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Driven by a range of modern applications that includes telecommunications, e-business and online social
interaction, recent ideas in complex networks can be extended to the case of time-varying connectivity.
Here, we propose a general framework for modelling and simulating such dynamic networks, and we
explain how the long-time behaviour may reveal important information about the mechanisms underlying
the evolution.
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1. Introduction

Many application areas give rise to connectivity patterns that change over time. As well as traditional
contexts such as epidemiology (Kao et al., 2007; Vernon & Keeling, 2009), examples are arising in
modern applications such as mobile telecommunications, online trading, smart metering and online
social networking (Borgnatet al., 2008; Gautreauet al., 2009; Geard & Bullock, 2008; Grindrod &
Higham, 2010; Grindrod & Parsons, 2010; Kao et al., 2007; Kleinberg, 2008; Tanget al., 2010a,b).
Information such as ‘who called who’, ‘who tweeted who’, ‘who facebooked who’ and ‘people who
bought his book also bought. . . ’ is naturally evolving over time and cannot be fully exploited through
a static representation as a single time average or snapshot. The motivation for our work is that these
emerging, data-rich disciplines can generate large, highly resolved network sequences that demand new
models and computational tools.

Although we will draw on concepts from the well-studied ‘network growth’ context, where new
vertices and accompanying edges are accumulated (Barab́asi & Albert, 1999; Newman, 2003), we are
concerned here with a different time-dependent scenario where the population of vertices remains fixed
from the outset, and the graph evolves through the appearance (birth) or the deletion (death) of edges.
Specific examples that have recently received attention include

• networks of mobile phone users with a link denoting current interaction (Tanget al., 2010b),

• transportation networks defined over a dynamic infrastructure (Gautreauet al., 2009),
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2 P. GRINDROD AND D. J. HIGHAM

• networks describing transient social interactions (Tanget al., 2010a),

• correlated neural activity in response to a functional task (Grindrod & Higham, 2010).

Our aims here are (a) to set out and study some general options for describing such evolving net-
works in a stochastic setting and (b) to discuss practical challenges in interpreting and calibrating suit-
able models. In particular, we show how ideas fromGrindrod & Higham(2010) can be extended to
produce a wider class of models. We note that related models are also the subject of analysis in theoret-
ical computer science (Avin et al., 2008; Clementiet al., 2008, 2009).

In Section2, we introduce a range of models under successively less restrictive assumptions. Sec-
tion 3 focusses on a particularly promising model class and in Section4, we make some observations
about long-time behaviour. In Section5, we give some illustrative simulations on synthetic data and
then show computational results on a real evolving mobile phone network. Concluding remarks appear
in Section6.

2. Stochastic models

For simplicity, we consider here undirected, unweighted graphs, defined on a setV of exactlyn > 2
vertices, with no self-loops. Extensions to directed graphs and self-loops follow naturally. Any such
graphG may be represented by a symmetric (n×n) adjacency matrix,A, with elementsAi j = Aji = 1
if the edgee = (i, j ) is present and zero otherwise.

Let Sn denote the set of all such graphs defined over thesen vertices. We have|Sn| = 2
n(n−1)

2 =
M(n), say. An evolving graph over discrete time steps is simply an ordered sequence,{Gk} for k =
0, 1, 2, . . . , within Sn. We think of the evolving graph as taking the particular stateGk at thekth time
step, i.e. at timetk from some monotonically increasing time sequence.

To introduce a stochastic element, suppose we have a set of conditional probabilities, defined for all
possible networks,Gk+1 ∈ Sn, given all the networks earlier within the evolving sequence: say

P(Gk+1|Gk, Gk−1, . . .).

This set determines a probability distribution for the next element,Gk+1, in the sequence, given its
history to date. It may be applied iteratively to generate successive further elements of the sequence.

Let us also suppose that the evolving graph respects the natural Markov property, so that the most
recent graph in the sequence is sufficient to define the statistics of its future evolution, then we must
have well-defined probabilities

P(Gk+1|Gk), (1)

for all ordered pairs(Gk+1, Gk) in Sn × Sn. Hence, a total of 2n(n−1) probabilities is required in this
general setting. This number seems prohibitively large if we wish to study general properties or calibrate
models to data.

