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Abstract
Spectral methods, which use information relating to eigenvectors, singular vectors and generalized singular vectors,
help us to visualize and summarize sets of pairwise interactions. In this work, we motivate and discuss the use of
spectral methods by taking a matrix computation view and applying concepts from applied linear algebra. We
show that this unified approach is sufficiently flexible to allow multiple sources of network information to be com-
bined.We illustrate the methods on microarray data arising from a large population-based study in human adipose
tissue, combined with related information concerning metabolic pathways.
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INTRODUCTION
Many computational tools are available to simplify

and add value to large-scale biological networks. We

focus here on spectral methods—those that use eigen-

vectors, singular vectors and generalized singular vec-

tors to cluster or reorder nodes and to visualize

patterns in a network. This is an area where essen-

tially the same ideas can be developed and under-

stood from many different viewpoints, including

inference/machine learning [1], multi-dimensional

scaling [2], graph drawing [3], image segmentation

[4], principal component analysis/applied statistics [5]

and support vector machines/kernel methods [6]. In

this work, starting from first principles, we take a

matrix computation/applied linear algebra perspec-

tive. In keeping with the aims of the journal, we

focus on providing practical help and guidance to

the nonspecialist in computerized methodology.

After summarizing key ideas in the area, we show

how the approach can be extended to the case of

two related data sets. This type of meta-analysis

issue is gaining importance as the availability of

high throughput data increases along with the

demand to combine multiple sources of information

[7–10].

In the next section, we describe two related net-

works, based on microarray expression and metabolic

pathway data. The third section then motivates and

discusses some spectral clustering tools for a single

network, and illustrates their use on the microarray

data. In the fourth section, we look at a new variant

that can incorporate extra information. The tech-

nique is validated on synthetic data in fifth section

and on the real gene data in the sixth section. The

last section gives a summary and points to key

challenges.

DATA SETS
Here, we briefly introduce two data sets containing

distinct but related information about the behaviour

of genes. These will be used in subsequent sections to

provide concrete examples. We emphasize however,

that the algorithms can be applied generally to com-

plex networks in biology, and beyond.

Microarray
Microarrays measure the transfer, in an individual

sample, from deoxyribonucleic acid (DNA, with

�30 000 genes) to messenger ribonucleic acid
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(mRNA) [11]. In this work, we illustrate the use of

spectral algorithms on public domain adipose tissue

microarray data from male Icelandic subjects in

DECODE study GSE7965 [12, 13]. This study con-

tained a cohort of 701 individuals. Because we were

not interested in determining differences between

the sexes, for this study, we selected only the male

contingent which is 296 samples. These data may be

regarded as a rectangular array whose (i, j) entry re-

cords the expression level of gene i in sample j, for

23 765 genes across 296 samples. More precisely, we

use the absolute value of the expression data, so that

all data entries are nonnegative; with this approach

we treat under and over-expression as equivalent, on

the grounds that both indicate a deviation from basal

behaviour, [14]. Hence, a larger weight is taken to

denote a higher level of activity. It is, of course,

possible to retain the distinction between under/

overexpression using a signed network [15].

Metabolic
Metabolism describes the process through which

cells break down and reassemble food and other nu-

trients. Traditionally, a metabolic network consists of

a collection of individual chemicals (the nodes) and

their interactions (the edges) [16]. We will construct

a different type of metabolic network to obtain in-

formation that may be merged with the microarray

data described in earlier section. Through the

knowledgebase of the Database for Annotation,

Visualization and Integrated Discovery (DAVID

[17, 18]), we have access to a list of genes with a

corresponding KEGG (KEGG:- http://www

.genome.jp/kegg/) metabolic pathway identifier—

since some genes have end effects in metabolism.

The KEGG database contains pathway maps repre-

senting interactions and reactions between mol-

ecules—these maps are available for individual

metabolic processes (e.g. glycolysis). Each individual

pathway is comprised of a number of interactions

and reactions, and has a unique ID. The list we

are using from DAVID associates each gene with a

number of these pathway IDs, depending on where

the gene products interact—though each gene is

counted once per pathway regardless of the

number of products present. Then, genes with a

pathway ID in common will have product(s) that

are involved in a common metabolic process.

