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Abstract. 

How can small-scale parallelism best be exploited in the solution of nonstiffinitial value problems? It is 
generally accepted that only modest gains in efficiency are possible, and it is often the case that "fast" 
parallel algorithms have quite crude error control and stepsize selection components. In this paper we 
consider the possibility of using parallelism to improve reliability and functionality rather than efficiency. 
We present an algorithm that can be used with any explicit Runge-Kutta formula. The basic idea is to 
take several smaller substeps in parallel with the main step. The substeps provide an interpolation facility 
that is essentially free, and the error control strategy can then be based on a defect (residual) sample. If the 
number of processors exceeds (p - 1)/2, where p is the order of the Runge-Kutta formula, then the 
interpolant and the error control scheme satisfy very strong reliability conditions. Further, for a given 
order p, the asymptotically optimal values for the substep lengths are independent of the problem and 
formula and hence can be computed a priori. Theoretical comparisons between the parallel algorithm 
and optimal sequential algorithms at various orders are given. We also report on numerical tests of the 
reliability and efficiency of the new algorithm, and give some parallel timing statistics from a 4-processor 
machine. 
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1. Introduction. 

Recent analysis of parallel algorithms for nonstiff initial value problems has 
revealed a number of negative results. For example, parallelism offers no advantage 
when one-step methods are used to solve the standard linear test problem [25]. 
Although careful algorithm design can produce modest speedups [2, 18, 19, 29], it is 
generally accepted that parallelism can be exploited only to a limited extent 
[2, 20, 25]. Also, in certain cases, the speedup is obtained at the cost of relaxed error 
control. In this work, rather than attempting to improve on the "straight-line" 
efficiency of standard sequential algorithms, we explore the possibility of using 
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small-scale parallelism to improve functionality and reliability. In particular we 
concentrate on the provision of interpolation and defect control. 

The defect (residual) in a continuous approximation to the solution of an initial 
value problem is a useful theoretical tool [17,26, 28], and Enright [6] recently 
suggested using a defect sample as the basis of an error control mechanism. Such an 
approach is intuitively reasonable - if the defect is small then a "nearby" problem 
has been solved, Furthermore, standard differential inequalities [13~ page 56] show 
that the global error satisfies a method-independent bound and hence, in this sense, 
routines that control the defect can be thought of as interchangeable black boxes. 
Defect control is also one way to ensure tolerance proportionality; that is, an 
asymptotically linear relationship between the global error and the accuracy toler- 
ance [17, 26]. 

In the next section we introduce an algorithm that provides asymptotically 
reliable interpolation and defect control. The issue of selecting the free parameters in 
the algorithm is discussed in section 3, and the results of a numerical search for 
optimal parameters are given. Section 4 gives a comparison of the efficiency of the 
new schemes with that of existing,, defect control schemes. Numerical tests that 
confirm our theoretical predictions are summarized in section 5. Finally, in section 
6, we draw some overall conclusions and discuss possible extensions to this work. 

2. The defect control algorithm. 

Given the nonstiff initial value problem 

(2.1) y'(x) = f ( x ,  y(x)), y(a) = y ,  ~ RN, a <_ x <_ b, 

an s-stage explicit Runge-Kutta formula advances the numerical solution yn ~ y(x~) 

over a step of length h (=  h,) to x~ + ~ "= x, + h by forming 

(2.2) Y~+i = Y, + h i b~ki, 
i = l  

where 

(2.3) k~ = f ( x n ,  y.) ,  

ki = xn + cih, y~ + h ~ ai~kj , 2 <_ i <_ s. 
j = l  

It is useful, and in certain applications necessary, to provide a continuous approxi- 
mation p , ( x ,  + zh) ~ y(x, + zh) for r~(0, 1]. Good quality approximations will 
satisfypdx,) = y~, p',(x.) -- f (xn, y.),  p,(x~+~) = Y~+l andp~,(x~+t) = f (x .+l ,  Yn÷l), 
so that the corresponding piecewise approximation is globally C 1. Many such 
interpolation schemes have been derived recently, largely in conjunction with low 
order Runge-Kutta formulas (see, for example, [3, 5, 8, 12, 15, 21, 23]). The scheme 
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that we propose below falls into the class defined by Shampine [22]; see also 
Gladwell [11] for a related approach. 

The defect 6,(x) in p,(x) is the amount by which p.(x) fails to satisfy the ODE (2.1), 
that is 

6,(x):= p',,(x) -- f ( x ,  p,,(x)). 

