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The concept of betweenness has given rise to a very useful class of network centrality mea-
sures. Loosely, betweenness quantifies the level of importance of a node in terms of its pro-
pensity to act as an intermediary when messages are passed around the network. In this
work we generalize a walk-based betweenness measure to the case of time-dependent net-
works, such as those arising in telecommunications and on-line social media. We also
introduce a new kind of betweenness measure, temporal betweenness, which quantifies
the importance of a time-point. We illustrate the effectiveness of these new measures on
synthetic examples, and also give results on real data sets involving voice call, email and
Twitter.

� 2015 Elsevier Ltd. All rights reserved.
1. Background material

1.1. Betweenness

This work deals with centrality measures for dynamic
networks. We begin by summarizing some relevant con-
cepts from the static network setting. Our focus is on the
concept of betweenness, which arose in the social network
analysis literature [5,22] and has become prominent across
network science [16].

Loosely, betweenness quantifies the extent to which a
node is relied upon when messages are passed around a
network. Traditionally, shortest paths between nodes were
considered, and the betweenness of node r was found by
considering all other distinct nodes, i – j, and recording
the proportion of shortest paths between i and j that
involve node r. As pointed out by Freeman et al. [6] and
by Newman [17], key messages do not necessarily follow
geodesics, and hence there is scope for altering the defini-
tion in order to allow for other types of traversal through a
network. In [3], a general framework was presented, based
on functions of the adjacency matrix, and this is the
approach that we follow here. Given an unweighted, direc-
ted network with N nodes, we let A 2 RN�N denote the adja-
cency matrix, so that ðAÞij ¼ 1 if there is an edge from i to j
and ðAÞij ¼ 0 otherwise. It then follows that the exponen-

tial, expðAÞ, and resolvent, ðI � aAÞ�1, provide information
about the potential for pairwise communication [2]. This
can be understood by considering power series expansions

of the matrix functions and noting that ðAkÞij counts the
number of walks from i to j that involve exactly k edges.
In the case of the matrix resolvent, which dates back to
the work of Katz [13], the attenuation parameter, a, is cho-
sen in the range 0 < a < 1=qðAÞ, where qð�Þ denotes the
spectral radius.

Communicability betweenness for a general node, r, was
then defined in [4] according to

CN

X X
i–j;i–r;j–r

exp ðAÞij � exp ðA� EðrÞÞij
exp ðAÞij

; ð1Þ

where CN ¼ 1
ðN�1Þ2�ðN�1Þ

is a normalizing factor. Here EðrÞ has

nonzeros only in row and column r, and in this row and
column has �1 wherever A has 1; hence A� EðrÞ is the
adjacency matrix when all edges involving the node r are
removed. In words, the communicability betweenness for
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node r aggregates the relative decrease in exponential
communicability over all other pairs of nodes when node
r is removed from the network. In a similar manner, replac-
ing the matrix exponential by the matrix resolvent, [3]
defined the resolvent betweenness for node r as

CN

X X
i–j;i–r;j–r

ððI � aAÞ�1Þij � ððI � aðA� EðrÞÞÞ�1Þij
ððI � aAÞ�1Þij

: ð2Þ

We assume here that the underlying network is fully con-
nected so that no division-by-zero issues arise in (1) and
(2).

1.2. Time dependent networks

Many types of interaction have a well-defined dynamic
aspect, giving rise to the study of temporal networks [12].
In this work, motivated by applications in telecommunica-
tion and on-line social media, and following the ideas in
[7], we consider a fixed set of N nodes and a discrete, finite
and ordered set of time points, t0 < t1 < � � � < tM . We then
assume that the state of the network is supplied at each

time tk, as represented by an adjacency matrix, A½k�. For

example, in the Twitter context, ðA½k�Þij ¼ 1 may indicate
that account i sent at least one tweet to account j in the
time interval ðtk�1; tk�.

