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Googling the Brain: Discovering
Hierarchical and Asymmetric
Network Structures, with
Applications in Neuroscience
Jonathan J. Crofts and Desmond J. Higham

Abstract. Hierarchical organization is a common feature of many directed networks
arising in nature and technology. For example, a well-defined message-passing frame-
work based on managerial status typically exists in a business organization. However,
in many real-world networks, such patterns of hierarchy are unlikely to be quite so
transparent. Due to the nature in which empirical data are collated, the nodes will
often be ordered so as to obscure any underlying structure. In addition, the possibility
of even a small number of links violating any overall “chain of command” makes the
determination of such structures extremely challenging.

Here we address the issue of how to reorder a directed network to reveal this type
of hierarchy. In doing so, we also look at the task of quantifying the level of hierarchy,
given a particular node ordering. We look at a variety of approaches. Using ideas from
the graph Laplacian literature, we show that a relevant discrete optimization problem
leads to a natural hierarchical node ranking. We also show that this ranking arises
via a maximum likelihood problem associated with a new range-dependent hierarchical
random-graph model. This random-graph insight allows us to compute a likelihood ra-
tio that quantifies the overall tendency for a given network to be hierarchical. We also
develop a generalization of this node-ordering algorithm based on the combinatorics of
directed walks. In passing, we note that Google’s PageRank algorithm tackles a closely
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related problem, and may also be motivated from a combinatoric, walk-counting view-
point. We illustrate the performance of the resulting algorithms on synthetic network
data, and on a real-world network from neuroscience where results may be validated
biologically.

1. Introduction

Determining hidden structure and substructure within a complex network pro-
vides us with a host of clues concerning both its functional capabilities and its
evolutionary history. This motivates the need for quantitative tools to discover
significant topological features, such as well-connected communities, bipartite
structures, bottlenecks, motifs, hubs, and authorities [Costa et al. 07, Fortu-
nato 10, Girvan and Newman 02, Holme et al. 03, Sporns and Kotter 04]. In
this work, we focus on a particular type of structure, namely that of a directed
hierarchy, a notion that will be defined more precisely as we proceed.

We begin by noting that the term hierarchical may be used to denote a fractal
type of network organization, whereby smaller modules repeat in a self-similar
manner [Ravasz and Barabási 03, Zhou et al. 06]. In this work we are using the
alternative meaning of hierarchical to denote a directed network structure that
supports a well-defined message-passing or “chain of command” scenario such
that the processing of information or the exercise of managerial control proceeds
sequentially in a top-to-bottom fashion. This is the viewpoint taken in the recent
articles [Chen et al. 07, Muchnik et al. 07, Trusina et al. 04]. Our work differs in
that we aim to use first-principle arguments based on quantitative measures of
network hierarchy in order to derive algorithms that reveal these structures. We
also aim to provide a quantitative summary of the overall tendency of a given
network to be hierarchical, and in doing so, we introduce a new class of random
graphs with a hierarchical structure.

We use the following notation. Given an unweighted directed network consist-
ing of N nodes, we denote by A ∈ R

N ×N the corresponding adjacency matrix.
So A is generally asymmetric and has aij = 1 if there is an edge from node i to
node j, and aij = 0 otherwise. We assume aii = 0 for i = 1, . . . , N , discounting
self-loops. The out- and in-degrees of node k are specified as

degout
k :=

∑
j

akj and degin
k :=

∑
i

aik ,

respectively. We denote by P the set of all permutations of the integers
1, 2, . . . , N , and use pi to denote the ith component of member p ∈ P. The
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Euclidean vector norm is denoted by ‖ · ‖2 , and 1 ∈ R
N represents the vector

with all components equal to one.
The layout of the paper is as follows. In Section 2 we recall how the widely

used Fiedler vector is relevant as the solution to an optimization problem that
emphasizes similarity between nodes. We then introduce a new optimization
problem as a means to quantify hierarchy, and show how it can be solved. This
results in a simple network-reordering algorithm based on the difference between
out- and in-degrees.

