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To gain insights about dynamic networks, the
dominant paradigm is to study discrete snapshots, or
timeslices, as the interactions evolve. Here, we develop
and test a new mathematical framework where
network evolution is handled over continuous time,
giving an elegant dynamical systems representation
for the important concept of node centrality. The
resulting system allows us to track the relative
influence of each individual. This new setting is
natural in many digital applications, offering both
conceptual and computational advantages. The
novel differential equations approach is convenient
for modelling and analysis of network evolution
and gives rise to an interesting application of the
matrix logarithm function. From a computational
perspective, it avoids the awkward up-front
compromises between accuracy, efficiency and
redundancy required in the prevalent discrete-time
setting. Instead, we can rely on state-of-the-art ODE
software, where discretization takes place adaptively
in response to the prevailing system dynamics.
The new centrality system generalizes the widely
used Katz measure, and allows us to identify and
track, at any resolution, the most influential nodes
in terms of broadcasting and receiving information
through time-dependent links. In addition to the
classical static network notion of attenuation across
edges, the new ODE also allows for attenuation
over time, as information becomes stale. This allows
‘running measures’ to be computed, so that networks
can be monitored in real time over arbitrarily long
intervals. With regard to computational efficiency, we
explain why it is cheaper to track good receivers of
information than good broadcasters. An important
consequence is that the overall broadcast activity in
the network can also be monitored efficiently. We use
two synthetic examples to validate the relevance of
the new measures. We then illustrate the ideas on
a large-scale voice call network, where key features
are discovered that are not evident from snapshots
or aggregates.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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1. Motivation
Systems involving transient interactions arise naturally in many areas, including telecommuni-
cation, online social networking and neuroscience. Dealing with the inherent time-dependency of
edges in a network raises a variety of challenges for modelling and computation [1,2]. Currently,
the dominant paradigm is to consider activity over time-windows, and hence to deal with
network snapshots over discrete time; for example, hourly or daily summaries of who phoned
whom or who texted whom. This approach can be used to study both the evolution of the
underlying connectivity and the dynamics of processes over the network [3–5]. The idea of
viewing a dynamic network as a time-ordered sequence of sparse adjacency matrices is also
extremely convenient for data-driven analysis [6–11]. More generally, abstracting from time to
any countable index representing possible levels in a hierarchy (such as gene/mRNA/protein) we
arrive at multiplex networks [12], which can also be viewed as multi-dimensional tensors [13,14].

However, owing to the bursty behaviour of human interactions [15] aggregating over
pre-chosen time windows has a number of drawbacks. On the one hand, by taking the time
window too large we lose the ability to reproduce high-frequency transient behaviour, where an
edge switches on and off multiple times in the space of a single window. On the other hand, time
points that are too finely spaced can lead to redundant, empty windows that waste computational
effort. Very short time windows may also lead to a false impression of accuracy—for remote
interactions such as e-mails and tweets, although there is an unambiguous and instantaneous
time at which information was sent, the time at which the receiver (i) digests and then, possibly,
(ii) acts upon the information is generally not recordable. Hence, although it is intuitively
appealing owing to its simplicity, we believe that in many settings, notably the avalanches of
human communication arising through digital media, the discrete snapshot view is unnatural and
forces us to make unnecessary compromises. Our aim is therefore to overcome these conceptual
and practical shortcomings by developing the first model to extract centrality insights directly
from an adjacency matrix defined as a function of continuous time. We focus on the task of
simulating with real dynamic network data. However, we note that by making available the
tools of dynamical systems, this work also allows us to incorporate the concept of centrality into
theoretical models of network evolution based, for example, on a law of social balance [16,17] or
triadic closure [18]. Hence, while this work focuses on the key step of deriving the continuum limit
and confirming its relevance on a real dataset, the ideas also open up the opportunity to study the
evolution of centrality under various network ‘laws of motion’ and to compare predictions from
competing models.

In the next section, we summarize some relevant background material in static network
centrality measures. In §3, we then set up and derive a differential equation for continuous-time
network centrality. Section 4 continues with some observations about the extraction of node-level
information, choice of parameters and extensions of the model. We illustrate the relevance of the
new measures in §5 by testing on synthetically constructed dynamic networks that contain known
hierarchies. Section 6 then applies the methodology to voice call interactions, showing that key
features can be extracted. We finish in §7 with some conclusions.