In [10] the concept of a dynamic walk was introduced as
a means to extend centrality measures from the static case.
In words, a dynamic walk of length w between a pair of
nodes is any suitable traversal along w edges that respects
the arrow of time – we can remain at a node and wait for an
edge to appear, but we cannot go back in time and use an
edge that subsequently disappeared. More precisely, a
dynamic walk of length w from node i1 to node iwþ1 consists
of a sequence of edges i1 ! i2; i2 ! i3; . . . ; iw ! iwþ1 and a
nondecreasing sequence of times tr1 6 tr2 6 � � � 6 trw such

that A½rm �
im ;imþ1

– 0. Just as matrix powers can be used to count

walks in the static case, dynamic walks can be counted via
matrix products. It was shown in [10] that the N � N matrix

Q :¼ I � aA½0�
� ��1

. . . I � aA½M�
� ��1

ð3Þ

is such that ðQÞij gives a weighted count of the number of
dynamic walks of length w from node i to node j, where
walks of length w are scaled by a factor aw. This is a direct
generalization of the static case described in subSection 1.1,
where a single resolvent matrix was used (M ¼ 0), and in
order to ensure convergence of the underlying power ser-

ies, we require a < 1=maxkqðA½k�Þ. Following [10] we refer
to Q in (3) as the dynamic communicability matrix. We note
that Q takes account of effects that cannot be seen through

the individual snapshots, fA½k�g
M

k¼0, or the aggregate adja-

cency matrix
PM

k¼0A½k�. The usefulness of this concept has
been illustrated on real data sets in [9,10,15,19], where
Katz-style broadcast and receive centralities were com-
puted for time-dependent networks. Similar shortest-path
based measures were developed and tested in [18,20,21].

Our aim here is to use dynamic communicability as a
means to quantify betweenness.
2. Temporal and nodal betweenness for dynamic
networks

We will use Q in (3) as the basis for two types of
betweenness measure. First, following directly from (2),
we will look at the effect on communicability of removing

a node for all time. Letting E½k�r denote the matrix with nonz-

eros only in row and column r of A½k�, and in this row and

column having 1 wherever A½k� has 1, we see that
�A½k�r :¼ A½k� � E½k�r is the adjacency matrix at time point k when
all edges involving the node r are removed. We then let

�Q r :¼ I � aA½0�r

� ��1
. . . I � aA½M�r

� ��1
: ð4Þ

In this way, �Q r has ði; jÞ element that quantifies the ability
of node i to communicate with node j using dynamic walks
that do not involve node r.

In this temporal context there is another clear sense in
which betweenness can be measured. Rather than focusing
on individual nodes, we may consider time points – in
order to identify critical stages in the network evolution,
we may record how much the dynamic communicability
decreases when a time point is removed. We will let

fbA½k;q�gM

k¼0 denote the adjacency matrix sequence with A½q�

replaced by 0; that is,bA½k;q� ¼ A½k�; for k – q; and bA½q;q� ¼ 0:

We then define

bQ ½q� :¼ I � abA½0;q�� ��1
I � abA½1;q�� ��1

. . . I � abA½M;q�
� ��1

: ð5Þ

In practice, since we are only concerned with comparing
nodes and comparing time points based on the relative
change that their removal causes to dynamic communica-
bility, we are free to apply a scaling. Hence, to avoid numer-
ical under or overflow, we will scale by kQk, where k � k
denotes the Euclidean norm. With a slight re-use of nota-