We may reduce this complexity by imposing symmetry. If there is nothing distinguished about any
of the vertices that effects the evolution, then we may argue that the probabilities should not change
if the vertices are permuted. (Note this is not the case for range dependent graphs introduced in Sec-
tion 3.3, where the vertices are embedded within some underlying ordering). In thispermutablecase, the
specification is reduced by a factor ofn!. For n large, Stirling’s approximation givesn! = O(2n log2 n),
so this cannot provide much relief!

A more useful simplification is to assumeedge independence. Here, at each time step, the probability
for the appearance or disappearance of each edge,e, is independent of those for all other edges, yet all
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MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 3

such probabilities are conditional on properties ofGk. So for each edgee and eachGk, we must specify
the probability

P(e ∈ Gk+1|Gk). (2)

Then we can reassemble the full graph transition probabilities in (1) from those for the independent
edge transitions in (2), to give

P(Gk+1|Gk) =
∏

e∈Gk+1

P(e ∈ Gk+1|Gk)
∏

e/∈Gk+1

(1 − P(e ∈ Gk+1|Gk)). (3)

This radically reduces the need to specify graph to graph transition probabilities since at worst we
now requiren(n − 1)2−1+n(n−1)/2 probabilities. In the next section, we consider how these may be
defined as suitable functions ofe andGk.

We end this section by noting that a different set of simplifying assumptions were studied inGrindrod
& Parsons(2010). In that case, the Markovian property was relaxed and edge dynamics were allowed
to depend upon previous history. It was shown that in this scenario, it is possible for edges to become
immortal persisting for all time or to become extinct. However, in order to make the analysis tractable,
the authors inGrindrod & Parsons(2010) assumed that the behaviour of each edge depended only upon
its own history, ruling out the types of interaction that we introduce in the next section.

3. Independent edge birth and death dynamics

We will introduce a class of independent edge models by specifying edge birth and death dynamics. Let
us assume that we have well-defined terms

α(e) = P(e ∈ Gk+1|e /∈ Gk), ω(e) = P(e /∈ Gk+1|e ∈ Gk) (4)

that denote the edge birth probability and edge death probability, respectively. For simplicity, this nota-
tion suppresses their possible dependence onGk. Then to define a model, we simply giveα(e) andω(e)
as functions of properties ofGk, whene is not present, or present, inGk, respectively. We will propose
three useful cases.

3.1 Births and deaths dependent upon degree

Suppose the edgee that connects verticesvi andv j is not in Gk. Let di anddj denote the degree of
verticesvi andv j within Gk, respectively. Then let us define

α(e) = Fα(di , dj ),

whereFα is any continuous mapping from pairs of integers onto the interval [0,1]. In the undirected edge
case that we consider in this work, symmetry demandsFα(z1, z2) = Fα(z2, z1) for all non-negative
integersz1 andz2. For example,Fα might be monotonically increasing in both arguments, meaning that
edges are more likely to appear between vertices of higher degree. Such a case is given by

Fα(di , dj ) =
di dj + a

di dj + a + b

for positive realsa andb. This mirrors the concepts ofpreferential attachmentandassortativityfound
in static models (Barab́asi & Albert, 1999; Newman, 2002).
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4 P. GRINDROD AND D. J. HIGHAM

Similarly, supposee is in Gk and connects verticesvi andv j . Then we may define

ω(e) = Fω(di , dj ),

where Fω is any continuous mapping from pairs of integers onto the interval [0,1] (again such that
Fω(z1, z2) = Fω(z2, z1)). For example,Fω may be monotonically decreasing in both arguments, mean-
ing that edges are less likely to disappear between vertices of higher degree.

This type of degree-dependent activity where certain individuals act ashubsorauthorities, Kleinberg
(1998), or, in Gladwell’s terminologyconnectors, mavensandsalespeople, Gladwell (2000), may be
appropriate for modelling social and business networking communities, such as Linkedin, and for online
marketplaces, such as ebay, where ‘powersellers’ may attract more business.