In Section 3, we exploit ideas from random-graph theory that can be used to
reorder a network from a maximum-likelihood perspective. We show that the al-
gorithm from Section 2 may be viewed as a maximum-likelihood reordering under
a new, directed, range-dependent random-graph hypothesis. In addition to pro-
viding an alternative motivation for the algorithm, this viewpoint also allows us
to quantify the level of hierarchy in a network by comparing log-likelihood ratios
for hierarchical versus nonhierarchical range-dependent structures. We give some
illustrative computational results on synthetically generated networks, quantify-
ing the extent to which this approach is tolerant of noise.

Section 4 then looks at an alternative, combinatoric, approach. We show how
the level of hierarchy in a particular node can be conveniently quantified by
counting directed walks. We show in Section 5 how Google’s PageRank algorithm
performs a related task. In Section 6 we evaluate the new methods on a neuronal
network whose hierarchical structure has biological significance.

2. Out-Degree Minus In-Degree

To motivate the work in this section, we begin with the two-sum [Barnard
et al. 95, Higham 03]

N∑
i=1

N∑
j=1

(i − j)2aij .

This nonnegative quantity is small when the presence of edges is biased toward
nodes that have nearby indices. Equivalently, it is small when the nonzeros in the
adjacency matrix appear close to the diagonal. Reordering the nodes corresponds
to the mapping i → pi for some permutation p ∈ P, and the task of finding a
minimum two-sum reordering may thus be written

min
p∈P

N∑
i=1

N∑
j=1

(pi − pj )2aij . (2.1)
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In general, this discrete optimization problem is computationally intractable,
and it is therefore common to consider a relaxed version in which p is allowed to
take real values. To avoid redundancies from scaling and shifting, we also impose
constraints ‖p‖2 = 1 and pT 1 = 0. This leads to

min
p∈R

N

‖p‖2 =1
pT 1=0

N∑
i=1

N∑
j=1

(pi − pj )2aij . (2.2)

We may now introduce the graph Laplacian L := D − B, where B := 1
2 (A +

AT ) and the diagonal matrix D has dii =
∑

k bik . In the case that the graph
represented by B is connected, L is symmetric positive semidefinite with a single
eigenvalue equal to zero and corresponding eigenvector proportional to 1. It
follows that (2.2) is solved by taking p to be the Fiedler vector v, that is, the
eigenvector corresponding to the second-smallest eigenvalue of L. We refer to
[Chung 97, Strang 08, Van Driessche and Roose 95] for further details, noting
that most authors treat the case in which A is symmetric.

Having obtained a relaxed solution v, we may recover a permutation p ∈ P
by the natural procedure of ordering the nodes according to their real-valued
components. More precisely, we compute p ∈ P such that

vi ≤ vj ⇐⇒ pi ≤ pj , (2.3)

with some rule for treating ties.
To illustrate this idea, the upper left picture in Figure 1 shows the adja-

cency matrix for a network showing a strong preference for short-range edges (to
produce this matrix, we computed an instance of Grindrod’s range-dependent
random-graph model described in Section 3, with β = 0.015 and N = 100). After
applying a random shuffle to the nodes, we obtained the adjacency matrix shown
in the upper middle picture in Figure 1; any evidence of the range-dependent
structure has been completely destroyed. Finally, the upper right picture in Fig-
ure 1 shows the adjacency matrix when reordered via the Fiedler vector. We
see that the hidden structure has been recovered. The respective values of the
two-sum going from left to right are 32037, 1283966, and 30155. As mentioned
above, the reordering from the Fiedler vector is not guaranteed to minimize the
two-sum, since it solves only a relaxed version of the problem. However, in this
case we note that it gives a two-sum that is below the value produced by the
original lattice ordering.