tion, we will therefore redefine Q ; �Q r and bQ ½q� to denote

these scaled versions. Setting Q ½�1� ¼ �Q ½�1�
r ¼ bQ ½�1;q� ¼ I, we

therefore let, for k ¼ 0;1; . . . ;M,

Q ½k� ¼
Q ½k�1� I � aA½k�

� ��1

kQ ½k�1� I � aA½k�
� ��1

k
; ð6Þ

�Q ½k�r ¼
�Q ½k�1�

r I � aA½k�r

� ��1

kQ ½k�1� I � aA½k�
� ��1

k
; ð7Þ

bQ ½k;q� ¼ bQ ½k�1;q� I � abA½k;q�� ��1

kQ ½k�1� I � aA½k�
� ��1

k
: ð8Þ

Following (2), we then define the nodal betweenness of
node r to be

NBr :¼ CN

X X
i–j;i–r;j–r

Q ½M�
� �

ij
� �Q ½M�r

� �
ij

Q ½M�
� �

ij

ð9Þ

and the temporal betweenness of time point q to be



Fig. 1. A sample of the dynamic network process used to illustrate temporal betweenness. Here we have 10 days. The pictures show a typical non-zero
pattern in the unsymmetric adjacency matrices. Nodes are ordered so that group A appears before group B. The undirected block diagonal structure on days
1;2;3;5;6;7;9;10 arises because only intra-group links are generated. The off-diagonal block diagonal structure on days 4 and 8 arises because only inter-
group links are generated.

Fig. 2. Results for the network sequence illustrated in Fig. 1, averaged over 1000 runs. Left: total activity at each day. Middle: temporal betweenness for
each day with a ¼ 0:1. Right: temporal betweenness for each day with a ¼ 0:2.
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TB½M;q� :¼ CN

XX
i–j

Q ½M�
� �

ij
� bQ ½M;q�
� �

ij

Q ½M�
� �

ij

: ð10Þ
We note that in (9) and (10), a zero appearing in the
denominator is always accompanied by a zero in the
numerator. Here, and throughout this work, we use the
convention that 0=0 ¼ 0.
To get some insight into these new definitions, we will
analyze their behavior in the limit a! 0þ. We begin with a
lemma concerning a product of matrix resolvents.

Lemma 2.1. Suppose we have a finite sequence of square

matrices A½0�;A½1�; . . . ;A½M�, each in RN�N. Let

R½k� ¼ I � aA½0�
� ��1

I � aA½1�
� ��1

. . . I � aA½k�
� ��1

:
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As a! 0þ, we have

R½k� ¼ I þ a
Xk

p¼0

A½p� þ a2
Xk

p¼0

Xk

h¼p

A½p�A½h� þ Oða3Þ:
Proof. The result follows straightforwardly by induction.
At the initial time point, as a! 0þ, we have

I � aA½0�
� ��1

¼ I þ aA½0� þ a2 A½0�
� �2

þ Oða3Þ;

giving the result for k ¼ 0. Now, suppose the result is true
for the number of factors equal to 0;1;2; . . . ; k� 1. Then

R½k� ¼R½k�1� I�aA½k�
� ��1

¼ Iþa
Xk�1

p¼0

A½p� þa2
Xk�1

p¼0

Xk�1

h¼p

A½p�A½h�
 

þOða3Þ
!

IþaA½k� þa2 A½k�
� �2

þOða3Þ
� �

¼ Iþa
Xk

p¼0

A½p�

þa2
Xk

p¼0

Xk

h¼p

A½p�A½h� þOða3Þ;

as required.
We now characterize the two new betweenness mea-

sures in this limit. h
Fig. 3. A sample of the dynamic network process used to illustrate nodal betwee
in the unsymmetric adjacency matrices. Nodes are ordered so that group A a
1;2;3;5;6;7;9;10 arises because only intra-group links are generated. A single, d
4 and 8. Hence, without node 25 or 75, the two groups would be disconnected,
Theorem 2.1. Assume that
PM

p¼0ðA
½p�Þij – 0, for all i – j, so

that every edge appears at least once. Then, as a! 0þ,

lim
a!0þ

NBr

a
¼CN

X X
i–j;i–r;j–r

PM
p¼0

PM
h¼p A½p�A½h� �A½p�r A½h�r

� �
ijPM

p¼0A½p�ij

;