Given an interpolant p,(x) it is possible to monitor the size of the defect in p,(x) on 
each step. Enright [6] discussed an error control scheme that attempts to keep the 
defect less than some user-supplied tolerance at all points in the range of integration. 
Here the defect is sampled at a single point x.  + z*h on every step, where z* is a fixed 
point in (0, 1), and ll~,(x, + z*h)ll is used to approximate maxto, tj ll6,(x, + zh)ll. If 
the norm of the defect sample is too large then the step is re-taken with a smaller 
stepsize. In general the shape of the defect over each step depends strongly upon 
f and x,. A heuristic approach for choosing ~* was outlined in [6], and it was found 
that the resulting scheme was able to control the defect quite successfully; typically 
the sample underestimates the maximum defect over the step by a factor of less than 
10. Some special defect control schemes were presented in [14] and [16]. Here the 
interpolants were derived in such a way that there is an asymptotically correct 
sample point z* that is independent o f f  and x,. These "robust" schemes control the 
defect more reliably than those of [6], but they do so at the expense of a considerably 
higher cost per step. In this work we aim to show that by exploiting parallelism, the 
cost of robust defect control can be reduced to a highly competitive level. 

The idea that we propose is to take several smaller steps in parallel with the main 
step using the same Runge-Kutta formula. More precisely, we choose an integer k, 
and take k - 1 parallel steps of length aih to give 

(2.4) y, +,, ~- y(x,, + aih), i = 1, 2 . . . . .  k, 

where 0 = al < o-2 < . . .  < ak = 1. The corresponding f-values f,+~, = 
f ( x ,  + trih, y, +,~,) will also be formed. We can now let p,,(x) be the Hermite interpola- 
ting polynomial of degree < 2k - 1 to the data {x, + trih, y, +,,, f ,  + ~,}~= 1. 

A suitable choice for k can be made by analyzing the local error and defect in p,(x). 
We write p,(x) in normalized form 

k k 

(2.5) p.(x.  + zh) = ~. di(z)y.+., + h ~. ei(z)f.+.,, 
i = 1  i = 1  

where d~('c) and e~(z) are scalar polynomials in z. (For example, dl(z) satisfies 
dl(trl) = 1, dl(tri) = 0 for i = 2 . . . . .  k, and d'l(trl) = 0 for i = 1 . . . . .  k.) Similarly, we 
let Q,,(x) denote the corresponding interpolant to the exact local data: 

k k 

(2.6) Q.(x.  + zh) = Z di(z)u.(x. + a,h) + h Z ei(z)u'n(x. + ~r,h), 
i = 1  i = I  

where u.(x), the local solution for the step, satisfies 
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u'.(x) = f ( x ,  u.(x)), u . (x . )  = y. .  

If a pth order Runge-Kutta formula is used, then standard truncation analysis 
(see, for example, E13], page 158) shows that the local error in y. +l has the form 

(2.7) le.+l :=  y .+l  - u.(x .+~)  = h p+I ~ A j F  i + O(hP+2), 
j = l  

where the scalar truncation coefficients Aj depend only on the Runge-Kutta for- 
mula, and the elementary differentials Fj involve partial derivatives o f f  evaluated at 
(x., y.). Also, the local error in the data in (2.4) has the general form 

(2.8) .v.+~ - u . ( x .  + alh) = a~ +1 te.+~ + O(hP+ Z). 

I f f  satisfies a Lipschitz condition in y then it follows from (2.7) and (2.8) that 

(2.9) f~+~, - u'.(x. + rrih) = O(h"+l). 

Subtracting (2.6) from (2.5) and using (2.8) and (2.9) we obtain the following 
expression for the data error in p.(x)  

k 

(2.10) p . ( x .  + zh) - Q.(x. + ~h) = le. + l ~ a f + l d i ( z )  + O( hp + a). 
i=1  

A well-known result from interpolation theory (see, for example, [4, page 67]) 
shows that the in terpolat ion error has the form 

k 

(2.11) Q. (x .  + zh) - u . (x .  + rh) = K h  2k 1~ (r -- O'i) 2 q- O(h2k+l) ,  
i=1  

where K depends on f and (x., y.), but is independent of z and h. Combining (2.10) 
and (2.11) we find that the local error in the interpolant satisfies 

(2.12) p . ( x .  + zh) - u . (x .  + zh) = O(hmin{Zk'P+ 1}). 

Choosing 2k > p + 1, the data error dominates in (2.12) and we have 

k 

(2.13) p . (x .  + rh) - u . (x .  + rh) = le. + 1 ~ a~'+l di(z) + O( hp+ z). 