3.2 Births and deaths dependent upon local clustering

Localized clustering, the ability for connections to be transitive, is a basic ingredient of small world
networks (Watts & Strogatz, 1998). In applications involving networks of social ties, it may be natural
to assume that edges evolve so as to triangulate second neighbours and strengthen clique-formation
(Adamicet al., 2003).

Suppose some possible edgeeconnects verticesvi andv j but is not inGk. Let ri j denote the number
of adjacent vertices thatvi andv j have in common. Thenri j is thei, j th element ofA2

k (the square of
the adjacency matrix forGk). Then let us define

α(e) = Fα(di , dj , ri j ),

whereFα is any continuous mapping from triples of integers onto the interval [0,1]. Note thatri j 6
min{di , dj }. As before we requireFα(z1, z2, z3) = Fα(z2, z1, z3) for all non-negative integersz1 and
z2. For example,Fα may be monotonically decreasing in bothz1 − z3 andz2 − z3, but increasing in
z3, so that the edges are likely to appear between vertices that have many adjacent vertices in common.
Such a case is given by

Fα(di , dj , ri j ) =
1 + ri j√
1 + di dj

.

Similarly, supposee is in Gk and connects verticesvi andv j . Then we may define

ω(e) = Fω(di , dj , ri j ),

where Fω is any continuous mapping from triples of integers onto the interval [0,1], with
Fω(z1, z2, z3) = Fω(z2, z1, z3) . For example,Fω may be monotonically decreasing inz3 meaning
that edges are less likely to disappear between vertices of with many common adjacencies. Such a case
is given by

Fω(di , dj , ri j ) =
1 +

√
di dj

1 + ri j
.

3.3 Births and deaths dependent upon edge range

In some circumstances, it is reasonable to assume that connections between vertices are determined
in part by their relative locations in some physical or abstract space (Kleinberg, 2000; Přzulj et al.,
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MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 5

2004). This concept of location in space may go beyond the geographical; there is evidence for a more
general ‘social distance’ metric that, in principle, could be inferred from the network data (Wattset al.,
2002). More specifically, ‘closeness; could be measured by combining a heterogeneous range of known
attributes (Cox & Cox, 1994), e.g. via personal details supplied when subscribing to an online service.
Furthermore, in some types of online activity, individuals are termedinfluencersif they are able to
persuade their friends, family and colleagues to copy their choices (Technology Quarterly, 2010). This
would correspond to occupying a central position in the relevant space. This differs from the type of hub
concept mentioned in Section3.1 in that the level of influence does not depend on the current degree of
the node and is fixed for all time.

In the secific formalization of range dependent graphs (Grindrod, 2002, 2003; Grindrodet al., 2009;
Higham, 2003, 2005), the vertices are considered to have an underlying (generally unknown) ordering
on the integer lattice, and therangeof any possible edgeeconnecting verticesvi andv j , is defined by the
distancem(e) = |i − j |. To generate an instance of the graph, each edge is then created independently,
with a probability given by some predetermined function of its range.

These ideas were extended inGrindrod & Higham(2010) to the dynamic network setting. In that
case, we define a range-dependent birth rate and death rate

α(e) = Fα(m(e)),

ω(e) = Fω(m(e)),

whereFα andFω are continuous mappings from the integers onto the interval [0,1].
Typically, we may chooseFα to be monotonically decreasing so that longer range edges are less

likely to arise. The case where

Fα(m)

Fω(m)
= θm2

,

for constant 06 θ 6 1 was studied inGrindrod & Higham(2010) and shown to be attractive from a
model calibration perspective.

This case of range-dependent edge evolution is special because not only are the births or deaths each
for edge independent from each other but also each edge depends only on its own immediate history
(and of course its own range). In the newly proposed degree-dependent and cluster-dependent models of
Sections3.1and3.2, the births and deaths depend onGk in a more sophisticated way, and the evolution
of each edge cannot be determined without determining the evolution of some or all other possible
edges. For the range-dependent case though, whether or note is in Gk+1 depends only on whether it is
in Gk, and the corresponding forms assumed forα(e) andω(e). As pointed out inGrindrod & Higham
(2010), if pk(e) = P(e ∈ Gk), then

pk+1(e) = α(e)(1 − pk(e)) + (1 − ω(e))pk(e).

