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Driven by a range of modern applications that includes telecommunications, e-business and online social
interaction, recent ideas in complex networks can be extended to the case of time-varying connectivity.
Here, we propose a general framework for modelling and simulating such dynamic networks, and we
explain how the long-time behaviour may reveal important information about the mechanisms underlying
the evolution.
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1. Introduction

Many application areas give rise to connectivity patterns that change over time. As well as traditionalg
contexts such as epidemiologido et al, 2007 Vernon & Keeling 2009, examples are arising in %
modern applications such as mobile telecommunications, online trading, smart metering and onIin%
social networking Borgnatet al, 2008 Gautreawet al, 2009 Geard & Bullock 2008 Grindrod & m
Higham 201Q Grindrod & Parsons201Q Kao et al, 2007 Kleinberg 2008 Tanget al,, 2010ab). g
Information such as ‘who called who’, ‘who tweeted who’, ‘who facebooked who’ and ‘people who 5§

0

bought his book also bought. ..’ is naturally evolving over time and cannot be fully exploited through 2
a static representation as a single time average or snapshot. The motivation for our work is that thesg
emerging, data-rich disciplines can generate large, highly resolved network sequences that demand nev
models and computational tools. ©

Although we will draw on concepts from the well-studied ‘network growth’ context, where new
vertices and accompanying edges are accumul&arhfasi & Albert, 1999 Newman 2003, we are
concerned here with a different time-dependent scenario where the population of vertices remains fixet
from the outset, and the graph evolves through the appearance (birth) or the deletion (death) of edges.
Specific examples that have recently received attention include

zounfr g

e networks of mobile phone users with a link denoting current interacfiandet al., 20100,

e transportation networks defined over a dynamic infrastructBeaifrealet al,, 2009,

(© The authors 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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e networks describing transient social interactiofasnget al., 20103,
e correlated neural activity in response to a functional t&&kr(drod & Higham 2010.

Our aims here are (a) to set out and study some general options for describing such evolving net-
works in a stochastic setting and (b) to discuss practical challenges in interpreting and calibrating suit-
able models. In particular, we show how ideas fr@rindrod & Higham(2010 can be extended to
produce a wider class of models. We note that related models are also the subject of analysis in theoret-
ical computer scienceé\yin et al., 2008 Clementiet al., 2008 2009.

In Section2, we introduce a range of models under successively less restrictive assumptions. Sec-
tion 3 focusses on a particularly promising model class and in Sedtiare make some observations
about long-time behaviour. In Sectid@n we give some illustrative simulations on synthetic data and
then show computational results on a real evolving mobile phone network. Concluding remarks appear
in Section6.

2. Stochastic models

For simplicity, we consider here undirected, unweighted graphs, defined orVaddetxactlyn > 2
vertices, with no self-loops. Extensions to directed graphs and self-loops follow naturally. Any such
graphG may be represented by a symmetnicqn) adjacency matrixA, with elementsAjj = Ajj =1
if the edgee = (i, j) is present and zero otherwise.

n(n—-1)

Let S, denote the set of all such graphs defined over timegertices. We havéS,| = 272 =
M(n), say. An evolving graph over discrete time steps is simply an ordered seqyénp¢dpr k =
0,1,2,..., within S,. We think of the evolving graph as taking the particular sgeat thekth time
step, i.e. at timéx from some monotonically increasing time sequence.

To introduce a stochastic element, suppose we have a set of conditional probabilities, defined for all
possible networksGk41 € S, given all the networks earlier within the evolving sequence: say

P(Gk+1/Gk, Gk-1, .. .).

This set determines a probability distribution for the next elem@pt,;, in the sequence, given its
history to date. It may be applied iteratively to generate successive further elements of the sequence.

Let us also suppose that the evolving graph respects the natural Markov property, so that the most
recent graph in the sequence is sufficient to define the statistics of its future evolution, then we must
have well-defined probabilities

P(Gk+1/Gk), (1)

for all ordered pairgGg,1, Gk) in S x S,. Hence, a total of 2"~ probabilities is required in this
general setting. This number seems prohibitively large if we wish to study general properties or calibrate
models to data.