Using this information, we constructed a gene–

gene co-incidence matrix whose (i, j) entry is a

nonnegative integer recording the number of times

genes i and j appear in the same pathway. The

construction of the metabolic pathway matrix with

its scaling are the subject of ongoing work. The con-

nections in this analysis are built on counting the total

number of edges for each gene—this favours hub

genes. The suitability of this as a metric depends on

the desired output and can be factored into the inter-

pretation of the results. We treat this metabolic con-

struction as additional information for the microarray

data. Rather than containing data on magnitudes of

reactions, our metabolic network illustrates how well-

connected genes are with each other in the sense of

metabolism. This opens up the potential to gain a new

perspective on the use of microarray data to make

statements about the metabolomics of a disease state.

Finally, to make the data sets compatible, we use

only the 4567 genes that appear in both the micro-

array and metabolic networks.

Overall, we have (a) a non-negative real-valued

4567 by 296 array of gene expression data, and (b) a

non-negative integer-valued 4567 by 4567 array

of metabolic pathway co-incidence data (with 4.4%

of entries nonzero, mean nonzero entry is 1.35 and

maximum entry is 45).

SPECTRALMETHODSAND
GRAPH LAPLACIANS
In this section, we motivate and explain how the

Laplacian and normalized Laplacian can be used to

find structure in a network. The next subsection

introduces a key result from linear algebra: we refer

to [19], and the references therein, for further details.

For more general information about the field of

spectral graph theory, we recommend [20, 21].

Rayleigh^Ritz theorem
The following lemma, which is a special case of the

Rayleigh–Ritz Theorem [22, Theorem 4.2.2], will

be used to justify the spectral algorithms

Lemma 1 Let M 2 R
N�N be a symmetric posi-

tive semi-definite matrix with eigenvalues

0 ¼ �1 < �2 < �3 � �4 � � � � � �N , and corres-

ponding eigenvectors r½1�, r½2�, . . . , r½N�: Then the

problem

min
y 2 R

N

yTr½1� ¼ 0

yTy ¼ 1

yTMy ð1Þ

is uniquely solved by y ¼ r½2�:
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Proof. The matrix M has a spectral decomposition

M ¼ R�RT , where � 2 R
N�N is diagonal with

(i, i)th entry �i and R 2 R
N�N has jth column r½j�.

The eigenvectors are mutually orthogonal, so we

may take RTR ¼ I: Letting z ¼ RTy, the problem

(1) becomes

min
z 2 R

N

zTRTr½1� ¼ 0

zTz ¼ 1

zT�z:

The constraint zTRTr½1� ¼ 0 simplifies to z1 ¼ 0, so

the problem becomes

min
z 2 R

N

zTz ¼ 1

XN

i¼2

�iz2
i :

Because 0 < �2 < �3 � �4 � � � � � �N , it is clear

that z2 ¼ 1 and zi ¼ 0 for i¼ 3, 4, . . . ,N uniquely

solves the problem. Hence, we have y ¼ r½2� as

required.

Clustering and reordering
Let A 2 R

N�N be a symmetric matrix with

non-negative entries. From a network perspective,

we think of aij ¼ aji � 0 as representing the pairwise

similarity between nodes i and j, where a larger value

indicates a greater similarity.