So ask becomes large, such an evolving network burns out its initial starting point and we have

pk(e) → p∞(e) =
α(e)

α(e) + ω(e)
, as k → ∞.

4. Long-term behaviour

Suppose we have any Markov model overSn, where we are given or can calculateP(Gk+1|Gk) for
all pairs (Gk+1, Gk) in Sn × Sn, as in (2) above. Letsm ∈ Sn denote themth element ofSn, for
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6 P. GRINDROD AND D. J. HIGHAM

m = 1, . . . , M(n). At the kth time step, letwk = (wk,1, . . . , wk,M(n))
>, wherewk,m = P(Gk = sm).

Then theP(Gk+1|Gk) together determine a transition matrix,B, such that

wk+1 = Bwk.

Under the reasonable assumption of ergodicity, meaning that B is irreducible, this iteration tends to
a unique non-negative fixed pointw? > 0 satisfyingBw? = w?.

Let φ(s) be any binary valued feature defined for alls ∈ Sn, so thatφ = 1 if the graph has the
feature present, andφ = 0 otherwise. Then ask tends to infinity the expected value ofφ(Gk) is given
by

〈φ〉 =
M(n)∑

m=1

w?
mφ(sm).

In particular, each possible edge,e, is present with a probability

p∞(e) =
∑

e∈sm

w?
m.

Let G? denote thelong-term expected random graph, where each edgee has a probabilityp∞(e) of
being present.

Suppose this model does not use some additional (imposed) knowledge that differentiates between
the vertices. Of course range-dependent evolving graphs employ an imposed ordering of the vertices for
example; while Barab́asi style aggregative graphs allow vertices to become active in some predefined
order, externally imposed. But for evolving graphs having no such vertex discrimination, symmetry
demands thatG? is invariant to any permutations of the vertices. Hence, all possible edges inG? are
equally likely:G? is an Erd̈os–Ŕenyi random graph, which therefore has a Poisson distribution of ver-
tex degrees, and no scale free or small world properties (Newman, 2010). For example, this must be
true of the evolving networks depending solely upon (current) vertex degrees or localized clustering
coefficients, introduced in the Sections3.1and3.2.

So, if we observe a large evolving graph with long-term average behaviour which has a non-Poissonian
vertex degree distribution, then we know that the dynamics of any assumed underlying Markov model,
of the type introduced here, must involve some extra knowledge or imposed information distinguishing
the vertices. The Markovian assumption could itself be tested by computing correlations over time.

5. Numerical simulations

In Fig.1, we show the first sixteen adjacency matrices that arise from a degree-based model, as described
in Section3.1. This represents a particular path of the stochastic process, where the network at stepk+1
was computed by calculating the edge birth and death rates for the network at stepk and using a pseudo-
random number generator to insert and delete edges accordingly. The precise details are as follows. For
a pair of verticesi and j , we used an edge birth probability given by

• pa = 0.9 if min(degi , degj ) > 8,

• pb = 0.2 otherwise,

and an edge death probability given by

• pc = 0.9 if min(degi , degj ) < 6,

• pd = 0.2 otherwise.
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MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 7

FIG. 1. Initial network adjacency matrix and first fifteen iterates for a degree-dependent evolution. Vertices are ordered according
to degree at time zero.

Hence, in this model, new edges are favoured between vertices that both have relatively high degree,
and existing edges involving at least one low-degree node are penalized. In order to make the adjacency
matrices compact for visualization purposes, we used a relatively small number of vertices,n = 16. We
begin, at timet = 0, with a sample of an Erd̈os–Ŕenyi random graph with 38 edges. The vertices are
ordered according to their degree in the initial network, from high to low.

After continuing the iteration for 200 more time steps, Fig.2 shows time levelst = 216 tot = 231.
To illustrate long-time behaviour on a larger network, Fig.3 shows the results for a case withn =

200 vertices. Here, the initial network, shown in the upper left picture, is chosen from the preferential
attachment model (Barab́asi & Albert, 1999; Newman, 2002), as implemented in the function pref.m of
CONTEST (Taylor & Higham, 2009). We used the same degree-based birth and death rate construct as
for Figs1 and2, with edge birth probabilities rescaled to

• pa = 0.3 if min(degi , degj ) > 25,

• pb = 0.05 otherwise,

and an edge death probabilities given by

• pc = 0.9 if min(degi , degj ) < 10,

• pd = 0.6 otherwise.