ð11Þ

and

lim
a!0þ

TB½M;q� ¼ CN

XX
i–j

A½q�ijPM
p¼0A½p�ij

: ð12Þ
Proof. Noting that, for i – r and j – r,

XM

p¼0

A½p�
� �

ij
¼
XM

p¼0

A½p�r

� �
ij
;

we see from Lemma 2.1 that

X X
i–j;i–r;j–r

Q ½M�ij � �Q ½M�r

� �
ij

Q ½M�ij

¼

a
PM

p¼0

XM

h¼p

A½p�A½h� �A½p�r A½h�r

� �
þOða2Þ

 !
ijPM

p¼0A½p� þOðaÞ
� �

ij

:

nness. We have 10 days. The pictures show the non-zero pattern each day
ppears before group B. The undirected block diagonal structure on days
irected edge is inserted deterministically from node 25 to node 75, on days
and far fewer dynamic walks would exist.



Fig. 4. Results for the network sequence illustrated in Fig. 3, averaged over 1000 runs. Upper: sum of aggregate out and in degree for each node. Middle:
sum of final-time broadcast and receive centrality for each node when a ¼ 0:1. Lower: sum of final-time broadcast and receive centrality for each node
when a ¼ 0:2.

Fig. 5. Nodal betweenness results for the network sequence illustrated in Fig. 3, averaged over 1000 runs. Upper picture: nodal betweenness for each node
when a ¼ 0:1. Lower picture: nodal betweenness for each node when a ¼ 0:2.
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The result (11) then follows.
Similarly,XM

p¼0

A½p�
� �

ij
� bA½p;q�� �

ij
¼ A½q�
� �

ij
;

and Lemma 2.1 gives

XX
i–j

Q ½M�ij � bQ ½M;q�
ij

Q ½M�ij

¼
XX

i–j

A½q� þ OðaÞ
� �

ijPM
p¼0A½p� þ OðaÞ

� �
ij

;

leading to (12). h
The results in Theorem 2.1 have a natural interpreta-
tion. The a! 0þ limit focusses on short walks, and in (11)
the leading term in an expansion of nodal betweenness is
seen to aggregate the ratios over all pairs of nodes i; j of (a)
the number of dynamic walks of length two from i to j
involving node r and (b) the total number of dynamic
walks from i to j of length two. In this limit we also see
from (12) that the temporal version aggregates the ratio of
(a) walks of length one from i to j at time q and (b) the
total number of walks of length one from i to j. We
emphasize that Theorem 2.1 is to be regarded as a



Fig. 6. Results for a single instance of the network sequence illustrated in Fig. 3. Upper: sum of aggregate out and in degree for each node. Middle: sum of
final-time broadcast and receive centrality for each node when a ¼ 0:1. Lower: sum of final-time broadcast and receive centrality for each node when
a ¼ 0:2.

Fig. 7. Results for a single instance of the network sequence illustrated in Fig. 3. Upper left: nodal betweenness with a ¼ 0:1. Upper right: nodal
betweenness with a ¼ 0:2. Lower left: sum of broadcast and receive plotted against nodal betweenness for a ¼ 0:1. Lower right: sum of broadcast and
receive plotted against nodal betweenness for a ¼ 0:2.
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consistency check. In practice the use of a nonzero a value,
which thereby allows longer dynamic walks to be
incorporated, is a key strength of the new measures.
3. Synthetic tests

In this section we give results on two computational
experiments with specially constructed dynamic networks.
The purpose of these tests is to confirm that the new nodal
and temporal betweenness measures are able to extract
the relevant features, when they are known to be present
in the data.

In the first test, we focus on temporal betweenness. To
begin, we consider 100 nodes, split into two groups, A and
B, each of size 50. To be concrete, we regard the time points
as successive days. On the first day, we allow nodes within
group A to have directed edges. Each such edge is chosen
independently with probability 0:05. Similarly, directed
edges of the same type are generated within group B.
Hence the overall network consists of two disconnected,
directed Erdos–Renyi style networks. The upper left pic-
ture in Fig. 1 illustrates this idea. This construction proce-
dure, using independent samples, is applied at days
1;2;3;5;6;7;9;10. At days 4 and 8, we reverse the process:
there are no links within group A, nor within group B, but
directed links are inserted between nodes in A and nodes
in B with independent probability 0:05. In this way, on
each of the ten days nodes have the same in and out degree
distribution, but days 4 and 8 play special roles in allowing
information to pass between the two groups.