2. Background on network centrality
Using standard notation, we let A ∈ R

N×N denote the adjacency matrix for an unweighted,
directed, static network of N nodes, so that Aij = 1 if and only if there is a link from i to j and
Aij = 0 otherwise. In many circumstances, it is desirable to quantify the level of importance or
influence of each node in the network. This task has been addressed by many authors, with key
early contributions emerging in the field of social science [19,20]. We focus here on the widely
used concept of Katz centrality [21], which is motivated by the expansion

(I − aA)−1 = I + aA + a2A2 + · · · + akAk + · · · . (2.1)
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Here, 0 < a < 1 is a scaling parameter and the expansion is valid for a < 1/ρ(A), where ρ(·) denotes
the spectral radius. To interpret (2.1), we note that (Ak)ij counts the number of distinct walks of
length k from i to j. In this setting, a walk of length k is defined to be a traversal involving exactly
k edges, with no constraint on the re-use of edges or nodes along the way. The i, j element in
expansion (2.1) therefore has a natural combinatoric interpretation; it counts a weighted sum
of the number of walks from i to j, with walks of length k scaled by ak. As mentioned in the
original work of Katz, we can interpret the attenuation factor a as the probability that an edge is
successfully traversed. If we consider messages being passed along the directed edges, it follows
that the resolvent matrix (I − aA)−1 has components that quantify the ability of i to pass a message
to j: we are accounting for all possible routes, with longer ones given less importance. The row
and column sums

(I − aA)−11 and (I − aA)−T1, (2.2)

where 1 ∈ R
N denotes the vector of ones, then have ith components that measure the centrality

of node i via its ability to broadcast and receive information, respectively. Loosely, a node with
a high Katz broadcast centrality is a good place to start a rumour, and a node with a high Katz
receive centrality is a good place to hear the latest rumour.

Let us now consider interactions that come and go over time. The concept of centrality must
take account of a new factor—the follow-on effect arising from the time-ordering of the interactions.
If A meets B today and B meets C tomorrow, then a message may pass from A to C, but
not from C to A. If we consider only independent snaphots or an overall aggregate of the
interactions, then this type of follow-on influence becomes lost, considerably undermining the
task of discovering key players. It is reasonable to expect that influential or astute individuals
will generate ideas that are subsequently passed around the network by others. Indeed, this
effect was observed empirically in [22, p. 7], where discussion catalysts in an online community
were seen to be ‘responsible for the majority of messages that initiate long threads’. Similarly,
Huffaker [23, p. 594] identifies online leaders who ‘trigger feedback, spark conversations within
the community, or even shape the way that other members of a group “talk” about a topic’.
Related experiments in Mantzaris & Higham [24] on e-mail and voice mail data led to the term
dynamic communicators to describe individuals with an enhanced ability to disseminate or collect
information relative to their centrality based on static or aggregate summaries. Our aim here
is to present a framework that allows us to quantify these effects elegantly and efficiently in a
continuous-time setting.

3. Continuous-time analysis
We consider the case where a fixed set of N nodes undergo interactions that can appear and
disappear over time; i.e. we have time-dependent, directed, unweighted edges. We then let A(t)
be the corresponding time-dependent adjacency matrix. We have two fundamentally different
settings in mind. For direct engagement, as in the case of voice call data, it is natural for the
entries in the adjacency matrix to be discontinuous functions of time, switching on to 1 and off to
0 when the interaction starts and finishes, respectively. So in this case each A(t) ∈ R

N×N is binary
and symmetric with Aij(t) = Aji(t) = 1 if and only if i and j are in communication at time t. (To be
concrete, and without loss of generality, we will assume continuity from the right.) For indirect
social interactions such as e-mails and tweets, this framework allows us to spike the relevant
edge when a message is sent out, and then, as t increases, let the value to decay towards zero—
this reflects the fact that there may be a delay before the recipient digests the message, and also
that messages lose their impact and visibility over time. In this case, A(t) would generally be
unsymmetric, with components taking values between zero and one.