In this case we see that, asymptotically, the local error at any point within the step is 
related to the local error in y. + ~ in a problem-independent way. A similar analysis 
shows that with 2k > p + 1 the defect satisfies 

(2.14) 3 . (x .  + ~h) - le.+l ~ a~,+id,(~) + O(hp+l). 
h i=l 

Hence the asymptotic shape of the defect is known a priori, and we have 
a "robust" defect control scheme available. Note that the expressions for the local 
error and defect in p.(x)  will only have the simple forms (2.13) and (2.14) if the data 



PARALLEL DEFECT CONTROL 651 

error dominates and the same Runge-Kutta formula is used for each parallel 

substep. 
The interpolation scheme above is designed to be used on a machine with (at least) 

k - 1 processors. Any Runge-Kutta formula of order p < 2k - 1 can be used. In 
particular, if the extra processors are available, a "parallel" Runge-Kutta formula 
could be used as the basic formula [18, 20]. We see from the form of the defect in 
(2.14) that an asymptotically correct estimate of maxto ' 11 II~n(x. + ~h)ll is given by 
sampling the defect at a point z* where the polynomial ~ =  1 cr~ '÷ ida(z) achieves its 
maximum modulus over [0, 1]. Although it is possible to sample the defect at several 
points in parallel, our tests have shown that a single sample gives a reliable defect 
estimate, even at quite lax error tolerances. Hence, we have not pursued the use of 
parallel sampling to estimate the maximum defect. 

We mention that once a defect sample has been made, an asymptotically correct 
estimate of the local error len + t can be constructed, since from (2.14) we have 

g)~(x, + z'h) 
h ,k---~k p + l . t z . ,  = le,+l + O(hp+2). 

.7 4 = 1 a i  a i c  r ) 

An estimate of the local error in the interpolant at any intermediate point could also 
be formed, using (2.13). We do not propose the use of this extra information in any 
direct way, since we are reluctant to forsake the C 1 continuity of the interpolant and 
the robust nature of the defect control. However, the information could be used in 
order to provide an inexpensive global error estimate by means of a defect correction 
strategy, along the lines of [27]. 

3. Opt ima l  parameters.  

Once the order, p, and the number of parallel substeps, k - 1, have been specified, 
values must be chosen for ~r2,... , ak- 1. In this section we consider how this choice 
can be made. Similar strategies for choosing"optimal" parameters in a robust defect 
control algorithm were used in [14, 16]. 

Defining 

k 

(3.1) g('c):= ~ a~ + ~d,(z), 
i = l  

we see from (2.14) that for any vector norm Jl'l] 

FI le~ + 1 tl 
(3.2) II&.(xn + zh)ll - - - - - - ~ - l g ' ( z ) I  + O(h p+ i). 

From the point of view of obtaining the smallest defect for a given stepsize, it is 
clear that a problem-independent asymptotically optimal scheme arises when 
gpmax: = max~o, 1j Ig'(~)l is minimized. 
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It  is possible to gain some insight into this min imax  problem.  First, since g(0) = 0 
and  O(1)= 1, the Mean  Value Theo rem shows that  9 ' ( { ) =  1 for some {e(0,1) ,  

giving the lower bound  g p m a x  > 1. To  get an upper  bound  on the o p t i m u m  gpmax  
we consider  the case where ~ ~ 0 for j = 2 , . . . ,  k - 1. Using the Lagrange  basis 

funct ion 

k 

1,(~) = 1 - I  ~ - 0 - ,  , 
j = l , j ¢ i  0-i - -  0-] 

we m a y  write &(,) in the form 

d i ( ' c )  = [ 1  - 2(z - f f i ) l } ( 0 - i ) ] l i ( z )  2. 

(It is s t ra ight forward  to verify that  d~(ai) = 1, di(0-]) = 0 for i # j, and d}(aj )  = 0.) 