Within this framework, we show results averaged over

1000 independent runs. We found that 1=max q A½k�
� �� �

� 0:26, and hence we test with a ¼ 0:1 and a ¼ 0:2. In the
Fig. 8. Nodal betweenness results for Enron data set, consisting of a time depend
and receive centrality for each node. Lower: nodal betweenness for each node.
left hand picture of Fig. 2, we show the overall activity on

each day, which we define as kA½k�k. Note that the vertical
scale is very restricted, and the variation across time is sim-
ply a reflection of the finite number of network samples. In
particular, days 4 and 8 are not singled out by this measure.
The middle and right hand pictures in Fig. 2 illustrate the
temporal betweenness at each day, for a ¼ 0:1 and
a ¼ 0:2, respectively. We see that in both cases the measure
is able to highlight the key roles of days 4 and 8 – these are
the instances where nodes have an opportunity to build
new routes into the opposite groups. Day 4 is rated slightly
higher than day 8. This can be explained by the fact that the
earlier ‘‘bridging’’ edges have greater potential to partici-
pate in time-dependent walks that make use of subsequent
edges. We also note from Theorem 2.1 that in the limit
a! 0þ the temporal betweenness measure would not be
able to highlight days 4 and 8, since the number of edges,
on average, is equal each day. It is by choosing a > 0, and
thereby allowing walks of length greater than one to have
some influence, that we reach the intuitively reasonable
conclusion that days 4 and 8 are special.

The second test illustrates nodal betweenness. As in the
first test, we have 100 nodes split into two equal sized
groups, and 10 days. On days 1;2;3;5;6;7;9;10, we use
the same construction as above: directed links are inserted
within group A and within group B with independent prob-
ability 0:05. On days 4 and 8 there is a single directed edge
from node 25 to node 75. Hence, nodes 25 and 75 have
very similar aggregate degrees to the other nodes, but they
have a unique ability to send and receive, respectively,
messages from group A to group B. Removing either node
would completely disconnect the two groups, in terms of
dynamic walks. Fig. 3 shows a sequence of adjacency
matrices for this test. As above, we have
ent, directed set of email interactions. Upper: sum of final-time broadcast



Fig. 9. Further nodal betweenness results for Enron data set: scatter plot of nodal betweenness versus sum of broadcast and receive centrality. The seven
nodes with highest nodal betweenness are labelled, and the roles of the corresponding employees are discussed in the text.

Fig. 10. As for Figs. 8 and 9, using the MIT data set, which represents undirected voice call interactions.
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1=max q A½k�
� �� �

� 0:26, and show results for a ¼ 0:1 and

a ¼ 0:2, averaged over 1000 independent runs.
The upper picture in Fig. 4 shows, for each node, the

time-aggregate of the sum of out and in degree; that is,
the total number of links entering or leaving each node.
Note that the vertical axis has a very small range, and
the two special nodes have values that are roughly two
more than the rest (since they are given an extra link
on days 4 and 8 and otherwise have the same degree dis-
tribution as the remainder). For a ¼ 0:1, the middle pic-
ture shows the sum of final-time broadcast and receive
centrality, which quantifies how effectively a node can



Fig. 11. Temporal betweenness results for Enron data. Upper: total activity each day. Middle: temporal betweenness each day. Lower: total activity versus
temporal betweenness.
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broadcast and receive dynamic messages; for node n this
is given by

XN

k¼1

Q nk þ
XN

k¼1

Q kn:

The lower picture repeats this information for a ¼ 0:2. We
see that for a ¼ 0:1, nodes 25 and 75 have a slightly higher
ranking than the remainder, but this effect is much less
pronounced with a ¼ 0:2. Intuitively, the smaller a value
emphasizes short walks, notably walks of length one, so
the marginally higher degree of nodes 25 and 75 has an
effect.

