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Monte Carlo is a simple and flexible tool that is widely used in computational finance. In this context, it is
common for the quantity of interest to be the expected value of a random variable defined via a stochastic
differential equation. In 2008, Giles proposed a remarkable improvement to the approach of discretizing
with a numerical method and applying standard Monte Carlo. His multilevel Monte Carlo method offers
a speed up of O(ε−1), where ε is the required accuracy. So computations can run 100 times more quickly
when two digits of accuracy are required. The ‘multilevel philosophy’ has since been adopted by a range
of researchers and a wealth of practically significant results has arisen, most of which have yet to make
their way into the expository literature. In this work, we give a brief, accessible, introduction to multilevel
Monte Carlo and summarize recent results applicable to the task of option evaluation.

Keywords: computational complexity; control variate; Euler–Maruyama; Monte Carlo; option value;
stochastic differential equation; variance reduction
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1. Aims

Finding the appropriate market value of a financial option can usually be formulated as an
expected value computation [23,26,41]. In the case where the product underlying the option
is modelled as a stochastic differential equation (SDE), we may

• simulate the SDE numerically to compute many independent sample paths, and then
• combine the option payoff from each path in order to obtain a Monte Carlo estimate, and an

accompanying confidence interval.

Compared with other approaches, notably the direct discretization of a partial differential
equation-based formulation of the problem, a Monte Carlo computation has the advantages of (a)
being simple to implement and (b) being flexible enough to cope with a wide range of underlying
SDE models and option payoffs. On the downside, Monte Carlo is typically expensive in terms
of computation time [23, 26].

In the seminal 2008 paper [14], Giles pulled together ideas from numerical analysis, stochastic
analysis and applied statistics in order to deliver a dramatic improvement on the efficiency of the
‘SDE simulation plus Monte Carlo’ approach. If the required level of accuracy, in terms of con-
fidence interval, is ε, the multilevel approach essentially improves the computational complexity
by a factor of ε. So for a calculation requiring two digits of accuracy, we obtain a hundredfold
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improvement in computation time. Multilevel Monte Carlo has rapidly become an extremely hot
topic in the field of stochastic computation, impacting on a wide range of application areas. In
particular, technical reviews of research progress in the field have begun to appear [16,18] and a
comprehensive survey is currently in progress by Giles for the journal Acta Numerica. However,
the area is still sufficiently new that most textbooks in computational finance do not introduce
the topic, and hence it has not been fully integrated into typical graduate-level classes and devel-
opment courses for practitioners. For this reason, we present here an accessible introduction to
the multilevel Monte Carlo approach, and give a brief overview of the current state of the art
with respect to financial option valuation.

In Section 2 we discuss the underlying SDE simulation. Section 3 then considers the com-
plexity of standard Monte Carlo in this setting. In Section 4 we give some motivation for the
multilevel approach, which is introduced and analysed in Section 5. Section 6 illustrates the
performance of the algorithm in practice, using code that has been made available by Giles.
In Section 7 we give pointers to multilevel research in option valuation that has built on [14].
Section 8 concludes with a brief discussion.

2. Convergence in SDE simulation

We consider an Ito SDE of the form

dX (t) = f (X (t)) dt + g(X (t)) dW(t), X (0) = X0. (1)

Here, f : R
m → R

m and g : R
m → R

m×d are given functions, known as the drift and diffusion
coefficients, respectively, and W(t) ∈ R

d is standard Brownian motion. The initial condition X0

is supplied and we wish to simulate the SDE over the fixed time interval [0, T]. The Euler–
Maruyama method [34,36] computes approximations Xn ≈ X (tn), where tn = n�t, according to
X0 = X (0) and, for n = 1, 2, . . . N − 1,

Xn+1 = Xn + f (Xn)�t + g(Xn)�Wn, (2)

where �t = T/N is the stepsize and �Wn = W(tn+1) − W(tn) is the relevant Brownian motion
increment.

In the study of the accuracy of SDE simulation methods, the two most widely used
convergence concepts are referred to as weak and strong [34,36]. Roughly,

• weak convergence controls the error of the means, whereas,
• strong convergence controls the mean of the errors.