We may reduce this complexity by imposing symmetry. If there is nothing distinguished about any
of the vertices that effects the evolution, then we may argue that the probabilities should not change
if the vertices are permuted. (Note this is not the case for range dependent graphs introduced in Sec-
tion 3.3, where the vertices are embedded within some underlying ordering). ipethirutablecase, the
specification is reduced by a factormif For n large, Stirling’s approximation givas = O(2"0%2"),
so this cannot provide much relief!

A more useful simplification is to assuredge independenckere, at each time step, the probability
for the appearance or disappearance of each ejgeindependent of those for all other edges, yet all
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such probabilities are conditional on propertie€Saf So for each edgeand eaclGy, we must specify
the probability

P(e € Gk41|Gi). 2

Then we can reassemble the full graph transition probabilities)ifrgm those for the independent o
edge transitions in?, to give g
]

P(Gkt1lG) = [] P(eeGkulGu) [] (21— P(ee GkyalGi)). €) &

eeGy1 e¢Gki1 g

3

=4

This radically reduces the need to specify graph to graph transition probabilities since at worst we
now requiren(n — 1)2-1"(—1/2 grohabilities. In the next section, we consider how these may be
defined as suitable functions endGy.

We end this section by noting that a different set of simplifying assumptions were stu@eiddrod
& Parsong2010. In that case, the Markovian property was relaxed and edge dynamics were allowed 2
to depend upon previous history. It was shown that in this scenario, it is possible for edges to become
immortal persisting for all time or to become extinct. However, in order to make the analysis tractable,S
the authors irGrindrod & Parson$2010 assumed that the behaviour of each edge depended only upon
its own history, ruling out the types of interaction that we introduce in the next section.

opeoe//:sd

3. Independent edge birth and death dynamics

/%p!w/uewew!/wo

We will introduce a class of independent edge models by specifying edge birth and death dynamics. L
us assume that we have well-defined terms

a(e) = P(e € Gkr1le ¢ Gk), w(e) = P(e ¢ Gkrile e Gy) 4)

LeovLL/L/LiEe

that denote the edge birth probability and edge death probability, respectively. For simplicity, this nota-
tion suppresses their possible dependenc8i hen to define a model, we simply giuge) andw (e)
as functions of properties @y, whene is not present, or present, @y, respectively. We will propose
three useful cases.

3.1 Births and deaths dependent upon degree

Suppose the edgethat connects vertice ando; is not in Gk. Let d; andd; denote the degree of
verticesy; andoj within Gk, respectively. Then let us define

a(e) = F,(di, dj),

whereF, is any continuous mapping from pairs of integers onto the interval [0,1]. In the undirected edge
case that we consider in this work, symmetry demaRg&,, z2) = F,(z2, 1) for all non-negative
integersz; andz,. For exampleF,, might be monotonically increasing in both arguments, meaning that
edges are more likely to appear between vertices of higher degree. Such a case is given by

1 Z0Z aunr gL uo Jasn ybinquipg jo Ausiaaiun Aq

did; +a

Fu(di,dj) = —————
(@.d) ddj +a+b

for positive realsa andb. This mirrors the concepts gireferential attachmerdndassortativityfound
in static modelsBaralasi & Albert, 1999 Newman 2002.
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Similarly, supposeis in Gk and connects verticeg andoj. Then we may define

where F, is any continuous mapping from pairs of integers onto the interval [0,1] (again such that
Fo (21, 22) = F, (22, 21)). For exampleF,, may be monotonically decreasing in both arguments, mean-
ing that edges are less likely to disappear between vertices of higher degree.

This type of degree-dependent activity where certain individuals duttzsor authorities Kleinberg
(1998, or, in Gladwell's terminologyconnectors mavensand salespeopleGladwell (2000, may be
appropriate for modelling social and business networking communities, such as Linkedin, and for online
marketplaces, such as ebay, where ‘powersellers’ may attract more business.

3.2 Births and deaths dependent upon local clustering

Localized clustering, the ability for connections to be transitive, is a basic ingredient of small world
networks Watts & Strogatz1998. In applications involving networks of social ties, it may be natural
to assume that edges evolve so as to triangulate second neighbours and strengthen clique-formation
(Adamicet al,, 2003.