In Fig. 5, we show the nodal betweenness for a ¼ 0:1
(upper) and a ¼ 0:2 (lower). We see that in both cases
the special nature of nodes 25 and 75 is highlighted.

Fig. 6 repeats the experiment in Fig. 4 for the case of a
single sample from the network sequence. In this case,
the natural variation in aggregate degree across the nodes
is sufficient to hide the special nature of nodes 25 and 75
– they have no extra ability to act as broadcasters or receiv-
ers. The upper pictures in Fig. 7, however, show that the
nodal betweenness measure, with a ¼ 0:1 (left) or a ¼ 0:2
(right), is able to identify nodes 25 and 75 – there is a large
reduction in dynamic communicability between general
nodes when these two are removed. The extra information
contained in nodal betweenness centrality is further
confirmed in the lower pictures of Fig. 7, where we plot
the sum of broadcast and receive against nodal
betweenness.
4. Tests on externally-supplied data

In this section we apply the new measures to real net-
works and look at their correlation with other types of
centrality.
4.1. Email and voice call data

The‘‘Enron’’ data set is based on company emails
between 151 Enron employees over a period of 1138 days
[14]. It has been widely used as a source of dynamic inter-
actions [8,10,21]. In this case we have a directed edge

A½k�ij ¼ 1 if person i sent at least one email to person j on
day k. The ‘‘MIT’’ data set concerns daily mobile telephone
interaction between 106 people over 365 days [1]. Here,

we have A½k�ij ¼ A½k�ji ¼ 1 if i and j interacted by phone during
day k.

The upper picture in Fig. 8 shows the sum of final-time
broadcast and receive centrality for each node in the Enron
data set. We used a ¼ 0:1, which is below the upper limit

of 1=max q A½k�
� �� �

¼ 0:23. The lower picture shows the

corresponding nodal betweenness centrality. In Fig. 9, we
scatter plot the sum of broadcast and receive against the



Fig. 12. Temporal betweenness results, as for Fig. 11, using the MIT Data.

Table 1
Centralities on the Twitter data. Kendall tau correlation in upper triangle. Spearman rho correlation in lower triangle.

Out degree Dyn. receive Dyn. broadcast Nodal betweenness

Out degree 0.63 0.42 0.61
Dyn. receive 0.49 0.66 0.71
Dyn. broadcast 0.75 0.80 0.63
Nodal bet. 0.48 0.75 0.83

Table 2
Overlaps from the Twitter data. Overlap between top 10 in upper triangle. Overlap between top 20 in lower triangle.

Out degree Dyn. receive Dyn. broadcast Nodal betweenness

Out degree 3 6 5
Dyn. receive 5 4 3
Dyn. broadcast 7 16 7
Nodal bet. 6 17 17

Table 3
Overlap amongst top ten for each of the four centrality measures against the average over five experts.

Out degree Dyn. receive Dyn. broadcast Nodal betweenness

Overlap 4 2 3 4

44 A. Alsayed, D.J. Higham / Chaos, Solitons & Fractals 72 (2015) 35–48



Table 4
Account IDs in rank order from 1 to 10. Column 1: average over five experts. Column 2: out degree. Column 3: dynamic broadcast. Column 4: nodal
betweenness.

Average expert Out degree Dynamic broadcast Nodal betweenness

397 74 74 398
362 34 398 397
398 362 362 74
341 370 34 345
289 358 358 373
345 71 302 375
462 345 397 362
212 398 352 380
71 352 373 385
18 484 380 358

Fig. 13. IEEE data, for each one minute interval, we show the number of (undirected) edges as a function of time.