Hence,  
(3.3) d'i(z ) = - 21~(0-i)li(z) z + [1 - 2(z - a~)l'i(0-O]21~(z)l'~(z) 

= - 2  
j =  l , j : ~ i  - -  j =  1 , j ¢ i  

[ ~ t ? ~ / ' z - o - j ,  
+ 2  1 - 2(z -- 0-0 - 11 

j = l . j ~ i  (~i 0 - j d j = l , j ¢ i ' . ,  " j /  

x _ 0-,  _ q . 
j =  1 . j $ i  r =  l . r ¢ ~ i  L j  = 1 , jC~i , r  

Recall that  0 = 0-1 < 02 < . . .  < ak-*  < ak = 1. Fo r  a fixed ie  {1,2 . . . . .  k - t} we 
see that  there are 2k - 3 factors of  the form 1/(0-i - or,), where j  # k, in the two terms 
on the r ight -hand side of  (3.3). It  follows that  f o r j e  { 2 , 3 , . . . , k  - 1} if we let the 
s igmas tend to zero uniformly,  in the sense that  q ~ 0, q/o-i+ 1 remains  bounded  
above  by a n u m b e r  less than  1, and 0-2/0-k- ~ remains  bounded  below by a number  
greater  than  zero, then 0-~+*d'~(z) ~ O, provided p + 1 > 2k - 3. Hence,  f rom (3.1), 

(3.4) l im g'(z) = lim d'k(Z) = (2k - 1)(2k - 2)zzk-3(1 - z). 
k--1 k - 1  

{~J}j = 2 ~ 0 {~J}j = 2 ~ 0 

Elementa ry  calculus then shows that  this limit function has a unique m a x i m u m  in 

[0, 1] of  

(3.5) g p m a x  (2k 1 ) ( 2 k - 3 )  2 k - 3 -  - 2 k - 3  
= - , a t z * =  2 k - 2  

Prov ided  the order  p is chosen so that  2k - 3 < p + 1 < 2k, this gives an upper  

bound  on the o p t i m u m  gpmax.  
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Table  1. Parameters from numerical search. 
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{tr,}k~ gpmax ~* max,{a, Id,(**)l, le,(**)l} max,{tr, Id'~(~*)l, [e'~(z*)l} 

k = 4, p = 5 0, .2, .4, 1 4.1 .88 4.0 37.3 
k = 4, p = 6 0, .2, .4, 1 3.9 .88 4.2 35.6 
k = 5, p = 7 0, .2, .4, .7,1 7.0 .94 0.7 6.7 
k = 5, p = 8 0, .2, .4, .6, 1 6.7 .93 3.5 56.4 

We per fo rmed  numerical  searches for o p t i m u m  pa rame te r  values for the cases 
(k = 4, p = 5), (k = 4, p = 6), (k = 5, p = 7) and  (k = 5, p = 8). We used a grid search, 
refining the {a2 . . . . .  Crk_l) grid in regions where the smallest  g p m a x  appeared  to  
reside. In each of the four  cases our  "solut ion" converged to the limiting values 
derived above.  F o r  k = 4 this lead to g p m a x  = 2.813 and  z* = .833, and  for k = 5 it 

lead to g p m a x  = 3.534, and z* = .875. Our  numerical  evidence s trongly suggests 
tha t  these min imax  p rob lems  have infima given by the limiting case in (3.5). 

In practice, of  course, it is undesirable to have the ai too close together.  Intuitively, 
we would like to use informat ion  that  is well spaced out  across the step f rom x,  to 
xn + 1. Also, as we will discuss later, there are potent ia l  rounding error  difficulties in 

the eva lua t ion  of p,(x) and p',(x) associated with close o-~ values. F o r  this reason we 
decided to per form a restricted numerical  search where the sigmas were spaced out  
by  at  least 0.1. After some exper imenta t ion  with the resulting defect contro l  algo- 
r i thms on some test ODEs ,  we found that  a 0.2 spacing gave a reasonable  compro -  
mise between efficiency (small gpmax)  and  susceptibility to rounding  errors. The  
pa ramete r s  that  we chose for the four cases are given in Table  1. The  table also gives 
the cor responding  gpmax  and z* values. I t  can be seen tha t  with k = 4 the gpmax  
values are within a factor  1.5 of  the limiting value of 2.8. Fo r  k = 5, with p = 7 and 

p = 8, g p m a x  comes  within a factor  2 of  the 3,5 limit. The  last two columns in Table  
1 relate to the sensitivity of  the defect sample  to rounding  errors. They  will be 
discussed in more  detail at  the end of this section. 

In Figures 1 and  2 we plot  the po lynomia ls  g'(z) for the coefficients in Table  1. The  
polynomia ls  are normal ized  so that  Ig'(z*)l = 1. These figures show the asympto t ic  
shape of the defect over  each step. The  shapes for the l imiting cases ai ---, 0 are also 
included. F o r  compar i son ,  Figure 3 shows the defect arising f rom an actual  integra- 
tion. Here  the (k = 4, p = 6) m o d e  was used on a two-componen t  Fehlberg  test 
p rob l em with a tolerance of T O L  = 10 -2 (see [10] for more  details). We chose 
(arbitrarily) to plot  the defect over  the step f rom x19 to X2o. 