Suppose we wish to divide the vertices in two

disjoint clusters, where a pair of nodes within a cluster

are typically well connected and a pair of nodes

in different clusters are not. One way to judge the

quality of a partition is to count the total weights in

the edges that span the two clusters. Introducing the

indicator vector y, so that yi ¼ � 1
2

if node i is in one

set and yi ¼ 1
2

if node i is in the other, the total

weight across the clusters may be written

1

2

X

i, j

ðyi � yjÞ
2aij: ð2Þ

In matrix-vector form, this expression becomes

yT D� Að Þy, ð3Þ

where D 2 R
N�N is the diagonal degree matrix with

Dii ¼ degi, and degi :¼
P

j aij is the degree of node

i. Asking for y to minimize this quantity is not rea-

sonable, because it leads us to the trivial solutions

yi 	 1
2

and yi 	 � 1
2
; that is, put all nodes into a

single cluster. It therefore makes sense to add a bal-

ancing constraint that limits the mismatch between

cluster sizes. In general, however, it is not feasible to

tackle the discrete problem (3) directly, and hence it

is standard practice to allow the yi to take any real

values; thereby relaxing the problem. Using y 2 R
N ,

a suitable balancing constraint is yT1 ¼ 0, where

1 2 R
N is the vector with all entries equal to one,

and to avoid the trivial solution yi 	 0, we add the

extra constraint yTy ¼ 1: This leads us to the opti-

mization problem

min
y 2 R

N

yT1 ¼ 0

yTy ¼ 1

yT D� Að Þy: ð4Þ

As we discuss further in the following subsection,

Lemma 1 shows that this problem can be solved

via a spectral decomposition; that is, by computing

appropriate eigenvectors and eigenvalues.

At this stage, it is worth pointing out that after the

relaxation step, where we move from yi 2 f� 1
2
, 1

2
g

to y 2 R
N , we are in the realm where each node is

assigned a position on the real line. We can recover

clusters by picking a threshold, such as 0, and assign-

ing nodes to the same cluster if they lie on the same

side of the threshold. However, rather than inter-

preting (4) as a problem that approximates a discrete

analogue, we could use it as a starting point, and take

the viewpoint that nodes are being mapped to points

on the real line in such a way that nearby nodes are

well connected, i.e. have many or strongly weighted

connections between them. Because the solution of

(4) may be expressed in terms of a spectral decom-

position, this idea may be taken further. Using the

fact that the power method iteration converges to a

dominant eigenvector, we may argue that solving (4)

is equivalent to placing the nodes on the real line in

random locations and then iteratively ‘shuffling’

them, based on their pairwise affinities, until an equi-

librium state is reached; see [23] for details.

Rather than taking a hard clustering approach

through thresholding, it is also possible to use the

real-valued solution y to relabel the nodes. In this

way, a permutation vector p 2 R
N is constructed,

whose components consist of the integers from 1

to N, so that node i gets mapped to position pi, with

pi � pj () yi � yj: ð5Þ

In words, y places the nodes on the real line, and we

relabel them according to their position, the

left-most becomes node 1 and the right-most be-

comes node N. Returning to the matrix
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interpretation of the data set A, we have equivalently

performed a symmetric permutation that reorders

the rows and columns of the matrix. Viewing the

reordered matrix is often a very useful way to visu-

alize interesting patterns in the data [10, 19, 24, 25].

In the syntax of the MATLAB language [26],

reordering the matrix A using the eigenvector y is

achieved by sorting the vector, [a, p]¼
sort(y), and permuting the matrix, A (p, p).

We also note that spectral reordering methods can

be motivated from a different, but closely related,

viewpoint, by assuming that the data are an instance

of an appropriate random graph and seeking a node

ordering that maximizes the likelihood of the net-

work [27, 28].

Graph Laplacian
The matrix D� A 2 R

N�N appearing in (4) is

known as the graph Laplacian matrix for the network.

This symmetric positive semi-definite matrix has

smallest eigenvalue 0 and corresponding eigenvector

1. We suppose that the network is connected (every

pair of nodes may be joined by at least one set of

edges with non-zero weights), in which case all other

eigenvalues of the Laplacian are positive; see e.g. [29,

30]. We also suppose that there is a unique smallest

non-zero eigenvalue, and order the eigenvalues so

that 0 ¼ �1 < �2 < �3 � � � � � �N : We denote the

corresponding eigenvectors v½1�,v½2�, . . . ,v½N�:
These are orthogonal, and we assume that they

have Euclidean norms of unity. The eigenvector

v½2� corresponding to the first non-zero eigenvalue

of the Laplacian plays an important role in many

areas of graph theory and network science, and is

referred to as the Fiedler vector [20, 21, 31].