The initial degree distribution, which by construction is scale-free, is shown in the upper right picture.
The lower left picture then shows the adjacency matrix after 104 time steps, with degree distribution

in the lower right. We see that the scale-free pattern of the initial degree distribution is completely
lost over time and a Poisson-type distribution has arisen, as predicted in Section4. For confirmation,
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8 P. GRINDROD AND D. J. HIGHAM

FIG. 2. Iterates at timet = 216 tot = 231 for the network sequence initiated in Fig.1.

Fig. 4 plots the cumulative degree distribution as circles and superimposes as a solid line the cumulative
Poisson distribution with the same mean of 15.3. To further quantify the goodness of fit to a Poisson
distribution, Fig.5 gives quantile–quantile plot (using qqplot from the MATLAB statistics toolbox,
http://www.mathworks.com/help/toolbox/stats/5. Here, the quality of fit can be judged via closeness to
the reference line (Gentle, 2009).

Figure6 shows a different scenario where the edge evolution involves an external factor. Here, we
mix together the degree-dependent and range-dependent ideas from Sections3.1and3.3. For the same
sizen = 200 and the same initial network as in Fig.3, we now use edge birth rates given by

• pa = exp(−|i − j |/10) if degi + degj > 50,

• pb = 0.05 otherwise,

and edge death rates given by

• pc = 0.9 if max(degi , degj ) < 30,

• pa = exp(−|i − j |/10) otherwise.

In this case, pairs of vertices are likely to grow a new edge if at least one of them has high degree and
they are in close proximity. An existing edge connecting vertices that have degree below 30 is likely
to be removed. We see that the long-time network at time 104 has a small number of vertices that are
abundantly connected to near neighbours. The resulting degree distribution looks far from Poisson, as
verified in the cumulative distribution plot of Fig.7 and the quantile–quantile plot of Fig.8.

As a final computational test, we consider an evolving network fromEagleet al. (2009). This data
comes from a ‘Reality Mining’ study that used mobile phones to follow 106 subjects at Madras In-
stitute of Technology over the course of the 2004–2005 academic year. Pairwise calls, SMS activity
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MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 9

FIG. 3. An evolving network with degree-based evolution. Top left: initial network. Top right: initial degree distribution. Bottom
left: network at timet = 104. Bottom right: degree distribution at timet = 104.

FIG. 4. Circles: cumulative degree distribution for timet = 104 network shown in Fig.3. Solid line: interpolant through cumulative
degree distribution for a Poisson random variable with matching mean of 15.3.
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10 P. GRINDROD AND D. J. HIGHAM

FIG. 5. Quantile–quantile plot for the degree data and Possion distribution from Fig.4.

and proximity information were recorded. Here, we consider just the voice call component of the data,
summarized into weekly activity. So a link between nodesi and j in thekth adjacency matrix indicates
that at least one phone call took place between subjectsi and j in weekk. This represents an evolving
network over 52 time points. This network sequence was also used inGrindrod & Parsons(2010), a
visualization of the complete data set can be found there. Of course, understanding the mechanisms
that drive this type of dynamic network has immediate benefits for designing mobile phone contracts,
identifying and marketing to specific customer groups and predicting future patterns of network useage.

We attempted to calibrate this evolving network based on a range-dependent model. Following
Grindrod & Higham(2010), we formed a Laplacian matrix based on the cumulative edge data and
used the Fiedler vector to infer an ordering of the nodes. More precisely, we formed the symmetric
matrix L − D = W, whereW records the accumulated edge count between each pair of nodes and the
degree matrixD is diagonal with(D)i i =

∑n
j =1(W)i j . By construction,L has a smallest eigenvalue

of zero. For the second smallest eigenvalue, we recorded the corresponding eigenvectorv. Then nodei
is placed before nodej if vi < v j . It is shown inGrindrod & Higham(2010) that this ordering solves
a relaxed version of the problem of finding the maximum likelihood reordering under an appropriate
range-dependent model.