Equa t ion  (2.13) shows that  the behavior  of  the local error  in the in terpolant  is 
de termined by g(z). These po lynomia l s  are p lo t ted  in Figures  4 and  5. In  each case we 

have the pleasing result that  Ig(~)l < 1 for z e (0,1). This means  that  the asympto t ic  
local error  a t  in termedia te  points  in the step is a lways less than  that  a t  the end of the 
step, so we can regard the in terpolant  as being at least as accurate  as the underlying 
formula.  
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1 
i i 

0 .2 .4 .6 .8 
Fig. 1. Normalized defect polynomials,  k = 4: dotted line is p = 5, dashed line is p = 6, solid line is 

limiting case. 

. 5 -  

g'(,) 

I L t I 

0 .2 .4 .6 .8 1 

Fig. 2. Normalized defect polynomials,  k = 5: dot ted line is p = 7, dashed line is p = 8, solid line is 
limiting case, 

{al}i = 2 to make gpmax small we are making the We mention that by choosing k-. 1 
algorithm efficient in the sense of defect versus cost (where cost is measured in terms 
of the total number  of f evaluations, or the total number  of steps.) We are therefore 
using the defect in p,(x) as our measure of accuracy. An alternative way to measure 
the efficiency, which is perhaps more relevant when other types of error control are 
being studied, is to look at the global error versus the cost. In this latter sense, it can 

~a ~k- x will not affect the efficiency. To see this, suppose that be argued that varying t i~i= 2 
we implement the algorithm with two different sets of {a~} parameters, set A and set 
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i).O 

-0.5 
defect/tol 

-1.0 
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0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 3. C o m p o n e n t s  of the defects (k = 4, p = 6) me thod  on the Fehtberg problem with T O L  = 10- 2, over 
the step from x19 to x2o. 

. 5 -  

i 
i 

0 .2 

? 

/ 
/ . ."  

.4 .6 .8 1 

Fig. 4. Local error  polynomials,  k = 4: dotted line is p = 5, dashed line is p = 6, solid line is limiting case. 

B, and let the maxima of the corresponding defect polynomials satisfy 
1~%(~*)1 = C Ig~(~Z)l. Let us also make the idealized assumptions that the higher 
order terms in (3.2) are negligible, and that the algorithms are implemented in such 
a way that the stepsizes used make the maximum defect norm exactly equal to the 
user-supplied tolerance on each step. Then it follows that set A with a tolerance of 
TOL will generate exactly the same stepsize sequence, and hence the same discrete 
solution, as set B with a tolerance of TOL/C. In other words, both algorithms deliver 
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g(r) 
. 5 -  

/ 7  
/ / 

/ .- , 
/., 

/ , 

.4 .6 .8 
0 i 

0 .2 l 

Fig. 5. Local error  polynomials,  k = 5: dotted line is p = 7, dashed line is p = 8, solid line is limiting case. 

the same (discrete) global error for the same cost. We believe, however, that the first 
measure of efficiency (defect versus cost) is the more realistic way to compare defect 
control algorithms, since after a single integration a user can infer the size of the 
defect, but not the global error. 

We conclude this section by discussing the form in which the interpolant and its 
derivative should be evaluated. Although each of the k - t parallel steps generates 
s - 1 new samples off,  we really need only two vectors of information, such as y. +~, 
and f,+,, .  Equation (2.5) could be used, along with 

~ x  l ~ l d  ' k (3.6) p,(x. + ~h) = ~-.= ,(1:)y,+~, + y '  e'i(r)f.+~ w 
z i = 1  

However, this formulation is likely to introduce unnecessary rounding errors; the 
sum ~ = ~  d'~(z)y,+=, involves quantities of order y but has a result of order h. It 
follows that the rounding errors in (3.6) will be O(h- ~). A more stable approach is to 
use the data 4~ and f,+,, ,  where ~ is the increment that satisfies 

y.+,~ = y, + 17ih~i. 