Fig. 14. IEEE data. Based on days 1 to 6: for each node we show nodal betweenness on horizontal axis against time on the phone in seconds on vertical axis.
The call leader, ID 200, is marked with a red circle and the other important nodes are marked with red rectangles. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

A. Alsayed, D.J. Higham / Chaos, Solitons & Fractals 72 (2015) 35–48 45
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nodal betweenness. The picture makes it clear that central-
ity in terms of nodal betweenness is a different attribute to
centrality in terms of dynamic communicability. The
Spearman rho correlation between the two centrality vec-
tors is 0:23 and the Kendall tau index is 0:45. Fig. 9 also
contains labels for seven nodes that are highlighted by
the analysis. Nodes labelled 1 and 2 have the highest
sum of final-time broadcast and receive centrality and also
rank 9th and 7th, respectively, in terms of nodal between-
ness. These nodes correspond to an executive and the vice
president, who therefore hold influential positions in the
company. The nodes labelled 3, 4, 5, 6 and 7 have highest
nodal betweenness but are not significant in terms of
broadcast and receive centrality. Among this set of five,
nodes 3 and 6 are known to correspond to a vice president
and a director, and hence nodal betweenness is seen to
extract important information.

Fig. 10 repeats the tests in Figs. 8 and 9 for the MIT data

set. Here, 1=max q A½k�
� �� �

¼ 0:12, and we used a ¼ 0:1. In

this case we have similar correlation coefficients to those
from Fig. 9; a Spearman rho correlation of 0:34 and a Ken-
dall tau index of 0:38.

In Fig. 11, the upper picture shows the total Enron activ-
ity for each day. In this case there are many days where

A½k� ¼ 0. The middle picture shows the temporal between-
ness for each day. The lower picture compares these two
measures with a scatter plot, and we see that a day with
large temporal betweenness is typically not a day with
high activity. Fig. 12 shows the same information for the
MIT data. In this case we see a strong level of consistency
between overall activity and temporal betweenness. One
possible explanation for this contrast between the Enron
email and MIT phone results is that telephone conversa-
tions are more personal and consistent – interactions take
place within well-established groups, so removing a day
Fig. 15. As for Fig. 14, from day 7 to the end of day
from the network does not dramatically affect the overall
dynamic communicability in the sense of removing possi-
ble bridge nodes that offer short-cuts between communi-
ties – instead, the effect of the removal is broadly
consistent with the number of edges removed.
4.2. Twitter data

Next, we apply nodal betweenness to a Twitter data set
that was used by Laflin et al. [15]. This data was collected
by the authors of [15] in order to mimic a typical challenge
faced by a digital advertising/marketing agency – a con-
sumer-facing retail client wishes to know which Twitter
accounts have the most influence in a given area. These
accounts are then good targets for relationship-building
and information seeding. The Twitter data has 20 time
windows and 590 active nodes with nonzero out degree.

First, we compared nodal betweenness measures with
out degree, dynamic receive and dynamic broadcast mea-

sures. We used a ¼ 0:9=maxkqðA½k�Þ in the resolvent-based
measures. Table 1 shows the Kendall tau and Spearman rho
correlation coefficients between each pair of centralities,
and, similarly, Table 2 shows the top ten and twenty over-
lap. We see that the four measures are quite similar in
these respects.

This Twitter data set is unusual in the sense that an
external expert-driven ranking of the nodes is available.
In [15] five social media experts were asked to examine
the Twitter data (including the content of the tweets),
and to identify and rank the most important nodes. After
converting the five expert views into a single list, in Table 3
we show how many Twitter accounts in the top ten lists for
out degree, dynamic receive, dynamic broadcast and nodal
betweenness overlap with the entries in this overall expert
top ten. We see that nodal betweenness performs better in
10. Here the markings relate to the new IDs.



Fig. 16. IEEE data. Horizontal axis is nodal betweenness, as shown in Fig. 14. Vertical axis is sum of broadcast and receive. Symbols are as in Fig. 14.

Fig. 17. IEEE data. As for Fig. 15, from day 7 to the end of day 10. Symbols relate to the new IDs, as in Fig. 15.
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this regard than the two other dynamic centrality-based
measures. For further information, the anonymized
accounts IDs for these top ten lists are recorded in Table 4.
We see that there is quite a difference between the out
degree and nodal betweenness lists, with nodal between-
ness giving 1st and 2nd place to two nodes, 398 and 397,
that the experts ranked among their top three.