Our aim is now to generate a real-valued, unsymmetric dynamic communicability matrix
S(t) ∈ R

N×N such that S(t)ij quantifies the ability of node i to communicate with node j up to
time t. This will be constructed from first principles by counting dynamic walks that make use of
edges appearing at time t or earlier. In this setting, in addition to downweighting walks according
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to the number of edges they use, we will also downweight according to the temporal age of the
walk, on the grounds that information typically becomes less relevant over time. On this basis,
we propose that S(t) is updated over a small time interval δt according to

S(t + δt) = (I + e−bδtS(t))(I − aA(t + δt))−δt − I, (3.1)

with S(0) = 0. Here, I ∈ R
N×N denotes the identity matrix, and a, b > 0 are parameters. To justify

this new iteration and explain the role of the parameters, suppose first that δt = 1, and we are
therefore given access to the adjacency matrix only on a fixed grid of timepoints. In the extreme
case of a single timepoint, (3.1) reduces to S(1) + I = (I − aA(1))−1. For i �= j, this corresponds to
the classical resolvent-based measure of Katz [21] in (2.1). With multiple time points and b = 0 in
(3.1) we have

S(N) + I = (I − aA(1))−1(I − aA(2))−1 · · · (I − aA(N))−1. (3.2)

It was shown in [6] that this iteration generalizes the Katz centrality measure to the case of a
discrete-time network sequence. Here S(N)ij records an edge-downweighted count of the total
number of distinct dynamic walks. We note that the same idea was later used to define the weaker
concept of accessibility [9]. The general case of (3.1) with b > 0 and δt = 1 was introduced in [7],
where it was shown that the parameter b plays the role of downweighting for time—walks that
began k time units ago are scaled by e−bk.

A key step in writing down the new iteration (3.1) was to devise a scaling under which the
δt → 0 limit is meaningful. Our choice of a δt-dependent power in the matrix products can be
explained by focusing on the b = 0 case over a short-time interval. If we refine from the single
interval [t, t + δt] to the pair of intervals [t, t + δt/2] and [t + δt/2, t + δt] and consider the scenario
where A(t) does not change, then the simple identity

(I − aA(t))−(1/2)δt(I − aA(t))−(1/2)δt = (I − aA(t))−δt

shows that our scaling produces consistent results.
For convenience, we will let U(t) = I + S(t) in taking the δt → 0 limit. We then write (3.1) in the

form
U(t + δt) = (I + e−bδt(U(t) − I)) exp(−δt log(I − aA(t + δt))),

where exp and log denote the matrix exponential and logarithm, respectively, and we have used
the identities H = elog H and log(Hα) = α log H for −1 ≤ α ≤ 1 (e.g. [25]). Expanding and taking the
limit δt → 0, we then arrive at the matrix ODE

U′(t) = −b(U(t) − I) − U(t) log(I − aA(t)), (3.3)

with U(0) = I. In summary, dynamical system (3.3) is driven by the continuous-time adjacency
matrix A(t) with U(t)ij for i �= j quantifying the current ability of node i to pass information to
node j, with less emphasis given to longer and older dynamic walks.

Generalizing (2.2), in order to focus on nodal properties, we can take row and column sums in
the matrix U(t) to define the dynamic broadcast and dynamic receive vectors

b(t) = U(t)1 and r(t) = U(t)T1. (3.4)

Here, bi(t) and ri(t) measure the current propensity for node i to have broadcasted and received
information, respectively, across the dynamic network, under our assumptions that longer and
older walks have less relevance.

4. Remarks on the new dynamical system
It is interesting to note from (3.3) that the receive centrality satisfies its own vector-valued ODE

r′(t) = −b(r(t) − 1) − (log(I − aA(t)))Tr(t), (4.1)

with r(0) = 1, which is a factor of N smaller in dimension than (3.3) and hence cheaper to simulate.
By contrast, it is not possible to disentangle the broadcast centrality in this way. Intuitively, this
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difference arises because the node-based receive vector r(t) keeps track of the overall level of
information flowing into each node, and this can be propagated forward in time as new links
become available. However, the broadcast vector b(t) keeps track of information that has flowed
out of each node—it does not record where the information currently resides and hence we cannot
update based on b(t) alone. So, with this methodology, real-time updating of the receive centrality
is fundamentally simpler than real-time updating of the broadcast centrality.

We also note that as the sum of the row sums is equivalent to the sum of the column sums,
the overall dynamic broadcast centrality of the network,

∑N
i=1 bi(t), can be computed via (4.1)

by forming r(t)T1. Hence, we can monitor the current broadcast ability of the whole network
by simulating an ODE system that is a factor of N smaller than the system required for nodal
broadcast information.

So, overall, in terms of computational cost, the dynamic vector of receive centralities, r(t), or
the aggregate network centrality,

∑N
i=1

∑N
j=1 Uij(t), may be computed, via simulation, for very

large, sparse networks:

— the storage requirement scales like the number of nodes in the system, N,
— the dominant computational task, evaluating the right-hand side of (4.1), reduces to a

small number of products of a sparse matrix with a full vector. In this sense, the cost is
O(N) per unit time for a network with O(1) edges per node.