We now consider how this approach can be adapted to discover hierarchical
structure. We use the convention that nodes are to be ordered in descending
order of importance, so node 1 is at the top of the hierarchy and node N at the
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Figure 1. Left: Adjacency matrix for a network with (a) short-range connectivity
structure and (b) hierarchical connectivity structure. Middle: In both cases, the
connectivity structure is hidden via a random shuffle of the network nodes. Right:
The respective structures are recovered via (a) a Fiedler vector reordering and
(b) reordering based on out-degree minus in-degree (see (2.6)).

bottom. For a given network and a given node ordering, we may then introduce
the new concept of a directed one-sum

N∑
i=1

N∑
j=1

(i − j)aij (2.4)

to quantify the level of hierarchy. In this expression, each edge is involved in the
overall sum. An edge that respects the hierarchy, i < j, contributes a negative
amount, with the weight i − j being more negative when i is further up the
hierarchy than j. Similarly, an edge that violates the hierarchy, i > j, contributes
a positive amount, with the weight i − j being more positive when i is further
down the hierarchy than j. It follows that a more negative value for the directed
one-sum corresponds to a more hierarchical combination of network and node
ordering.
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In order to search for the best way to reorder a given network in a manner that
reveals hierarchical structure, it is therefore reasonable to minimize the directed
one-sum:

min
p∈P

N∑
i=1

N∑
j=1

(pi − pj )aij . (2.5)

This is very simply rewritten as

min
p∈P

N∑
i=1

pi

(
degout

i − degin
i

)
,

and it follows that the problem (2.5) is solved by ordering the nodes according
to the difference between out- and in-degrees:

degout
i − degin

i ≥ degout
j − degin

j ⇐⇒ pi ≤ pj . (2.6)

We emphasize that in contrast to the two-sum case (2.1)–(2.3), this ordering
solves the discrete formulation of the problem, not just a relaxed version of it.

To illustrate this idea, the lower left picture in Figure 1 shows the adjacency
matrix for a network showing a strong hierarchical structure (to produce this
matrix, we computed an instance of the directed range-dependent random-graph
model described in Section 3, with α = 0.025 in (3.2) and N = 100). An arbitrary
node shuffle produced the adjacency matrix shown in the lower middle picture in
Figure 1. Finally, the lower right picture in Figure 1 shows the adjacency matrix
when reordered via the out-degree minus in-degree (2.6). We see that the hidden
structure has been recovered. The respective one-sum values from left to right
are −31309, −2602, and −32807, and we know from the derivation above that
the latter value is the global minimum.

We note that the authors in [Muchnik et al. 07] considered the ratio of in-
degree to out-degree in order to rank a node within a hierarchy, without giving
any justification for the measure. Of course, this is equivalent to a ranking based
on the log-difference log(degout

i ) − log(degin
i ), whereas the ranking that we have

derived via the directed one-sum does not use logs. Additionally, the new ranking
derived here is also able to deal with nodes containing no outgoing connections.

We also note a similarity between directed one-sum minimization and the task
of finding a topological ordering of a directed graph. Such an ordering may be
viewed as having no positive values in the directed one-sum (2.4). Alternatively,
it may be viewed as an ordering in which all nonzeros in the adjacency matrix
have been placed in the upper triangle. This is possible if and only if we have
a directed acyclic graph (DAG) [Bang-Jensen and Gutin 02]. The minimization
problem (2.5) has a different emphasis in that (a) we seek a complete ordering of
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the nodes rather than a partial ordering, and (b) we wish to apply the concept to
general directed networks rather than DAGs. Further, in (2.5), we measure the
extent to which the hierarchy has been respected or violated in the sense that a
link from node 1 to node 100 makes a more favorable contribution than a link
from node 100 to node 99, and similarly, a link from node 100 to node 1 makes a
more unfavorable contribution than a link from node 100 to node 99. However,
in the spirit of topological ordering for DAGs, in Section 6 we use the percentage
of nonzeros in the upper triangle of the reordered adjacency matrix as one way
to compare algorithms.

3. Random-Graph Viewpoint

In this section we show that the out-minus-in ordering (2.6) can also be justified
via a random-graph argument, and use this as a means to quantify the amount
of hierarchy in a given network.