Suppose some possible edgeonnects vertices andoj butis notinGy. Letr;j denote the number
of adjacent vertices that andv; have in common. Then; is thei, jth element ofAE (the square of
the adjacency matrix foBg). Then let us define

dno-olwapeoe//:sdiy Woil peapeojumo(]

a(e) = F,(di, dj,rij),

whereF, is any continuous mapping from triples of integers onto the interval [0,1]. Noterithag

min{d;, dj}. As before we requird=, (21, 22, z3) = F,(22, 21, 23) for all non-negative integers and

Z». For exampleF, may be monotonically decreasing in bath— zz andz, — z3, but increasing in

Z3, SO that the edges are likely to appear between vertices that have many adjacent vertices in common.
Such a case is given by

1+4rij
\/1+didj.

Similarly, supposeis in Gk and connects verticeg andoj. Then we may define

o(e) = Fy(di, dj, rij),

where F, is any continuous mapping from triples of integers onto the interval [0,1], with
Fo(z1, 22, 23) = Fu(22, 21, 23) . For exampleF, may be monotonically decreasing 3 meaning

that edges are less likely to disappear between vertices of with many common adjacencies. Such a caseg
is given by

uo Jasn yBINquIPT Jo AUSIBAIUN A LZ9 L 2/L/LIEZ/SI0IE/UBLIEWI/WOD

Lcoc dunr 6

14 ,/did;

Fo(di, dj,rij) = Tor
ij

3.3 Births and deaths dependent upon edge range

In some circumstances, it is reasonable to assume that connections between vertices are determined
in part by their relative locations in some physical or abstract spdlnperg 200Q Przulj et al,



MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 5

2004). This concept of location in space may go beyond the geographical; there is evidence for a more
general ‘social distance’ metric that, in principle, could be inferred from the network \d&ittset al.,

2002. More specifically, ‘closeness; could be measured by combining a heterogeneous range of known
attributes Cox & Cox, 1994, e.g. via personal details supplied when subscribing to an online service.
Furthermore, in some types of online activity, individuals are terinfidencersif they are able to
persuade their friends, family and colleagues to copy their choi@hiology Quarterly2010. This

would correspond to occupying a central position in the relevant space. This differs from the type of hub
concept mentioned in Secti@lin that the level of influence does not depend on the current degree of
the node and is fixed for all time.

In the secific formalization of range dependent grasndrod 2002 2003 Grindrodet al., 2009
Higham 2003 20095, the vertices are considered to have an underlying (generally unknown) ordering
on the integer lattice, and thangeof any possible edgeconnecting vertices; andvj, is defined by the
distancem(e) = |i — j|. To generate an instance of the graph, each edge is then created independentl
with a probability given by some predetermined function of its range.

These ideas were extended@mindrod & Higham(2010 to the dynamic network setting. In that
case, we define a range-dependent birth rate and death rate

a(e) = F,(m(e)),
w(€) = Fu(m(e)),

whereF, andF,, are continuous mappings from the integers onto the interval [0,1].
Typically, we may choosé&, to be monotonically decreasing so that longer range edges are less
likely to arise. The case where

eojumoq

Feu (m) . (9m2
Fo(m —

for constant 0< 0 < 1 was studied irGrindrod & Higham(2010 and shown to be attractive from a
model calibration perspective.

This case of range-dependent edge evolution is special because not only are the births or deaths eagh
for edge independent from each other but also each edge depends only on its own immediate histor§(
(and of course its own range). In the newly proposed degree-dependent and cluster-dependent models®f
Sections3.1and3.2, the births and deaths depend®grin a more sophisticated way, and the evolution
of each edge cannot be determined without determining the evolution of some or all other possiblez
edges. For the range-dependent case though, whether eimiot Gy 1 depends only on whether it is
in Gk, and the corresponding forms assumeddf@) andw (€). As pointed out inGrindrod & Higham
(2010, if px(e) = P(e € Gy), then

AQ 1L29¥L 2/1/1/SZ/3I0ME/UBWEWY/WO2"dNO"OILIBPEDE)/:SARY WO} Pap

Pr+1(€) = a(e)(1 — pk(e)) + (1 — w(e)) pk(e).
So ask becomes large, such an evolving network burns out its initial starting point and we have

o(e)

m, as k — oo.