It now follows from Lemma 1 that the solution

of the relaxed problem (4) is given by the Fiedler

vector, v½2�:

An alternative form of clustering and
reordering
Next, we note that using the constraint yT1 ¼ 0 in

(3) aims to balance the number of nodes in each

group. As an alternative, we may wish to quantify

the size of each node i in terms of its degree, degi,
and aim to balance the overall size of the clusters. An

appropriate balancing constraint is then yTD1 ¼ 0:
Further, rather than normalizing with yTy ¼ 1, so

that all nodes are treated equally in terms of distri-

buting the locations on the real axis, we may prefer

yTDy ¼ 1, which encourages high degree nodes to

be placed nearer the origin. From the reordering

viewpoint, this may be interpreted as an attempt

to reduce the influence of ‘promiscuous’ nodes,

encouraging them away from the extremes of the

ordering range. Such issues of calibration can be im-

portant when there is a high degree of variance

among the interaction weights, a circumstance that

is common for gene expression data. These two

changes convert the relaxed problem (4) to

min
y 2 R

N

yTD1 ¼ 0

yTDy ¼ 1

yT D� Að Þy: ð6Þ

Changing variable to x ¼ D
1
2y, this problem

becomes

min
x 2 R

N

xTD
1
21 ¼ 0

xTx ¼ 1

xTD�
1
2 D� Að ÞD�

1
2x, ð7Þ

where we make the reasonable assumption that all

node degrees are non-zero.

Normalized graph Laplacian
The matrix D�

1
2 D� Að ÞD�

1
2 2 R

N�N appearing

in (7) is known as the normalized graph Laplacian.
Like the (unnormalized) Laplacian in earlier subsec-

tion, this symmetric positive semi-definite matrix

has an eigenvalue 0 and, in the case of a con-

nected graph, a unique smallest nonzero eigenvalue.

The eigenvalues lie in the interval [0, 2], see e.g.

[30], and we label them 0 ¼ �1 < �2 < �2 � � � �

� �N , with corresponding eigenvectors

w½1�,w½2�, . . . ,w½N�: By construction, we have

w½1� ¼ D
1
21=jjD

1
21jj:

We refer to D�
1
2w½2� as the normalized Fiedler vector.

Lemma 1 now shows that the relaxed problem (7) is

solved by x ¼ w½2� and hence the required solution

of (6) is the normalized Fiedler vector y ¼ D�
1
2w½2�:

At this stage, it is worth making a few points

about the spectral approach.

(1) Eigenvalues and eigenvectors are invariant under

permutation, in the sense that

Ax ¼ �x () PAPð ÞPx ¼ �Px

for x 2 R
N , � 2 R and any symmetric permu-

tation matrix P 2 R
N�N : (A symmetric permu-

tation matrix is found by symmetrically

permuting the rows of an identity matrix accord-

ing to some permutation of the numbers 1 to N.)
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It follows that spectral algorithms are oblivious to

the way that nodes are labelled—e.g. relabelling

the nodes, A�PAP, simply reorders the elem-

ents of the Fiedler vector accordingly,

v½2��Pv½2�: As a consequence, when we test

spectral algorithms on synthetic data where

known structures have been deliberately created,

it is reasonable to label the nodes of A in any

convenient manner.

(2) Whether we use the vector y 2 R
N for hard

clustering or for reordering, it is clear that we

should be unconcerned about two types of

transformation

translation: where yi � yi þ c, for a constant

c that is independent of i,
rescaling: where yi ��yi, for a constant � 6¼ 0

that is independent of i.

In particular, the map y� � y coincides with

swapping labels across the two clusters or to re-

versing the node ordering, and we note that unit

eigenvectors are uniquely defined only up to a 


factor.

(3) Using the translation and scaling operations

above, we can show that the same Fiedler

vector solutions arise for a very wide range of

balancing constraints—we do not need to ask

for nearly equal cluster sizes in the original dis-

crete formulation; see [19].

(4) Because a symmetric matrix has orthogonal

eigenvectors, moving beyond the Fiedler cases

and using the ‘next best directions’ v½3�,
v½4�, . . .and D�

1
2w½3�, D�

1
2w½3�, . . .to cluster or

reorder the data can reveal further information

about the data; see [19].