However, to simulate the dynamic broadcast centrality vector, b(t) in (3.4), requires us to deal
with the full matrix U(t) in (3.3), leading to O(N2) storage and an O(N2) cost per unit time. It is
therefore of considerable interest to develop approximation methods that overcome this barrier;
for example, by sparsifying U(t) or, as mentioned later, reducing its dimension.

The choice of downweighting parameters, a and b, clearly plays an important role in (3.3),
and should depend to a large extent on the nature of the interactions represented by A(t). The
temporal downweighting parameter, b, has the natural interpretation that walks starting t time
units ago are downweighted by e−bt, so b allows us summarize the rate at which news goes stale.
Hence b could be calibrated by studying the typical half-life of a link [26].

For the edge-attenuation parameter, a, in discrete iteration (3.2), there is a clear upper limit
given by the reciprocal of the spectral radius of A(t). This upper limit is bounded below by
the reciprocal of the maximum in-degree and maximum out-degree over the nodes. For the
continuous-time ODE (3.3), the principal logarithm log(I − aA(t)) is well defined if 1 − aλi > 0
for all real eigenvalues λi of A(t), [25]. We note that in the case of one-to-one undirected
communication, such as voice calls in the absence of tele-conferences, A(t) can always be
permuted into a block diagonal structure, with non-trivial blocks of the form[

0 1
1 0

]
,

and hence this constraint on a reduces to a < 1.
The starting point (3.1) is based on the idea of counting dynamic walks in a very generous

sense; any traversal that uses zero, one or more edges per time point is allowed. It is
possible to take an alternative approach where other types of dynamic walk are counted, after
downweighting. For example, we could start with the iteration

S(t + δt) = (I + e−bδtS(t))H(A(t))δt − I,

where H(A(t)) is some matrix function. Appropriate choices of H(A(t)) include truncated power
series of the form I + aA(t) + a2A(t)2 + · · · + apA(t)p, in which case we are counting only those
dynamic walks that use at most p edges per time step in the discrete setting. In this generality, the
ODE (3.3) becomes

U′(t) = −b(U(t) − I) + U(t) log(H(A(t))).
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Figure 1. Network structure for the first synthetic experiment. The active links alternate between the solid and dashed sets,
with extra noise added. The pattern repeats periodically over 10 cycles. (Online version in colour.)

In future work, it would be natural to generalize further to other types of dynamical system
that provide different summaries. For example, given an evolving network A(t) ∈ [0, 1]N×N where
N is extremely large, suppose that a subset of M � N nodes are found to be of interest. It may then
be worthwhile to study an ODE involving V(t) ∈ R

M×Mof the form

V′(t) = P(V(t)) + Q(V(t))F(A(t)),

where P and Q are polynomials or other matrix valued functions, and F : [0, 1]N×N → R
M×M is

an appropriate matrix valued mapping. This type of system allows us to project the interactions
taking place between all N individuals onto the subset of interest, and then calculate a measure
of the resulting evolution of behaviour at this lower dimension.

5. Synthetic experiments
To illustrate the use of our dynamical systems approach and give a feel for the role of the
parameters, we now present two synthetic examples of networks evolving over continuous
time. These examples have been constructed to have an intuitively reasonable hierarchy of
influence that is hidden from the static or aggregate view. To aid visualization, the networks are
small, and hence we were able to solve the ODE system (3.3) accurately with a highly resolved
Euler iteration.

Our first experiment creates cascades through a directed binary tree structure, as illustrated
in figure 1. We use a time interval [0, 20], with A(t) constant over each subinterval [i, i + 1). To
define A(t) over i ≤ t < i + 1, we use the solid edges when i is even and the dashed edges when
i is odd. Furthermore, we add some noise to this structure by including extra directed edges—
these are chosen uniformly at random for each subinterval, with an average of five edges added
each time. Overall, because of the hierarchy and timing of the edges, information is seen to be
flowing from lower indices to higher. In particular, node 1 has the greatest propensity for passing
information through the network, even though any single snapshot in time would not reveal
this feature.