For each pair of nodesi and j , we estimated the birth and death probabilities (4) based on their
observed frequency. However, in this context, it is not appropriate to use a simple frequency count for
the edge death,s/N, where

• s is the number of edge deaths observed, and

• N is the total number of time points between the first and penultimate time on which an edge existed.
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MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 11

FIG. 6. An evolving network with evolution based on degree and edge range. Top left: initial network. Top right: initial degree
distribution. Bottom left: network at timet = 104. Bottom right: degree distribution at timet = 104.

FIG. 7. Circles: cumulative degree distribution for timet = 104 network shown in Fig.6. Solid line: interpolant through cumulative
degree distribution for a Poisson random variable with matching mean of 14.
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12 P. GRINDROD AND D. J. HIGHAM

FIG. 8. Quantile–quantile plot for the degree data and Possion distribution from Fig.7.

This is becauseN = 0 for many pairsi and j . For this reason, we used Laplace’s law of succession
(MacKay, 2003) to give (s + 1)/(N + 2) as our estimate for the edge death probability. Similarly, the
edge birth probability was estimated as(s′ + 1)/(N′ + 2), where

• s′ is the number of edge births observed, and

• N′ is the total number of time points between the first and penultimate time on which no edge existed.

Figs9 and10indicate the estimated birth and death probabilities, respectively, for the node ordering
given by the Fiedler vector. There are two main observations to be made.

1. In both figures, the probabilities are not uniform across pairsi and j . Following the discussion
in Section4, this rules out the possibility that the data comes from the steady state of an evolving
network model like those discussed in Sections3.1 and3.2, where nodes are not differentiated
by some external property.

2. The nodes have been reordered in an attempt to reveal range dependency, so that, in this new
ordering, birth and death rates depend solely on|i − j |. In Figs9 and10, this would correspond
to a Toeplitz structure (common values along each superdiagonal). No such obvious pattern is
observed, although there is an indication that some nodes are very active, having relatively high
edge birth and death probabilities, and in many cases, this activity is localized to neighbours
who are close in the new ordering. There is also evidence of clusters of high activity in blocks
along the diagonal, where near-neighbours in this newly discovered ordering have strong mutual
affinity. This behaviour is in broad agreement with the mixed ‘range and degree dependence’
model that was used for Fig.6.
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MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 13

FIG. 9. Symmetric matrix whosei, j element shows the estimated birth probability in (4) for an edge between nodesi and j ,
assuming range-dependent activity. The underlying data came from an evolving network arising in telecommunication. Nodes are
ordered via a Fiedler vector in an attempt to reveal range-dependency, as described inGrindrod & Higham(2010).

6. Discussion

Ideas from network science have proved to be useful in a range of disciplines, but we feel that there
is great value to be had from moving attention away from fixed topological structures. Many ap-
plications, notably in telecommunications, social networking, online trading and utility consumption,
give rise to a sequence of network ‘snaphots’ from an evolving system. Summarizing and quanti-
fying the mechanisms that drive the network evolution has a clear potential to help with decision-
making issue faced by professionals in areas such as online marketing, telecommunications and business
development.

New challenges arise in this time-dependent context. Here, we focussed on modelling apsects—
what mechanisms might govern the changes in topology? We extended the framework inGrindrod &
Higham(2010), showed that broad conclusions may be drawn about steady-state behaviour and tested
these ideas on real mobile phone data.

We are currently in a data rich, information poor (DRIP) era where there are huge potential benefits
to be had from smarter, more strategic use of evolving network data. Among the key challenges,cali-
brationandmodel selectionstand out immediately—fitting and comparing models that have a tractable
number of parameters in terms of their explanatory and predictive power on real data sets. An accurate,
well-tuned model would not only offer a high-level summary of the nature of the interactions but would
also give a powerful quantitative tool to predict future evolution and study the response of the network
under ‘what-if’ scenarios. We hope that the framework outlined here sets the scene for a systematic
modelling approach.
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14 P. GRINDROD AND D. J. HIGHAM

FIG. 10. Analogue of Fig.9 for edge death probabilities.
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