in principle could be used in the SDE setting.

Many challenges must be overcome if Bayesian inference and model selection are to become mai
stream activities in the SDE context. Perhaps, the biggest hurdle is high dimensionalipatémeters
are to be inferred then the posterior distribution is a scalar-valued functidh wdriables. Search-
ing throughRN in order to find regions where the posterior takes on significant values is, in general, -
a huge task—in many inference contexts, this task is more challenging than deterministic global op<
timization overRN in the sense thaill regions of significant behaviour are required since we must
(a) normalize the posterior to have unit area and (b) integrate the posterior across several of the dimeri;
sions. Hand in hand with the computational complexity, there is also a visualization issue. How do we%
display a 25-dimensional random variable to our colleagues? 1D or 2D slices through the posterior, oE:
marginals, where all but 1D or 2D have been integrated out, can be useful, but they necessarily com@
press information—for example, the globally most likely parameter set according to the full posterior £
may be very different from the locations of the peaks in these lower dimensional analogues. More fun
damentally, unlike the simple example in Fitf, in general, the SDE model will not have a known
solution, and hence discretization methods will be required in order to construct an approximate likeli- 2
hood. Added complexity arises if the data itself is assumed to be in error, perhaps in a manner that i
correlated across time.

There are many other approaches to SDE model calibration, for example, the recerddiext (
2008 gives examples, many of thead hocand based on the particular form of the problem, with an
emphasis on mathematical finance. This seems to be an area where a general set of principles, brmgmg
together ideas from statistics, applied mathematics and computer science, is yet to emerge. To empha5|%e
that there are possible pitfalls for the unwary, let us return to the asset data example, and suppose thgt
we wish to infer the mean of our log-returns. The intuitively appealing sample average
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has the unfortunate property of telescoping down to s
]

M N

1 _ . S(M 4t) N
o > logS(i 4t) —log S((i — 1) 4t) = Z| ( 0 ) N

i=1

Hence, this quantity involvesnly the first and last observatipignoring the vast majority of the data!
In discussing parameter inference in an SDE model, we came up against the task of sampling from
the density of a high-dimensional random variable. This general problem arises in many s&tibgst(
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& Casellg 2004, and it is interesting to note that SDEs, and their numerical discretizations, can play a
role. A very useful example of a Markov chain Monte Carlo method known asi#teopolis-adjusted
Langevin algorithrcomputes samples from: RN — R using the SDE

dX (t) = Vlogz (X (t))dt + ~/2dW(t).

Discretizing this SDE over a long time interval is one approach to sampling #roamnd the bias can

be eliminated with a suitable acceptance/rejection strategy. There are many practical and theoretical
issues to be addressed, including the optimal choice of timeB&gkéset al, 2009 and level of im-
plicitness Beskoset al,, 2008 in the humerical method, and the development of customized stochastic
integrators that preserve geometric structugsglami & Calderhead?017).

8. Outlook

Overall, this overview of the use of SDEs in applied mathematics, which is naturally biased towards the
author’s knowledge base and interests, has emphasized five main themes where future activity is likely
to have a high impact.

Theoretical issues regarding existence and uniqueness of solutions for non-linear problems, and
corresponding results on convergence, stability and the preservation of qualitative features for
numerical simulation.

The role of SDEs in multiscale modelling scenarios, especially in systems biology, which will require
new theory and tools for hybrid discrete/real-valued models.

More effective Monte Carlo computations in the SDE setting through the use of multilevel methods.
General purpose inference and model selection techniques for quantifying uncertainty.

The use of SDEs and their customized discretizations in a Markov chain Monte Carlo setting to
compute samples from a target distribution, typically within a parameter estimation or model
calibration exercise.
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