(Note that 4h is some linear combination of f values.) The interpolafft and its 
derivative may then be written 

k 

(3.7) p,(x. + vh) = y, + h ~ [~r~di(z)~i + e i ( z ) f ,+ j ,  
i = 1  

.d k 
(3.8) dx p,(x. + zh) = ~ [~rid'i(z)4~ + e'~(z)f.+J. 

i = 1  

By dealing directly with the f values we avoid the h-  ~ rounding errors associated 
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with (3.6). However, if some of the coefficients in {cr,di(,), ei(,)} or {a~d'~(~), e;(v)} are 
large in modulus then there is still a danger of significant rounding errors in the 
summations in (3.7) or (3.8). This is particularly important at the point ~ = z*, since 
the defect sample must be made sufficiently small in order for the integration to 
proceed. Unnecessary rounding errors in the formation of the defect, 
p',(x, + z 'h)  - f (x. + ~* h, p,(x,  + ~* h)), will artificially limit the range of tolerances 
at which the algorithm can successfully operate. In Table 1 we include the maximum 
values of {oi Id~(~*)l, lei(~*)l}, and {~ ld~(z~!l, le'~(~*)l}. We found that with the ~igmas 
more closely spaced the algorithm failed (in the sense that it was unable to ptCoduce 
a sufficiently small defect sample) at larger tolerance values. This is to be expected, 
since as oi --* 0 for i = 2 . . . . .  k - 1 the corresponding d~(z) and d'~(v) become arbitrar- 
ily large (see (3.3)). 

4. Theoretical comparisons. 

In this section we compare our parallel defect control technique, which we will 
denote PDEF,  with two other dbfect control techniques that have been proposed. 
One of these alternative techniques is inexpensive and is based on the use of a defect 
estimate that is not asymptotically valid and the other is relatively expensive and is 
based on direct control of the local error-per-unit-step. 

In [-6] and [7] the defects corresponding to a class ofinterpolants associated with 
an s-stage, pth order Runge-Kutta formula were investigated. It was shown that for 
any locally O(h p+ 1) interpolant, i0,(x, + zh), derived by- adding extra stages to the 
underlying Runge-Kutta formula, the local error in the interpolant satisfies 

(4.1) [).(x. + zh) - u,(x. + zh) = h p+ I ~ qj(z)Vj + O(hp+ 2), 
j = l  

where the qj(z) are polynomials in z, of degree at most p, depending only on the 
coefficients of the underlying formula and the extra stages. From (4.1) it can be 
shown that the associated defect satisfies 

2p 

(4.2) S,(x, + zh) = h p ~ qj(z)F~ + O(h p+ 1). 
j = l  

The emphasis in [6] was to use interpolants, i~,(x, + ~h), which required as few 
total stages as possible. Specific interpolants were analysed for 4 < p _< 7, and, by 
considering the qj(z) forj  = 1, 2 . . . . .  2p, an appropriate sample point'S* for determin- 
ing an approximation 

(4.3) tlS(x, + ~*h)ll -~ max [lS(x, + ~h)ll, 
[0,11 

was identified. Since the F~ in (4.2) are problem-dependent it is impossible to 
guarantee that a pre-chosen sample point ~* will give a good approximation (indeed, 
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in the worst case, cancellation in ~)~= 1 qj(z )Fj can make the defect sample arbitrar- 
ily small). Nevertheless the numerical results in [6] show that the resulting technique 
performs surprisingly well. This type of defect error control wilt be denoted RDEF 
(for "relaxed" defect control). We point out that the defect in the PDEF algorithms 
has the form (4.2), but in this case all polynomials q)(z) are the same, up to a constant 
factor, and hence there is no chance of misleading cancellation in the sum. 

The second defect control technique we will consider is actually a new interpreta- 
tion of a standard error control technique. Consider an error-per-unit-step imple- 
mentation of an order (p, p + 1), s-stage, explicit Runge-Kutta formula pair where 
the lower order formula is used to advance the solution. The higher order formula 
determines an approximation )7,. 1 that is used only to obtain an asymptotically 
correct estimate of the local error per unit step; 

Y,,+l - )7~+i le.+l 
(4.4) h - h 

In [7] it is observed that this technique can be interpreted as a defect control strategy 
for an interpolant p.(x. + zh) that can be defined in terms of a locally O(h p+2) 
interpolant, q.(x.  + ~h), as follows 

(4.5) pn(xn + zh):= qn(xn + zh) - z()7.+j - Y.+I)" 

Note that/~.(x. + rh) interpolates y., f ( x . ,  y.) and y.+ t and the resulting piece- 
wise polynomial will be in C°[a, b] but not in C~[a, b], It follows from (4.5) that the 
associated defect satisfies 

(4.6) ~.(x. + ~h) - Y.+i - )7n+i h + O(hp + i). 

C l e a r l y  flY.+ 1 - )7,,+lIt/h provides an asymptotically correct estimate of the maxi- 
mum defect norm, although forming the corresponding interpolant would be 
relatively expensive since it is defined in terms of an O(h p + 2) interpolant, whereas the 
discrete solution is only pth order. We will refer to this defect control technique as 
SDEF (for strict defect control). 