The general class of range-dependent random graphs introduced in
[Grindrod 02, Grindrod 03] may be defined as follows.

Definition 3.1. For a given function g that maps from {1, 2, . . . , N − 1} to [0, 1], a
range-dependent random graph (RDRG) is an undirected graph that has an edge
from node i to node j with independent probability g(|i − j|).

With this definition, we may think of node i as being positioned at location i

on the integer lattice. The chance of two nodes being linked is then a function
of their lattice distance |i − j|.

The upper left picture of Figure 1 shows an instance of an RDRG with g taking
the functional form of (3.4), with β = 0.15. Because g is a decaying a function,
“long-range” connections are less likely than those at “short range.”

We now introduce a natural analogue of Grindrod’s RDRG class of models
that allows directed and hierarchical networks to be generated at random.

Definition 3.2. For a given function f that maps from {1, 2, . . . , 2N − 1} to [0, 1],
a directed range-dependent random graph (dRDRG) has an edge from node i to
node j with independent probability f(i − j + N).

A hierarchical structure will arise when f is monotonically decreasing in this
dRDRG setting; in that case, the edge from node i = 1 to node j = N is the
most likely, and the reverse edge from i = N to j = 1 is the least likely.
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Given a network and an ordering, the likelihood that these data came from
the dRDRG model is given by∏

ai j =1

f(i − j + N) ×
∏

ai j =0

(1 − f(i − j + N)) .

We may then ask for the reordering that is most likely under this model:

max
p∈P

∏
ai j =1

f(pi − pj + N) ×
∏

ai j =0

(1 − f(pi − pj + N)) . (3.1)

The next result connects this problem to the directed one-sum minimization.

Proposition 3.3. The one-sum minimization problem (2.5) is equivalent to the max-
imum likelihood reordering problem (3.1) when the directed range-dependency
takes the form

f(i − j + N) =
e−α(i−j+N )

1 + e−α(i−j+N ) , (3.2)

for any fixed α > 0.

Proof. We may follow the technique used in [Grindrod 02] in the undirected case
by rewriting (3.1) as

max
p∈P

∏
ai j =1

f(pi − pj + N)
1 − f(pi − pj + N)

×
∏

all i,j

(1 − f(pi − pj + N)) .

The second factor, the probability of a null graph, is independent of p, so an
equivalent problem is

max
p∈P

∏
ai j =1

f(pi − pj + N)
1 − f(pi − pj + N)

.

When f has the form in (3.2), this may be rewritten as

max
p∈P

∏
ai j =1

e−α(pi −pj +N ) .

Taking logs and negating the objective function leads to

min
p∈P

α

N∑
i=1

N∑
j=1

(pi − pj + N) aij ,

which is clearly equivalent to (2.5).

The picture on the left in Figure 2 shows an instance of the hierarchical dR-
DRG model, with the nodes ordered according to the range-dependency, in the
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Figure 2. An instance of a hierarchical dRDRG with N = 100 and α = 0.0262
(left). The model connects node i to node j with probability f (i − j + N ), where
f has the form shown on the right.

case that N = 100 and α = 0.0262 in (3.2). We see that the structure is con-
sistent with the aims of the directed one-sum minimization: Nonzeros are most
prevalent at the upper right-hand corner of the matrix, and the density decreases
as we move toward the lower left-hand corner. In the right of the figure we plot
the range-dependency function f from (3.2).

We see from Definition 3.1 that with Grindrod’s RDRG model, we have, for
a given decay function g, aij = 1 with probability g(|i − j|) and aij = 0 other-
wise. It was shown in [Higham 03] that the corresponding maximum likelihood
reordering problem

max
p∈P

∏
ai j =1

g(|pi − pj |) ×
∏

ai j =0

(1 − g(|pi − pj |)) (3.3)

is equivalent to two-sum minimization (2.1) for the particular range-dependency

g(|i − j|) =
e−β (i−j )2

1 + e−β (i−j )2 , (3.4)

where we have introduced a free parameter β > 0 to be compatible with the
general case specified in Proposition 3.3.