120z aunr g1 uo Jasn ybinguiP3 jo

Pk(€) = Poo(®) =

4. Long-term behaviour

Suppose we have any Markov model ot where we are given or can calcula®gGy1|Gk) for
all pairs (Gk+1, Gk) in § x &, as in @) above. Letsy, € S, denote themth element ofS,, for
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m=1,..., M(n). At thekth time step, letvx = (wk 1, ..., wk,M(n))T, wherewygm = P(Gk = sm).
Then theP (Gk4+1|Gk) together determine a transition matr, such that

Wk1 = Bwg.

Under the reasonable assumption of ergodicity, meaning that B is irreducible, this iteration tends to
a unique non-negative fixed powt > 0 satisfyingBw* = w*.
Let ¢(s) be any binary valued feature defined for slE S,, so thatyp = 1 if the graph has the
feature present, angl = O otherwise. Then as tends to infinity the expected value fGy) is given
by
M(n)
(@)= D whg(sm).
m=1
In particular, each possible edgejs present with a probability

Poo(®) = D wiy,
eecsn
Let G* denote thdong-term expected random graplvhere each edge has a probabilityp., (e) of
being present.

Suppose this model does not use some additional (imposed) knowledge that differentiates between
the vertices. Of course range-dependent evolving graphs employ an imposed ordering of the vertices for
example; while Baralisi style aggregative graphs allow vertices to become active in some predefined
order, externally imposed. But for evolving graphs having no such vertex discrimination, symmetry
demands thaG* is invariant to any permutations of the vertices. Hence, all possible eddas ame
equally likely: G* is an Erdds—Renyi random graph, which therefore has a Poisson distribution of ver-
tex degrees, and no scale free or small world properhiesvinan 2010. For example, this must be
true of the evolving networks depending solely upon (current) vertex degrees or localized clustering
coefficients, introduced in the Sectio®d and3.2

So, if we observe alarge evolving graph with long-term average behaviour which has a non-Poissonian
vertex degree distribution, then we know that the dynamics of any assumed underlying Markov model,
of the type introduced here, must involve some extra knowledge or imposed information distinguishing
the vertices. The Markovian assumption could itself be tested by computing correlations over time.

5. Numerical simulations

In Fig. 1, we show the first sixteen adjacency matrices that arise from a degree-based model, as described
in Section3.1. This represents a particular path of the stochastic process, where the networlkat tep

was computed by calculating the edge birth and death rates for the network latstgpsing a pseudo-
random number generator to insert and delete edges accordingly. The precise details are as follows. For
a pair of vertices and j, we used an edge birth probability given by

1 Z0Z aunr g1 uo Jasn ybinquipg jo AlsiaAiun Aq 1L.2ov L Z/L/L/SZ/o1onie/uewewl/wod dnotolwapeoe)/:sdny WwoJ) papeojumoq

e pa=0.9ifmin(deg, deg) > 8,

e pp = 0.2 otherwise,

and an edge death probability given by
e pc=009if min(deg, deg) <6,

e pgq = 0.2 otherwise.
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FiG. 1. Initial network adjacency matrix and first fifteen iterates for a degree-dependent evolution. Vertices are ordered according%\’
to degree at time zero. el
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Hence, in this model, new edges are favoured between vertices that both have relatively high degr
and existing edges involving at least one low-degree node are penalized. In order to make the adjacency
matrices compact for visualization purposes, we used a relatively small number of verticd®. We
begin, at time = 0, with a sample of an Eis—Renyi random graph with 38 edges. The vertices are
ordered according to their degree in the initial network, from high to low.

After continuing the iteration for 200 more time steps, Aghows time levels = 216 tot = 231.

To illustrate long-time behaviour on a larger network, Aghows the results for a case with=
200 vertices. Here, the initial network, shown in the upper left picture, is chosen from the preferential
attachment modeBaralasi & Albert, 1999 Newman 2002, as implemented in the function pref.m of
CONTEST {raylor & Higham 2009. We used the same degree-based birth and death rate construct as
for Figs1 and2, with edge birth probabilities rescaled to

D
izl

Aysieniun Aq LzoyL

p3jo

ul

e pa=03ifmin(deg, deg) > 25,
e pp = 0.05 otherwise,
and an edge death probabilities given by

e pc=0.9if min(degq, deq) < 10,

L 20Z aunr g| uo Jasn L|5an

e pg = 0.6 otherwise.