Singular value decomposition
In the case of a bipartite network, we have two sep-

arate groups of nodes and the weight aij represents

the pairwise affinity between node i in the first group

and node j in the second group. If the groups contain

M and N nodes, respectively, then A 2 R
M�N :

Spectral information is now contained in the

Singular Value Decomposition (SVD)

A ¼ U�VT ,

where U 2 R
M�M and V 2 R

N�N are orthogonal

and � 2 R
M�N is diagonal with diagonal elements

�1 � �2 � � � � � 0, [32]. The columns of U and V
are referred to as the left and right singular vectors of A,

respectively.

Analogously to the development in earlier sec-

tion, we may introduce two indicator vectors,

p 2 R
M and q 2 R

N , and consider the quantity

1

2

X

i, j

ðpi � qjÞ
2aij: ð8Þ

After adding appropriate constraints and relaxing

to real-valued vectors p and q, it may be shown that

the left and right singular vectors of A can be used

to reorder the two groups of nodes. Similarly,

the SVD of the normalized data D
�1

2
outAD

�1
2

in arises if

we generalize the yTD1 ¼ 1 alternative in (6). Here

Dout 2 R
M�M and Din 2 R

N�N are the diagonal in

and out degree matrices; that is, ðDoutÞii ¼
PN

j¼1 aij
and ðDinÞjj ¼

PM
i¼1 aij: We refer to [25] for further

details.

We note that the left and right singular vectors

of A 2 R
M�N are equivalent to the eigenvectors of

ATA and AAT , respectively, and this forms a natural

bridge to the methods described in the earlier sub-

sections. For example, we may regard the operation

of forming ATA as correlating across the second

group of nodes to form a pairwise affinity matrix

for the first group. A spectral method could then

be applied directly to ATA to cluster or reorder

the first group. In the notation used earlier in this

section, the columns of matrices U and V are eigen-

vectors of the matrices AAT and ATA, respectively.

Microarray application
We illustrate the SVD reordering approach on the

microarray data described in the second section. In

the language of the previous section, the matrix A is

the rectangular array of microarray data with genes

and patients as the rows and columns. Then, the

matrices U and V provide the left and right singular

vectors—preserving the rectangular form of the data

gives us the ability to reorder the samples as well as

the genes; this type of bi-clustering is commonly

performed on microarray data [14, 25]. Here, we

have N¼ 4567 genes and M¼ 296 samples.

Figure 1 shows the components of the left singu-

lar vector u½2� in increasing order. Using this ordering

for the genes, we therefore take the view that

(a) nearby genes in this ordering exhibit similar be-

haviour and (b) genes at the ends of the ordering are

the most significant in terms of driving the corres-

ponding sample ordering.

The hormone leptin is known to control body

weight, and leptin resistance is a good indicator for

obesity [33]. Hence, the gene that codes for leptin is
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of particular interest in this adipose tissue data set.

In Figure 1, the gene that codes for leptin appears

only three positions away from one end of the sin-

gular vector—this identifies the leptin gene as key to

explaining the variance in the data set. In Figure 2,

we show the expression level of the leptin gene

across the samples, where the samples have been re-

ordered according to the right singular vector, v½2�:
As expected, there is a clear trend as we move across

the ordered sample list. This type of sanity check

based on prior information is a useful first step for

validating the microarray data.

ANEWNORMALIZATIONOF THE
GRAPH LAPLACIAN
In the third section, we motivated spectral methods

by setting up appropriately constrained optimization

problems. This approach offers a lot of flexibility, a

fact that we now exploit to derive an alternative

Laplacian style matrix.

A network is said to be assortative if connections

are more likely between nodes of similar degree

(where the degree of a node is the number of

edges that are connected to it) [34, 35]. Many au-

thors have considered the issue of quantifying the

overall level of assortativity in a network, relative

to a null model [36, 37]. However, here we consider

an inverse problem that also has practical relevance—

given a network, can we identify specific patterns

of assortativity? More precisely, can we find a set

of nodes that

(a) form a strong cluster, and

(b) possess similar degrees?

where a strong cluster is a collection of nodes that

shows significance in terms of weight density, as

tested for by the cluster quality measure in the forth-

coming section. We note that this is a partially local

concept—it is possible for a substructure of this type to

be present in a network that is not categorized as

being assortative by a global measure. We also note

that this type of substructure has a very natural gen-

eralization; the condition (b) could be extended to

the case where nodes possess an independent meas-

ure of ‘size’ and we seek clusters that involve nodes

of comparable size.