This insight puts us in a position to compare the likelihood that a given
network arose from each of these two model classes. We may summarize this as
Algorithm 1.

As a proof of principle, we give results for a large-scale experiment using
synthetically generated networks. In each test, we began with an instance of
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Algorithm 1 Hierarchical reordering and network comparison.
1. Fit the parameters α and β in the two models. This can be done by match-

ing the number of edges in the given network to the expected number of
edges in the random-graph model. The latter is a monotonic function of
the free parameter in both cases, so a simple bisection root-finding method
is guaranteed to succeed.

2. Compute the maximum likelihood from the hierarchical model, say Lh ,
which is given by inserting the minimum directed one-sum ordering into the
objective function in (3.1) with f defined in (3.2). Compute the approximate
maximum likelihood from the nonhierarchical model, say Lnh , which is
given by inserting the Fiedler vector ordering into the objective function
in (3.3) with g defined in (3.4). (This is approximate because the Fiedler
vector solves a relaxed version of the minimum two-sum problem.)

3. Compute the normalized log likelihood ratio

L :=
2

N(N − 1)
log

(Lnh

Lh

)
. (3.5)

A negative ratio indicates that the network data support the hierarchical
range-dependency over the nonhierarchical alternative.

a network from one of the two random classes under consideration. To assess
robustness to noise, we then added spurious links at random. For each network
instance, we placed a new link between all possible pairs of nodes with small
independent probability q. If the likelihood ratio correctly identified the structure
of interest, we increased the noise parameter q and repeated the analysis. Tables 1
and 2 record the smallest value of q (averaged over an ensemble of 1000 random
graphs) for which the likelihood ratio incorrectly classified the structure. We used
graphs of order N = 50, 100, 200, 500, 1000, which had on average (N 2 − N) × s

edges; here s ∈ {0.1, 0.2, 0.3, 0.4, 0.5} denotes the proportion of edges present, on
average, for each network instance.

From Tables 1 and 2, we see that the likelihood approach continues to classify
the network models correctly even after some 10%–15% of additional links have
been added. Note that robustness generally improves as we increase the propor-
tion of connections present in the initial instance, a trend that is particularly
evident for the hierarchical model. This observation is consistent with the idea
that the presence of additional links translates into additional information con-
cerning network architecture. To match the case of typical real networks, we have
focused on sparse structures. If we tuned α and β to allow for increasingly dense
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N

s 50 100 200 500 1000

0.1 0.1150 0.1147 0.1149 0.1122 0.1151
0.2 0.1360 0.1354 0.1370 0.1361 0.1359
0.3 0.1472 0.1472 0.1479 0.1471 0.1478
0.4 0.1548 0.1552 0.1550 0.1547 0.1546
0.5 0.1572 0.1573 0.1577 0.1571 0.1572

Table 1. Proportion of spurious links tolerated in discovering a hierarchical dR-
DRG network.

connectivity patterns, then intuitively, we would expect to see the test become
less reliable: As both network models approach the complete graph, they become
indistinguishable.

4. Directed Walks and Matrix Functions

The out-minus-in ordering studied in the previous two sections is computation-
ally convenient and was justified from first principles. However, it has the possible
drawback that because it is based on integer-valued quantities, nodes may fre-
quently be tied. In particular, for the simple case of a directed binary tree, all
nodes except the root and leaves have an equal out-minus-in score.

N

s 50 100 200 500 1000

0.1 0.1290 0.1259 0.1256 0.1271 0.1274
0.2 0.1356 0.1339 0.1352 0.1353 0.1348
0.3 0.1366 0.1360 0.1368 0.1363 0.1357
0.4 0.1362 0.1362 0.1360 0.1365 0.1359
0.5 0.1359 0.1358 0.1358 0.1357 0.1355

Table 2. Proportion of spurious links tolerated in discovering a nonhierarchical
RDRG network.