In figure 2a, we show, for each of the 31 nodes, the dynamic broadcast score from (3.4) at
t = 20. In this case, the maximum spectral radius of A(t) over [0, 20] is one, and we used a = 0.7
and b = 0.1. We see that node 1 is strongly favoured by the centrality measure, and centrality
generally decreases with index. Nodes 2 and 5 are ranked above node 3, suggesting that the
symmetry breaking effect of the additional noise has slightly favoured this part of the network.
In figure 2b, we show the same results when b is decreased to 0.01. In this case, we are allowing
older walks to make a greater contribution: a walk starting at time zero is downweighted by
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Figure 2. Results from the dynamic network in figure 1. (a–c) Broadcast centrality for each of the 31 nodes. (d) Shows the
aggregate out degree for each node. (Online version in colour.)

exp(−20 × 0.01) ≈ 0.8 rather than exp(−20 × 0.1) ≈ 0.1. Because of the underlying periodicity
in the network dynamics, this change has very little effect on the relative node rankings, but
generates much larger absolute values. In figure 2c, we return to b = 0.1 and this time change to
a = 0.1, so that walks using more edges are more strongly penalized. In this case, although node 1
remains the most central, the differences are less marked because the ability of node 1 to instigate
many dynamic walks of length 4 to nodes in the bottom of the hierarchy carries less weight.
Figure 2d shows the aggregate degree of each node, that is, the out degree integrated over time.
For the underlying binary tree structure, this value is equal to 20 for nodes 1 to 15, and relative
differences are simply a reflection of the added noise. This picture makes it clear that overall
bandwidth can be a poor indicator of influence.

Our second experiment also uses a binary tree structure. In this case, the edges are undirected
and every node maintains at most one edge at any given time, mimicking the voice call
setting. Figure 3 illustrates the network. Here, labels have been assigned to the edges, indicating
when they are active. These time intervals are ordered and non-overlapping, with ti := [(i − 1)τ ,
(i − 1 + 0.9)τ ), for i = 0, 1, . . . , 7, and τ = 0.1. The dynamic network is designed so that node A is
a more successful propagator than node B; for example, node A may have a higher status in a
business or social setting, or may have access to a more timely item of news. We see that node
A talks to node C in time-interval t1, and this interaction is followed by a cascade of interaction
down the hierarchy. By contrast, node B does not contact node C until time interval t4, and there
is no knock-on effect. From the aggregate perspective, nodes A and B have identical behaviour,
both contacting nodes C and D for the same length of time. In our experiment, we let the dynamic
network repeat over five cycles, so nodes A and B send out 10 messages in total.

For a = 0.9 and b = 0.01, figure 4 shows the evolution over time of the broadcast centrality for
node A (solid) and node B (dashed). We see that this dynamic measure is able to capture the
knock-on effect enjoyed by node A.
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Figure 3. Network structure for the second synthetic experiment. Links are active over non-overlapping time intervals ti ,
as indicated. The pattern repeats periodically over five cycles. (Online version in colour.)
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Figure 4. Dynamic broadcast centrality over time for node A (solid) and node B (dashed) in the network of figure 3. (Online
version in colour.)

6. Voice call experiment
We now illustrate the use of this new modelling framework on a set of voice call interactions
supplied as part of the IEEE VAST 2008 Challenge [27]. These realistic data were designed ‘with
the purpose of pushing the forefront of visual analytics tools using benchmark data sets;’ further
details can currently be found at http://www.cs.umd.edu/hcil/VASTchallenge08/awards.html.

The pattern of voice calls reflects a fictitious, controversial socio-political movement and
incorporates some unusual dynamic activity. Across 400 cell phone users, over a 10 day period,
the data relevant to our experiment consist of a complete set of time-stamped calls. For each of
the 9834 calls, we have IDs for the send and receive nodes, a start time in hours/minutes and
a duration in seconds. We will refer to the bandwidth of a node as the aggregate number of
seconds for which the ID is active as a sender or receiver. Among the extra information supplied
by the competition designers was the strong suggestion that the node with ID of 200 was the
‘ringleader’ in a key community. Based on analyses submitted by challenge teams, we believe
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Figure 5. Voice call data, end of day 6: for each node we show dynamic broadcast measure on vertical axis and bandwidth on
horizontal axis. The ringleader is marked with a downward pointing triangle and the other four inner circle nodes are marked
with squares. After day 6, these individuals are believed to change phone, the ringleader’s subsequent ID is marked with an
upward pointing triangle, and the other inner circle IDs with diamonds. (Online version in colour.)

that this ringleader controls a tightly knit subnetwork involving nodes with IDs 1, 2, 3 and 5.
However, from day 7 onwards, these individuals appear to change their phones: ID 200 changes
to 300, and the others change to 306, 309, 360 and 392. Our aim is to show how the ODE (3.3) is
useful for dealing with this type of dynamic network.