We therefore suppose that a positive weight wi is

associated with each node i. To look for nodes that

are well-connected and size-compatible, we may re-

place the starting point (2) with

1

2

X

i, j

ð
ffiffiffiffiffi
wi
p

yi �
ffiffiffiffiffi
wj
p

yjÞ
2aij: ð9Þ

Letting Dw 2 R
N�N denote the diagonal matrix

with iith entry wi, this expression may be written

yTD
1
2
w D� Að ÞD

1
2
wy: ð10Þ

Here, we emphasize that D is the original diagonal

degree matrix arising from the data matrix, but the

diagonal matrix Dw may contain any appropriate set

of nodal weights.

To focus on the case where we prioritize nodes

with large weights, we take yTD�1
w y ¼ 1 as our

normalizing constraint. This encourages the highly

weighted nodes to take values at the extreme ends

of the range of yi values. Changing variable to

z ¼ D
�1

2
w y, the expression (10) then becomes

zTDw D� Að ÞDwz, ð11Þ

Figure 1: Components of the left singular vector u½2�,
in increasing order, from an SVD of the microarray data.

Figure 2: Leptin gene expression values from samples
ordered by the right singular vector, v½2�.
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with zTz ¼ 1:
We will refer to the matrix

Lw :¼ Dw D� Að ÞDw ð12Þ

appearing in (11) as the node-weighted Laplacian. By

construction, Lw has a zero eigenvalue with corres-

ponding eigenvector D�1
w 1. This vector depends

only on w-information; it ignores the network con-

nectivity. Hence, by analogy with the Fiedler vector

and normalized Fiedler vector approaches, we pro-

pose to reorder/cluster for this generalized notion of

assortativity in terms of x½2�, the eigenvector of Lw

corresponding to the smallest positive eigenvalue.

From Lemma 1, this becomes the required minim-

izer of (11) if we add the balancing constraint

zTD�1
w 1 ¼ 0: In terms of the original variable, y,

this balancing constraint is yTD
�3

2
w 1 ¼ 0, which fur-

ther encourages highly weighted nodes away from

the origin.

Converting back to y ¼ D
1
2
wz, we therefore pro-

pose to take D
1
2
wx½2� as our network reordering vector.

SYNTHETIC TESTING
We now illustrate the use of the new node-weighted

graph Laplacian (12) on a synthetic network that is

designed to contain an appropriate set of nodes.

More precisely, we wish to test whether the

node-weighted Laplacian can discover clusters

whose nodes also have high degrees. The symmetric

network adjacency matrix A 2 R
1000�1000 is shown

in Figure 3. We have 1000 nodes, and initially all

edge weights are assigned independently at random

from a uniform U(0, 100) distribution. We then force

nodes 1–100 to become a strong cluster—the edge

weights between these nodes are reset to 100. Then,

to make the degrees of the nodes in this cluster higher

than average, all edges between nodes in this cluster

and the rest of the network are increased by 50. To

make the test more challenging, another cluster com-

prising nodes 101–200 is also created in the data,

involving nodes that have generally low overall de-

grees. Here, each edge in this group is reset to 100

and then the weights between this second cluster and

the rest of the network are decreased by 50.

We emphasize that the network in Figure 3 is

ordered in a natural manner, so that the substructure

is readily visible. As mentioned in earlier section,

spectral algorithms are invariant to the initial order-

ing of the data so we are free to choose one that

allows for a simple assessment of the results.

The upper left picture in Figure 4 shows the

nodes in their original ordering, along with the cor-

responding degrees. The upper right picture shows

the resulting components in the Fiedler vector, v½2�,
arising from the graph Laplacian. Similarly, the lower

right picture shows the components of the normal-

ized Fiedler vector, D�
1
2w½2�, arising from the nor-

malized graph Laplacian. Neither vector distinguishes

the high degree–high degree cluster formed by the

first 100 nodes. The Fiedler vector treats the first 200

Figure 3: Weight matrix for the synthetic network, with colour bar.
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nodes similarly, with some overlap into the remain-

ing 800, and the normalized Fiedler vector does not

reveal any of the built-in structure. The lower left

picture shows the values of D
1
2
wx½2� arising from the

node-weighted graph Laplacian. In this case, the first

100 nodes are clearly separated from the remainder.