244 Internet Mathematics

A more global strategy that looks beyond the degree structure was considered
in [Muchnik et al. 07], where the concept of attraction basin hierarchy was intro-
duced. The resulting algorithm is based on counting the number of shortest paths
to/from a particular node from/to all other nodes, which is a hard combinatorial
problem in general. Here, we propose an alternative measure that uses directed
walks rather than paths.1 Recent work has shown that walk-based measures pro-
vide an effective tool for determining other types of connectivity patterns [Crofts
et al. 10, Estrada and Hatano 08, Estrada et al. 08, Grindrod 11], and there are
at least four specific arguments in their favor:

� information does not generally flow along geodesics [Borgatti 05, New-
man 05];

� walk counts are less sensitive than path-length counts to spurious or missing
edges [Grindrod 11];

� walk counts can be computed conveniently using basic operations in linear
algebra [Estrada and Higham 10];

� as we will show below, Google’s successful PageRank algorithm has a walk-
based interpretation.

The computational convenience arises because the element (An )ij counts the
number of directed walks of length n that start at node i and terminate at node
j. We may then introduce coefficients c0 , c1 , c2 , c3 , . . . and consider the expansion

F (A) = c0I + c1A + c2A
2 + c3A

3 + · · · . (4.1)

Because longer walks are generally (a) more numerous and (b) less important
than shorter walks, it is reasonable to choose a decreasing sequence of coefficients.
It was suggested in [Estrada and Rodŕıguez-Velázquez 05] that ck = 1/(k!), so
that F (A) = exp(A), and this choice has proved to be very useful in many sce-
narios [Crofts et al. 10, Crofts and Higham 09, Estrada and Hatano 07, Estrada
and Hatano 08, Estrada et al. 08, Estrada et al. 09]. The resolvent function
F (A) = (I − δA)−1 , corresponding to ck = δk , was considered in [Estrada and
Higham 10] and can be traced back to earlier work on node centrality indices in
social network analysis [Katz 53, Newman 10]. It is also possible to interpret δ

as the probability that a message will successfully traverse an edge.

1 A walk differs from a path in that nodes and edges may be reused during the traversal.
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We may now classify the hierarchical rank of a node by measuring

�
∑

j �=i(F (A))ij , which quantifies how effectively node i is able to pass infor-
mation to or exert control over the other nodes in the network;

�
∑

j �=i(F (A))j i , which quantifies how effectively the other nodes in the net-
work are able to pass information to or exert control over node i.

We therefore propose that node i be assigned the hierarchical ranking

ri =
∑
j �=i

(F (A))ij −
∑
j �=i

(F (A))j i , (4.2)

leading to a reordering in descending rank order, that is,

ri ≥ rj ⇐⇒ pi ≤ pj .

Note that the walk-based hierarchy measure of (4.2) can be considered a natural
generalization of the degree-based algorithm introduced earlier, in the sense that
by choosing F (A) = A, we recover the out-degree minus in-degree ordering.

5. Links to Google’s PageRank

The well-known PageRank algorithm is used by Google to quantify the impor-
tance of web pages based on the hyperlink topology of the World Wide Web
(WWW) [Langville and Meyer 06, Page et al. 98]. Letting A represent the web
adjacency matrix, so that aij = 1 means that page i has a hyperlink to page j,
this algorithm assigns rank according to the vector(

I − θAT Dout−1
)−1

1, (5.1)

with a higher value in component i denoting more importance for page i. Here
θ ∈ (0, 1) is a free parameter and Dout is the diagonal out-degree matrix, so
Dout

ii = degout
i . We assume for the moment that degout

i ≥ 1 for all i. Writing
Â := AT Dout−1 , we see that for sufficiently small θ, the ranking in (5.1) may be
expanded as (

I + θÂ + θ2Â2 + θ3Â3 + · · ·
)
1.