In Table 2 we tabulate the cost per step of these three defect control schemes. The 
cost is measured in terms of the number of derivative evaluations per step required 
to implement the technique for a given order. For PDEF and RDEF this includes 
the cost required to construct the associated interpolant. For SDEF one can 
estimate the defect without forming the interpolant so we report only the cost of 
forming y, + 1 and )7, + i (although we also report in parentheses the extra cost of 
forming the interpolant, ~,,(x,, + zh)). For PDEF the cost reported is the "parallel 
cost" - a collection of f evaluations that can be performed in parallel are counted 
only once. This requires the existence of k - 1 processors where k > (p + 1)/2. For 
an s-stage, pth order Runge-Kutta formula this parallel cost is always s + 1. (We 
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assume here that a "sequential" Runge-Kutta formula is used; if more processors are 
available then the cost could be reduced to p + 1, see for example [18].) 

Table 2. Minimum cost per step for defect control techniques. 

order 4 5 6 7 8 

RDEF 6 9 11 15 20 
SDEF 6 (2) 8 (3) 10 (5) 13 (7) 16 (9) 
PDEF 5 7 8 10 12 

Table 3. Limiting speedup factors for PDEF. 

order 4 5 6 7 8 

RRD 1.20 1.29 1.38 1.50 1.67 
RSD 1.60 1.57 1.88 2.00 2.08 
RpD 1.80 2.71 2,75 3.70 3.75 

breakeven 83 ~ 78 % 73 % 67 ~ 60 

Note that the reported costs are the minimum known values for a particular order 
p. Since the PDEF  technique applies to all Runge-Kutta formulas the associated 
cost is one more than the minimum number of stages required to obtain order p. For 
RDEF and SDEF, interpolants have been extensively investigated only for restric- 
ted classes of formulas (or formula pairs). The values reported for SDEF are based 
on using a standard formula pair to determine y,+ 1 and 37,+ 1 and therefore the cost 
associated with order p is the lowest known cost for an order (p,p + 1) pair. For 

RDEF schemes, the tabulated costs for orders 7 and 8 reflect recent work of Verner 
[30]. 

To quantify the performance of parallel numerical methods it is customary to 
define and measure a "speedup" factor. One such measure is the ratio of execution 
time of a single processor implementation of PD EF  to that of a multiprocessor 
implementation of PDEF.  We will denote such a measure RpD. A second more 
natural measure is the ratio of execution time of a single processor implementation 
of the "best" available competing sequential technique, in this case either RDEF or 
SDEF, to that of a multiprocessor implementation of PDEF.  We will denote the 
corresponding measures RgD and RsD respectively. 

If we assume that the execution time for each step is dominated by the time 
associated with derivative evaluations we can predict the expected speedups for each 
of the above measures from the values in Table 2. For k = [p/2 + 17 and (k - 1) 
processors the predicted value for RpD is (s(k - 1) + 1)/(s + 1) while the predicted 
values of RRD and RsD are just the ratios of the corresponding costs per step. These 
ratios are reported in Table 3. In determining these measures of speedup we are 
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assuming that the interpolant is required on each step and therefore the cost 
associated with SDEF is the cost of the basic defect control scheme plus the cost of 
forming the interpotant. 

From the values of RRD in Table 3 we observe that in addition to the improved 
reliability that PDEF was designed to provide, significant improvements in effi- 
ciency can also be realised. Since it is perhaps unrealistic to expect perfect parallel- 
ism in the algorithm, we also give the "breakeven" percentage; that is, the percentage 
of the theoretically attainable parallel speedup needed for PDEF to be at least as 
efficient as RDEF. The numerical results of the next section are intended to verify 
that the expected improvements in reliability and efficiency can be achieved in 
practice. 

Table 4. Percentage of optimal speedup on wave problem. 