Following on from Figure 4, the heat maps in

Figure 5 show the network reordered according to

Fiedler vector (left), normalized Fiedler vector (right),

and by D
1
2
wx½2� from the node-weighted Laplacian

(middle). We see that only the middle picture reveals

the cluster of strongly-weighted/high degree nodes.

In summary, this test shows that the node-

weighted graph Laplacian (12) can reveal assortativity

substructure that is not apparent from the more

standard Laplacians.

Synthetic testing of merging two data
sets
To complete the synthetic testing, we consider an

additional case where Dw is constructed independ-

ently of the matrix A. This time Dw is given a range

of values in order to test how much of the ordering

of node weighted Laplacian is influenced by struc-

ture in A versus weights in Dw: The matrix A is

constructed as in the previous example, and the

first 50 values in Dw are given a high weight, 20,

the next 50 given a low weight, 1. This pattern of 50

high and 50 low is repeated for the next 200 nodes;

see the middle picture in Figure 6.

The three pictures in Figure 6 use the original,

given network node ordering. The left picture shows

the node degrees. The middle picture shows the new

values we are using in Dw, from an artificial ‘second’

network. The right picture shows the reordering

vector arising from the node weighted Laplacian.

We see that this node weighted Laplacian reordering

clearly picks out the first 50 nodes—those that were

well-connected in matrix A and have high values in

Dw: The 50 nodes that are well-connected but have

low values in Dw are not separated, illustrating the

fact that the result from the node weighted Laplacian

uses a combination of both the information in the

original network, and the values in the rescaling

Figure 5: Heat maps for network reorderings applied to the synthetic network in Figure 3. Left: Laplacian.Middle:
node-weighted Laplacian. Right: normalized Laplacian.

Figure 4: Synthetic network, original node ordering. Upper left: nodal degrees. Upper right: components of the
Fiedler vector, v½2�: Lower right: components of the normalized Fiedler vector, D�

1
2w½2�: Lower left: components

of the vector D
1
2
wx½2� arising from the node-weighted graph Laplacian.
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vector Dw: In addition to Figure 6, we also show the

network reordered according to the node weighted

Laplacian in Figure 7. We see here the

strongly-weighted/high Dw nodes are pushed to

the end of the ordering. The strongly-weighted/

low Dw nodes have been pushed away from the end.

In summary, we have shown that the output from

the node weighted Laplacian is influenced by both

the original network and the values used for the

components of Dw:

TESTCOMBININGMICROARRAY
ANDMETABOLIC NETWORKS
In this section, we further illustrate the use of spectral

methods on the data described in second section. In

particular, we show that the type of substructure tar-

geted by the node-weighted graph Laplacian can be

found in biological data.

In the notation of (12) our weighted, symmetric

adjacency matrix A 2 R
4567�4567 has the form

MMT , where M 2 R
4567�296 is our ‘gene expres-

sion against sample’ microarray data. To incorporate

the metabolic information, we let wi be the overall

degree of gene i in the metabolic network. We note

that one difficulty in using wi is the fact that the

metabolic network is limited to the completeness

of the database we use to construct it. Our aim is

therefore to uncover well connected structures in the

gene–gene microarray correlation network that are

also strongly active in a metabolic sense.

In the left of Figure 8, we show the degree in the

metabolic network, wi, for the genes, when ordered

by the vector D
1
2
wx½2� from the node-weighted

Laplacian. We see that the ordering gives preference

to genes with high metabolic weights—placing them

at the extremes of the list. By contrast, the right hand

picture uses the Fiedler vector arising from the

Laplacian matrix, which does not incorporate any

metabolic information. Naturally, in this case, we

do not see any metabolic pattern.

Having confirmed that the metabolic informa-

tion has affected the ordering, we now check

whether D
1
2
wx½2� has identified structure in the micro-

array data. We may do this by first inspecting the

reordered microarray correlation matrix and choos-

ing an appropriate range of contiguous nodes from

the end of the ordering. In our case, 200 genes ap-

peared to form a strong group. This is our putative

cluster, whose quality can then be measured. There

are, of course, many competing measures of cluster

quality. Here, we follow the approach of [10], which

can be summarized as

Step 1. Calculate the ratio of the average weight of

edges in the cluster to the average weight of all

other edges.