This shows that PageRank may be interpreted as a directed-walk counting algo-
rithm, with a few twists:2

2 We note that this is distinct from the well-known random walk interpretation of PageRank
[Langville and Meyer 06, Page et al. 98].
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Link direction is reversed and edges are scaled. The new matrix Â has
âij �= 0 if and only if there is a hyperlink from page j to page i. This is intuitively
reasonable—the j 	→ i hyperlink may be interpreted as page j deferring to, or
handing control over to, page i. (In the WWW context it is also extremely per-
tinent that page i has no direct influence over the creation of a j 	→ i hyperlink.
This makes it difficult to boost artificially your own page’s ranking.) Supposing
that the hyperlinks ik+1 	→ ik , ik 	→ ik−1 , . . . , i2 	→ i1 exist on the WWW, then
the walk of length k given by i1 → i2 → · · · → ik+1 exists in the reversed net-
work, but in addition to the θk scaling that penalizes long walks, there is also a
scaling

1
degout

2

1
degout

3
· · · 1

degout
k+1

penalizing walks involving “promiscuous” nodes that make themselves available
for many other such walks. This method for nullifying the influence of overactive
nodes that are likely to be lowly ranked is clearly relevant in the WWW
setting. However, in the context of this work, where we are seeking to discover
a hierarchical “chain of command,” it seems less appropriate to normalize in
this way. If node i gives orders to (i.e., has a hyperlink from) a node that
also gets orders from (i.e., has hyperlinks to) many other nodes, then this
could be regarded as sound evidence for placing node i near the top of the
hierarchy.

Closed walks are considered. Node i is given a ranking based on the sum
over all j of a weighted count of directed walks that begin at i and end at j,
including the closed-walk case j = i.

6. Local C. elegans Network

In the PhD thesis [Durbin 87], the author went about the task of sorting the
neurons in the nerve ring of C. elegans3 vertically in such a way that as many
of the synapses as possible pointed downward. Durbin used an ad hoc combi-
natoric algorithm to create an ordering. Here, we propose to repeat Durbin’s
analysis using the automated algorithms that we have derived. We consider a
local subnetwork of 131 frontal neurons and 782 chemical synapses of the neu-
ronal network for C. elegans [Kaiser and Hilgetag 06, Pan et al. 10, Varshney

3 A 1-mm-long transparent roundworm.
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Figure 3. Adjacency matrix for the local network of 131 frontal neurons for C.
elegans.

et al. 11]. We exclude gap junctions4 from the analysis, since (a) it remains an
open question whether such connections exhibit directionality, and (b) current
experimental techniques are unable to extract this information in any case. The
adjacency matrix is shown in Figure 3.

Figure 4 shows the results of reordering the local C. elegans network based on

(i) out-degree minus in-degree,

(ii) the walk-based measure (4.2) with F (A) = exp (A),

(iii) the walk-based measure (4.2) with F (A) = (I − δA)−1 and δ = 0.025,

(iv) Google’s PageRank.

4 Gap junctions are channels that provide electrical coupling between neurons.
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Figure 4. Results for the C. elegans neuronal network: (a) reordered using out-
degree minus in-degree; (b) reordered using the walk-based measure with F (A) =
exp (A); (c) reordered using the walk-based measure with F (A) = (I − δA)−1 and
δ = 0.025; (d) reordered using Google’s PageRank algorithm.

In the latter case, dangling nodes, for which degout
i = 0, require a slight mod-

ification of the Google matrix in (5.1) [Langville and Meyer 06]. We used the
widely quoted teleporting parameter value θ = 0.85.

Table 3 quantifies the ability of each method to discover hierarchical structure.
The first row gives the directed one-sum, that is, the objective function in (2.5),
for each ordering. We note from Proposition 3.3 that the out-minus-in ordering
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resolvent
out minus in exponential (δ = 0.025) PageRank

Directed one-sum −32857 −27198 −32809 −22649
Proportion of nonzeros

in upper triangle
0.8095 0.7724 0.8056 0.7366

Table 3. Hierarchy scores for the C. elegans network.

minimizes this quantity. From Table 3, we see that the directed one-sum in (2.4)
attains a minimum value of −32857. Next came the walk-based algorithms, with
scores of −32809 using the resolvent function and −27198 using the matrix ex-
ponential. Finally, the ordering obtained via the PageRank algorithm performed
poorest according to this measure, with a score of −22649.