The initial degree distribution, which by construction is scale-free, is shown in the upper right picture.
The lower left picture then shows the adjacency matrix aftéitib@e steps, with degree distribution

in the lower right. We see that the scale-free pattern of the initial degree distribution is completely

lost over time and a Poisson-type distribution has arisen, as predicted in S&ckonconfirmation,
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FIG. 2. Iterates at timé = 216 tot = 231 for the network sequence initiated in Flg.

Fig. 4 plots the cumulative degree distribution as circles and superimposes as a solid line the cumulative
Poisson distribution with the same mean of3L5To further quantify the goodness of fit to a Poisson
distribution, Fig.5 gives quantile—quantile plot (using qqplot from the MATLAB statistics toolbox,
http://mww.mathworks.com/help/toolbox/stats/5. Here, the quality of fit can be judged via closeness to
the reference lineGentle 2009.

Figure 6 shows a different scenario where the edge evolution involves an external factor. Here, we
mix together the degree-dependent and range-dependent ideas from S&dtand$3.3. For the same
sizen = 200 and the same initial network as in F&ywe now use edge birth rates given by

e pa=exp(—|i —j|/10) if deg +deg > 50,
e pp = 0.05 otherwise,

and edge death rates given by

e pc = 09if max(deg, deg) < 30,

e pa =exp(—|i — j|/10) otherwise.

In this case, pairs of vertices are likely to grow a new edge if at least one of them has high degree and
they are in close proximity. An existing edge connecting vertices that have degree below 30 is likely
to be removed. We see that the long-time network at tinfehks a small number of vertices that are
abundantly connected to near neighbours. The resulting degree distribution looks far from Poisson, as
verified in the cumulative distribution plot of Fig.and the quantile—quantile plot of Fig.

As a final computational test, we consider an evolving network fe@gleet al. (2009. This data
comes from a ‘Reality Mining’ study that used mobile phones to follow 106 subjects at Madras In-
stitute of Technology over the course of the 2004-2005 academic year. Pairwise calls, SMS activity
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FIG. 3. An evolving network with degree-based evolution. Top left: initial network. Top right: initial degree distribution. Bottom
left: network at timet = 10%. Bottom right: degree distribution at tinte= 10%.
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FiG. 4. Circles: cumulative degree distribution for titne: 10% network shown in Fig3. Solid line: interpolant through cumulative
degree distribution for a Poisson random variable with matching mean®f 15

1 Z0Z aunr g1 uo Jasn ybunquipg jo AlsiaAiun Aq 129y L Z/L/L/SZ/e1onie/uewewl/wod dnotolwapeoe)/:sdyy WwoJj papeojumoq



10 P. GRINDROD AND D. J. HIGHAM

QQ Plot of Sample Data versus Distribution
30r-

25+ -

n
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FIG. 5. Quantile—quantile plot for the degree data and Possion distribution from.Fig.

and proximity information were recorded. Here, we consider just the voice call component of the data,
summarized into weekly activity. So a link between nodaad j in thekth adjacency matrix indicates
that at least one phone call took place between subjeatsl j in weekk. This represents an evolving
network over 52 time points. This network sequence was also usédimdrod & Parsong2010, a
visualization of the complete data set can be found there. Of course, understanding the mechanisms
that drive this type of dynamic network has immediate benefits for designing mobile phone contracts,
identifying and marketing to specific customer groups and predicting future patterns of network useage.
We attempted to calibrate this evolving network based on a range-dependent model. Following
Grindrod & Higham(2010, we formed a Laplacian matrix based on the cumulative edge data and
used the Fiedler vector to infer an ordering of the nodes. More precisely, we formed the symmetric
matrix L — D = W, whereW records the accumulated edge count between each pair of nodes and the
degree matridXD is diagonal with(D);; = Z?zl(W)ij. By constructionL has a smallest eigenvalue
of zero. For the second smallest eigenvalue, we recorded the corresponding eigenvEusor node
is placed before nodgif v; < vj. Itis shown inGrindrod & Higham(2010 that this ordering solves
a relaxed version of the problem of finding the maximum likelihood reordering under an appropriate
range-dependent model.
For each pair of nodeisand j, we estimated the birth and death probabilitids fased on their
observed frequency. However, in this context, it is not appropriate to use a simple frequency count for
the edge deatls/N, where

e sisthe number of edge deaths observed, and

e N isthe total number of time points between the first and penultimate time on which an edge existed.