Figure 6: From the synthetic network in the original node ordering. Left: nodal degrees. Middle: components of
Dw for the node weighted Laplacian. Right: components of the vector D

1
2
wx½2� arising from the node-weighted graph

Laplacian.

Figure 7: Heat map for network reordering
applied to synthetic network in Figure 3, with nodal
weights indicated in Figure 6, with the node weighted
Laplacian.
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Step 2. Randomize the order of the network, regard

the first 200 genes as a cluster and calculate the

ratio as in Step 1.

Step 3. Perform 999 repetitions of Step 2, and record

as a ‘P value’ the frequency with which the ratio

for the randomized network exceeds that in Step 1.

In this way, the P value can be interpreted as the

probability that a cluster of at least as highly quality as

the discovered cluster would arise by chance.

Using this approach, the 200 gene cluster detected

in the microarray data produced a P value below 0.01.

Overall, this confirms that (a) the data contain a set

of nodes with high expression correlation and high

metabolic activity, and (b) the customized spectral

approach was able to identify this structure.

Interpreting the results
Factorizing metabolic pathway data together with

gene-expression data is a way of adding known

large-scale biological information to the analysis.

This approach does not attempt to prejudice the

outcome, but asks if prior knowledge can add any

useful information.

We are able to add a biological narrative to some

of the observed genes that appear at both ends of the

matrix. Along with leptin, a signalling molecule pro-

duced in adipose tissue, we find acyl-CoA oxidase 1,

palmitoyl, the first enzyme in fatty-acid beta oxida-

tion; malonyl-CoA decarboxylase, involved in both

fatty-acid bio-synthesis or, more plausibly here,

scavenging odd-length dicarboyxlic acid fatty-acids.

At the other end of the matrix, we find the gene

for arginosuccinate lyase, traditionally linked to low

food availability. This is implausible in this cohort,

both from the social background and internally.

Our analysis also finds ketohexokinase; the presence

of this enzyme has been linked to a high fructose diet

and its role is to use this sugar as both an energy

source and, in adipose tissue, as source for precursors

of fatty-acids. Ketohexokinase initiates the pathway

through which most dietary fructose is metabolised

[38, 39]. Traditionally, this was described as an

energy store, but now is usually viewed as leading

to undesirable fat and obesity. Fructose, in developed

countries, is a common ingredient in most diets from

the addition of corn syrup.

Our analysis has also led us to discover patterns

with high probability of relevance to metabolic syn-

drome, obesity and type 2 diabetes. The availability

of relevant biometric information would allow us to

place these observations into more specific biological

context.

DISCUSSION
Our aim was to motivate and illustrate spectral meth-

ods for network analysis. We used a first principles,

linear algebra setting to show that by varying specific

choices in the algorithm design, we can generate a

range of spectral methods. In particular, we derived a

simple, novel extension that can uncover assortative

substructure. Due to space limitations, many issues

have been omitted, so we finish by mentioning

two key areas of current interest. First, for a large

complex network, that is perhaps noisily defined, it

may be of interest to identify substructures that go

beyond simple clusters. For example, algorithms can

be devised that discover subpatterns of bi-partivity

[40], periodicity [27] or hierarchy [41], using spectral

means. Second, a more systematic spectral approach

for dealing with two or more related data sets can

Figure 8: Metabolic degree of reordered genes. Left: ordered by vector from the node-weighted Laplacian. Right:
ordered by the Fiedler vector.
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be developed through the use of the Generalized

Singular Value Decomposition [7–10].

Key Points

� Spectral algorithms in network science can bemotivated natur-
ally from a linear algebra perspective.

� The flexibity arising from this viewpoint allows for a variety of
algorithms to emerge; in particular, a novel variant that can
discover assortive subpatterns in an individual network and be-
tween pairs of networks by merging information from multiple
sources.

� Such assortative subpatterns can be observed in real micro-
array/metabolic data sets.
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