In summary, we conclude that the new nodal between-
ness measure offers novel and relevant information in this
setting.
4.3. IEEE VAST 2008 challenge

In this section we test nodal betweenness on a time-
stamped voice call interaction data set that was supplied
for test purposes as part of the IEEE VAST 2008 Challenge
[11]. This data has also been studied in [9]. Here, we have
a set of 9,834 interactions between 400 mobile phones
over a ten day period in June 2006. For each call we have
IDs for the send and receive nodes, a start time and the
duration in seconds. The competition designers suggested
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that the node with ID of 200 is the leader in an important
community.

To see the general behavior during the ten day period,
Fig. 13 shows the number of interactions as a function of
time. The activity follows a natural pattern; users are least
active at night and most active in the middle of the day.

Based on the data analyzes submitted by challenge
teams, it is likely that between days 1 to 6, inclusive, node
ID 200 does indeed control an influential subnetwork
involving nodes with IDs 1;2;3, and 5. However, most
competition entries argued that from day 7 to day 10, the
important nodes change their device IDs; 200 changed to
300, and the others changed to 306;309, 360 and 397.
Hence, these nodes from the key subgroup over this period.

In our tests, we work in units of days, so ðA½k�Þij ¼
ðA½k�Þji ¼ 1 if nodes i and j conversed during day k. This gives

10 time points, and we take a ¼ 0:9=maxkqðA½k�Þ ¼ 0:13.
Fig. 14 scatter plots over the nodes IDs (i) the aggregate time
on the phone in seconds against (ii) nodal betweenness; in
both cases from day 1 to the end of day 6. In this plot, the call
leader, ID 200, is marked with a red circle and the other
important nodes known to be under the leader’s control,
IDs 1, 2, 3 and 5, are marked with red rectangles. We see in
this figure that the important nodes rank very highly with
respect to nodal betweenness, forming 5 of the top 6. By con-
trast, only two of these IDs have very high aggregate phone
time, and, in particular, the leader has a modest level of
activity, making this measure a poor predictor of
importance.

Fig. 15 repeats the test in Fig. 14 over the remaining
time period: from day 7 to the end of day 10. Here, the
new IDs of the key group are marked in the plot. As in
the previous graph, final-time nodal betweenness is seen
to be much more useful than aggregate activity in terms
of identifying these important nodes. In particular, the
new call leader, ID 300, marked with a red circle, has very
low overall activity on the phone but ranks 5th out of 400
for nodal betweenness. The other new important IDs have
5 out of the top 6 rankings for nodal betweenness.

Next, we compare nodal betweenness results with
broadcast plus receive centrality. Fig. 16 shows the sum
of broadcast and receive centrality against nodal between-
ness for each node, using the time period from day 1 to the
end of day 6. We have a high correlation coefficient of 0:94
between the two measures and also a high Kendall tau of
0:73. Hence, both measures are able to identify the impor-
tant nodes.

Fig. 17 repeats the experiment in Fig. 16, using the data
running from day 7 to the end of day 10. We see that in this
case the nodal betweenness measure outperforms the sum
of broadcast and receive centrality. In particular, the new
call leader, ID 300, marked with a red circle, has a very
modest broadcast and receive centrality, but ranks 5th
out of 400 for nodal betweenness.

5. Conclusions

Our aims here were to develop and test concepts and
algorithms concerning betweenness centrality for dis-
crete-time dynamic networks. Our approach was based
on a Katz-style walk-counting approach that has a sound
combinatorial basis. Further, since the resulting algorithms
require linear systems to be solved that have the same
sparsity structure as the underlying networks, it is feasible
to compute these new measures on large data sets. A key
novelty of our work was the introduction of a temporal
betweenness measure that quantifies the importance of
each time-point in terms of the global message-passing
capability of the dynamic network. Our computational
tests confirmed that the new dynamic centrality measures
can reveal important insights.
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