1 Z0Z aunr g1 uo Jasn ybunquipg jo AlsiaAiun Aq 129y L Z/L/L/SZ/e1onie/uewewl/wod dnotolwapeoe)/:sdyy WwoJj papeojumoq



MODELS FOR EVOLVING NETWORKS: WITH APPLICATIONS 11

200

150

100

50

3 7 1115192327 31 356 39
degree

140

120

100

80
60
40

20

0 50 100 150 200 0 50 100 150
nz = 2792 degree

FiIG. 6. An evolving network with evolution based on degree and edge range. Top left: initial network. Top right: initial degree
distribution. Bottom left: network at time= 10*. Bottom right: degree distribution at timte= 104,
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FiG. 7. Circles: cumulative degree distribution for titne: 10* network shown in Fig6. Solid line: interpolant through cumulative
degree distribution for a Poisson random variable with matching mean of 14.
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QQ Plot of Sample Data versus Distribution
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FIG. 8. Quantile—quantile plot for the degree data and Possion distribution frord.Fig.

This is becaus® = 0 for many paird and j. For this reason, we used Laplace’s law of succession
(MacKay, 2003 to give (s + 1)/(N + 2) as our estimate for the edge death probability. Similarly, the
edge birth probability was estimated @5+ 1)/(N’ + 2), where

e <’ is the number of edge births observed, and
e N’isthe total number of time points between the first and penultimate time on which no edge existed.

Figs9 and10indicate the estimated birth and death probabilities, respectively, for the node ordering
given by the Fiedler vector. There are two main observations to be made.

1. In both figures, the probabilities are not uniform across paénsd j. Following the discussion
in Sectiord, this rules out the possibility that the data comes from the steady state of an evolving
network model like those discussed in Secti@nksand3.2, where nodes are not differentiated
by some external property.

2. The nodes have been reordered in an attempt to reveal range dependency, so that, in this new
ordering, birth and death rates depend solelyich j|. In Figs9 and10, this would correspond
to a Toeplitz structure (common values along each superdiagonal). No such obvious pattern is
observed, although there is an indication that some nodes are very active, having relatively high
edge birth and death probabilities, and in many cases, this activity is localized to neighbours
who are close in the new ordering. There is also evidence of clusters of high activity in blocks
along the diagonal, where near-neighbours in this newly discovered ordering have strong mutual
affinity. This behaviour is in broad agreement with the mixed ‘range and degree dependence’
model that was used for Fi@.
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FIG. 9. Symmetric matrix whosg j element shows the estimated birth probability 4y for an edge between nodesnd j,
assuming range-dependent activity. The underlying data came from an evolving network arising in telecommunication. Nodes al
ordered via a Fiedler vector in an attempt to reveal range-dependency, as descBbiediod & Higham(2010.
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6. Discussion

Ideas from network science have proved to be useful in a range of disciplines, but we feel that ther
is great value to be had from moving attention away from fixed topological structures. Many ap-
plications, notably in telecommunications, social networking, online trading and utility consumption,
give rise to a sequence of network ‘snaphots’ from an evolving system. Summarizing and quanti-5
fying the mechanisms that drive the network evolution has a clear potential to help with decision- Fn"
making issue faced by professionals in areas such as online marketing, telecommunications and busme@s

development. <a

New challenges arise in this time-dependent context. Here, we focussed on modelling apsects—c
what mechanisms might govern the changes in topology? We extended the framev@oikdrod & 8
Higham (2010, showed that broad conclusions may be drawn about steady-state behaviour and testea
these ideas on real mobile phone data. co

We are currently in a data rich, information poor (DRIP) era where there are huge potential beneflts‘_z,
to be had from smarter, more strategic use of evolving network data. Among the key chaltzaiiges, 3

brationandmodel selectiostand out immediately—fitting and comparing models that have a tractable R
number of parameters in terms of their explanatory and predictive power on real data sets. An accurate,
well-tuned model would not only offer a high-level summary of the nature of the interactions but would
also give a powerful quantitative tool to predict future evolution and study the response of the network
under ‘what-if’ scenarios. We hope that the framework outlined here sets the scene for a systematic
modelling approach.
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FiG. 10. Analogue of Fig9 for edge death probabilities.
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