In our test, we took A(t) to be symmetric, so Aij(t) = Aji(t) = 1 if nodes i and j are conversing
at time t, measured in seconds. We used b = 1/(60 × 60 × 24) ≈ 1.2 × 10−5, corresponding to a
time downweighting of e−1 per day, and a comparable value of a = 10−4 for the edge attenuation
parameter. We solved the ODE (3.3) numerically with Matlab’s ode23 code, which discretizes the
time interval transparently, based on its built-in error control algorithm. We specified absolute and
relative error tolerances of 10−4. More precisely, to improve efficiency, we replaced the matrix
logarithm log(I − aA(t)) in (3.3) with the expansion aA(t) − a2A(t)2/2 + a3A(t)3/3 − a4A(t)4/4 +
a5A(t)5/5. Visually unchanged results were found when we increased the number of terms in
the expansion to 6 and 7.

Two key findings from our tests were that

(A) without using any information about the existence of an inner circle, the dynamic
broadcast/receive measures (3.4) flag up these key nodes as being highly influential, even
when they are not active in terms of overall bandwidth,

(B) given the IDs of the inner circle, the running centrality measures reveal the change in the
nature of the network that occurs during day 7.

To illustrate point (A), figure 5 takes the data up to the end of day 6, and scatter plots
bandwidth against dynamic broadcast, b. (Results for dynamic receive, r, are very similar.) Here
the ring leader, 200, is marked with a downward pointing triangle and the related nodes, 1, 2, 3
and 5 are marked with squares. We have also marked the ringleader’s follow-on ID, 300, with an
upward pointing triangle, and those for the other members, 306, 309, 360 and 392, with diamonds.

We see that the key nodes for days 1–6 are much more dominant in terms of dynamic broadcast
than overall bandwidth. In particular, the ringleader node has a very modest bandwidth but ranks
fourth out of 400 for broadcast communicability.
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Figure 6. As for figure 5, using data from day 7 to day 10. (Online version in colour.)
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Figure 7. Voice call data: dynamic communicability between the five key nodes (vertical axis) as a function of time (horizontal
axis). (Online version in colour.)

Figure 6 shows the same information for the data arising from days 7 to 10. We see again that
the dynamic broadcast score does a much better job than bandwidth of revealing the inner circle.
In particular, the new ID of the ringleader, marked with an upward pointing triangle, has a very
low overall bandwidth but ranks the fifth highest for broadcast centrality. The ‘old’ IDs from the
inner circle, marked with squares, continue to have high bandwidth, but the dynamic broadcast
score indicates that they are no longer central players.

To illustrate point (B), figure 7 shows the dynamic communicability between the original IDs
of the five key players, 200, 1, 2, 3 and 5, as a function of time. Here, at each time point, we show
the average pairwise broadcast plus receive communicability between each pair of nodes in this
group scaled by the average pairwise communicability between all pairs of nodes. We see that
this running measure is able to track the change in the nature of the network around day 7, when
these individuals switch to different IDs.
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7. Conclusion
In summary, this work has presented what we believe to be the first attempt to pass to the
continuum limit in dynamic network centrality. This dramatically enhances the existing snapshot-
based paradigm in terms of both data-driven simulation and theoretical analysis. Our framework
fits naturally into the context of online or digital recording of human interactions. The ODE setting
conveniently avoids the need to discretize the network data into pre-defined time windows—
an approach that can introduce inaccuracies and computational inefficiencies. By defining a
continuous-time dynamical system, we can simulate with off-the-shelf, state-of-the-art, adaptive
numerical ODE solvers, so that time discretization is performed ‘under the hood’ and in a manner
that automatically handles considerations of accuracy and efficiency. In particular, in this way,
we can deal adaptively with dramatic changes in network behaviour. We also showed how to
downweight information over time in the new ODE framework, so that a running summary of
centrality can be updated in real time without the need to store, or take account of, all previous
interaction history. This has immediate applications to the issue of ranking nodes [28], detecting
virality [29] and making time-sensitive strategic decisions [30]. Furthermore, the ODEs derived
here can feed into the development of new network models where the evolution of centrality is
coupled to the evolution of topology, and hence they can contribute to modelling, prediction and
hypothesis testing.
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