K1 1 3 5 7 

k = 4, p = 6 85.3% 94.6% 96.7% 96.6% 
k = 5, p = 8 90.4% 93.8% 94.4% 96.0% 

5. Numerical tests. 

We implemented the PDEF algorithm with k = 4, p = 6 and k = 5, p = 8. For the 
underlying Runge-Kutta formulas we used a seven-stage, sixth order formula and 
a twelve-stage eighth order formula identified by Sharp and Smart [24]. These 
formulas were derived as the higher order members of embedded pairs, and we 
believe that they are among the most efficient of their type. (However, as mentioned 
earlier, special parallel Runge-Kutta formulas could be used to improve efficiency 
on suitable architectures.) We used the {a~}~2~ and z* values of Yabte 1. The infinity 
norm of the defect was controlled, and the stepsize was varie d according to standard 
asymptotically-based criteria (see [6] or [14]). A comprehensive collection of test 
results can be found in [10]. Here, due to space limitations, we present a summary of 

these results. 
Our PDEF algorithm was designed under the assumption that f evaluations 

dominate the overall cost of the integration. Since the algorithm is quite coarse- 
grained (no communication between processors is required until each Runge-Kutta 
step has been completed) and well load balanced (each Runge-Kutta step takes 
approximately the same amount of time to complete), a near optimal level of 
parallelism should be attainable when f is expensive to evaluate. We are therefore 
concerned with the two questions 
• How close can we come to the optimal RvD speedup of section 4 when f is 

expensive? 
• Can we achieve the "breakeven" level of parallelism when f is inexpensive? 
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We implemented the algorithm on a Silicon Graphics Inc. Power Iris 4D/240S-64 
machine with a 4-processor shared memory architecture. The parallelism in the 
algorithm takes place in one loop of the form. 

doi = 2,k 

{Advance from (x,, y,) over a step of length trih to produce ~i and f,+~,.} 

On the SGI machine this is easily handled in Fortran using the C$DOACROSS 
compiler directive. If compiled normally the directive is ignored (treated as a com- 
ment statement), while compilation with the "-mp" option allows the compiler to 
generate code that parallelizes the do loop. Hence a single Fortran program can be 
used to study the effect of parallelism on the execution time for the algorithm. 

The algorithm was tested on a perturbed nonlinear wave group problem given by 
equation (4.2) of [1], with parameters K0 = 40, K1 = 3, e = .025, ct = .251, integ- 
rated over the range [0, 500]. In this case the cost of evaluating f depends on the 
parameter K1, which corresponds to the width of the waveband being computed. 
The cost is dominated by the term [2Kl(2K1 + 1)(4K1 + 1)/3 + (2K1 + 1)2]M, 
where M is the cost of three complex multiplications plus one complex conjugation. 
Results for K1 = 1, 3, 5, 7 are given in Table 4. (For these tests, in order to reduce the 
overall cpu time used, we restricted the range of integration for the larger K 1 values.) 
We see that the speedups are always reasonable and become close to optimal as the 
expense increases. Other tests confirmed that even when f involves very few floating 
point operations the algorithm exceeds the breakeven level, and for more expensive 
functions the level exceeds 98~o of its limiting value. 

Further tests were performed to compare the reliability and efficiency of the 
PDEF algorithm with that of the corresponding relaxed version, RDEF, mentioned 
in section 4. The testing made use of a modified version of the nonstiff DETEST 
package [9]. The modifications were designed to allow a more comprehensive 
assessment of methods based on defect control. The detailed results for the twenty- 
five test problems, which can be found in [10], were in agreement with the analysis of 
the previous sections. 

6. Conclusions and extensions. 

Our analysis and numerical investigations have shown that small-scale parallel- 
ism can be used to improve both the efficiency and reliability of initial value methods 
based ori explicit Runge-Kutta formulas. We are also hopeful that ideas similar to 
those introduced here could be successfully applied to multistep methods and to 
methods for stiff differential equations. 

As mentioned earlier our approach also provides a (p + 1)st order approximation 
to the local solution that could be used as the basis of a (completely parallel) global 
error estimation strategy. We plan to pursue this idea in a separate investigation. 
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Another natural extension that uses two extra processors is outlined in [-10]. Here 
the aim is to advance part of the way to x. + h when 116,(x, + v*h)II is too large, and 
similarly to advance beyond x, + h (with no extra computation) when 
I] 6,(x, + v'h)]1 is much smaller than TOL. The resulting scheme is likely to be more 
efficient since there would be fewer rejected steps and the average stepsize should be 
larger. Also the "tolerance proportionality" may be improved, since rather than 
simply aiming for a defect that is less than TOL on each step, an attempt is made to 
keep the defect close to TOL in norm. 

Finally we emphasize that given any Runge-Kutta formula the error control 
technique presented here only increases the number of sequential stages by one. It 
therefore has an efficiency that is at least comparable with any other parallel explicit 
Runge-Kutta error control technique. Moreover, only a single formula is required, 
rather than an embedded pair, and a reliable interpolant is produced. For these 
reasons we believe that robust defect control is a natural choice when explicit 
Runge-Kutta formulas are to be implemented in a small-scale parallel environment. 
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