The second row in Table 3 records the proportion of nonzeros in the upper
triangle of the adjacency matrix. With this alternative measure, there is no extra
benefit/penalty from violating/exploiting the hierarchy with a “long-range” link
that spans many intermediate nodes. Instead, we simply count the proportion
of links that respect the hierarchy. We see from the table that the out-minus-
in ordering is marginally better than that given by the walk-based algorithms
according to this measure, with all methods scoring between 77% to 81%, while
PageRank achieved around 73%.

To justify the choice of δ = 0.025 in the resolvent-based reorderings, Figure 5
shows how the proportion of nonzeros in the upper triangle (left) and directed
one-sum (right) vary as a function of δ. Both measures start to degrade beyond
this level.

The normalized log-likelihood ratio in (3.5) was L = −1.9319, giving further
support for the visually compelling evidence in Figure 4 that this network has a
strong hierarchical element.

Let us now focus on the biological significance of these results in the particular
case of the walk-based measure with F (A) = (I − δA)−1 and δ = 0.025. Table 4
summarizes the results for the reordered C. elegans data, where we report those
neuronal classes represented by nodes in the top and bottom 10% of the reordered
network. Perhaps most noteworthy is the fact that neuronal classes representing
sensory neurons are highly prevalent at the top of the hierarchy (some 85%),
while the foot of the hierarchy consists wholly of a mixture of motor neurons
and command interneurons. In general, we found that the ordering returned was
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Figure 5. Plots of both hierarchy scores versus δ using the resolvent function
F (A) = (I − δA)−1 to reorder the C. elegans network.

in good agreement with that of Durbin, with sensory neurons placed at the top,
motor neurons at the bottom, and interneurons in between.

The command interneuron classes AVA, AVB, AVD, and AVE appearing
at the bottom of the hierarchy in Table 4 have been identified in previ-
ous studies [Morita et al. 01] as being highly connected to both sensory

Top 10% Bottom 10%

Neuronal Class Description Neuronal Class Description

RIH Ring interneuron AVA Command interneuron
ADL Amphid sensory neuron AVE Command internueron
CEP Head sensory neuron RMD Ring motor
IL2 Head sensory neuron RME Ring motor
OLL Head sensory neuron AVB Command interneuron
AVH Interneuron SMD Ring motor
URY Head sensory neuron AVD Command interneuron

Table 4. Neuronal class and type for those nodes contained within the top and
bottom 10% after reordering the C. elegans network based on the walk-based
measure with F (A) = (I − δA)−1 and δ = 0.025.
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and motor neurons. This suggests that they should lie in the middle of
the global hierarchy. However, we note that the majority of postsynaptic
connections made by these neurons are with motor neurons outside of the
local subnetwork studied here, which justifies their placement within this
subnetwork.

7. Discussion

This work considered a range of measures and algorithms relevant to discover-
ing and quantifying hierarchical structure in a given network. The basic out-
degree minus in-degree ordering (2.6) has the benefit of being the exact solu-
tion to an appropriate discrete optimization problem. Also, its connection to
a random-graph model allows it to be incorporated into a likelihood test (3.5)
for hierarchical versus nonhierarchical structure. Walk-based measures of the
form (4.2) directly generalize this approach and have the appeal of taking a
more global view of the network topology. Also, as shown in Figure 5, they can
be used in conjunction with hierarchy measures to fine-tune parameters in the
algorithm.

These new reordering approaches use extremely simple combinatorics, and
hence they scale favorably for large, sparse networks. If the expansion (4.1) is
truncated after a finite number K of terms (for example, K = 10), then the walk-
based ranking (4.2) requires only K sparse matrix–vector multiplications. This
gives an overall complexity proportional to the number of edges. The degree-
based ordering is comparable with the use of a single term in (4.1) and also has
complexity proportional to the number of edges.

Overall, we believe that this is a very promising methodology for discovering
and quantifying hierarchy in large, complex, directed networks.
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