To prove weak and strong convergence results, we must impose conditions on the SDE. For
example it is standard to assume that f and g in Equation (1) satisfy global Lipschitz conditions;
that is, there exists a constant L̂ such that

|f (x) − f (y)| ≤ L̂|x − y| and |g(x) − g(y)| ≤ L̂|x − y|, for all x, y ∈ R
m. (3)

Here and throughout we take ‖ · ‖ to be the Euclidean norm. Under such conditions, and for
appropriate initial data, it follows that the Euler–Maruyama method has weak order one, so that

sup
0≤tn≤T

(E[X (tn)] − E[Xn]) = O(�t). (4)

In the sense of strong error, which involves the mean of the absolute difference between the
two random variables at each grid point, Euler–Maruyama achieves only an order of one half in
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general:

E

[
sup

0≤tn≤T
|X (tn) − Xn|

]
= O(�t1/2). (5)

More generally, for any m > 1 and sufficiently small �t there is a constant C = C(m) such that

E

[
sup

0≤tn≤T
|X (tn) − Xn|m

]
≤ C�tm/2. (6)

Strong convergence is sometimes described as a pathwise property. This can be understood via
the Borel-Cantelli Lemma. For example, in [33] it is shown that given any ε > 0 there exists a
path-dependent constant K = K(ε) such that, for all sufficiently small �t,

sup
0≤tn≤T

|X (tn) − Xn| ≤ K(ε)�t1/2−ε .

In the setting of this work, it is tempting to argue that strong convergence is not relevant; if we
wish to compute an expected value based on the SDE solution then following individual paths
accurately is not important. However, we will see in Section 5 that the analysis in [14] justifying
multilevel Monte Carlo makes use of both weak and strong convergence properties.

To conclude this section, we remark that the analysis of SDE simulation on problems that
violate the global Lipschitz conditions (3) is far from complete. In the case of SDE models for
financial assets and interest rates, issues may arise through faster than linear growth at infinity
and also through unbounded derivatives at the origin. For example, both complications occur in
the class of scalar interest rate models from [1],

dX (t) = (α−1X (t)−1 − α0 + α1X (t) − α2X (t)r) dt + α3X (t)ρ dW(t),

where the αi are positive constants and r, ρ > 1. Although some positive results are available
for specific nonlinear structures [27–29,42], there has also been a sequence of negative results
showing how Euler–Maruyama can break down on nonlinear SDEs [27,30,37].

3. SDE simulation and standard Monte Carlo

Given the SDE (1), suppose we wish to approximate the final time expected value of the solution,
E[X (T)], using Monte Carlo with Euler–Maruyama. We will let ε denote the accuracy require-
ment in terms of confidence interval width; fixing on a 95% confidence level to be concrete, we
therefore wish to be in a position where applying the algorithm independently a large number
of times, the exact answer would be within ±ε of our computed answer with frequency at least
0.95.

Let X [s]
N denote the Euler–Maruyama final time approximation along the sth path. Using M

Monte Carlo samples we may form the sample average

aM = 1

M

M∑
s=1

X [s]
N .

The overall error in our approximation has the form

aM − E[X (T)] = aM − E[X (T) − XN + XN ]

= aM − E[XN ] + E[XN − X (T)]. (7)
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Note that XN denotes a random variable describing the result of applying Euler–Maruyama (2),
whereas each X [s]

N is an independent sample from the distribution given by XN . The expres-
sion (7) breaks down the error into two terms. The statistical error, aM − E[Xn], is concerned
with how well we can approximate an expected value from a finite number of samples; it does
not depend on how accurately the numerical method approximates the SDE (in particular it does
not depend significantly on �t) and it will generally decrease if we take more sample paths. The
discretization error, or bias, E[XN − X (T)], arises because we have approximated the SDE with
a difference equation; this is the discrepancy that would remain if we had access to the exact
expected value of the numerical solution and it will generally decrease if we reduce the stepsize.

Standard results [23,40] tell us that the statistical error aM − E[Xn] can be described via a
confidence interval of width O(1/

√
M ). The weak convergence property (4) shows that the bias

E[XN − X (T)] behaves like O(�t); so we must add this amount to the confidence interval width.
We arrive at an overall confidence interval of width O(1/

√
M ) + O(�t). To achieve our required

target accuracy of ε, we see that 1/
√

M and �t should scale like ε. In other words, M should
scale like ε−2 and �t should scale like ε.

It is reasonable to measure computational cost by counting either the number of times that
the drift and diffusion coefficients, f and g, are evaluated, or the number of times that a random
number generator is called. In either case, the cost per path is proportional to 1/�t, and hence
the total cost of the computation scales like M/�t. We argued above that M should scale like
ε−2 and �t should scale like ε. Here is the conclusion:

we may achieve accuracy ε by combining Euler–Maruyama and standard Monte Carlo at an
overall cost that scales like ε−3.

One approach to improving the computational complexity is to replace Euler–Maruyama with
a simulation method of higher weak order [3,34,36]. If we use a second-order method, so that
Equation (4) is replaced by

sup
0≤tn≤T

(E[X (tn)] − E[Xn]) = O(�t2),

then a straightforward adaption of the arguments above lead to the following conclusion:

we may achieve accuracy ε by combining a second-order weak method and standard Monte
Carlo at an overall cost that scales like ε−2.5.

We note, however, that establishing second-order weak convergence requires extra smoothness
assumptions to be placed on the SDE coefficients.

As we show in Section 5, the method of Giles [14] has the following feature:

we may achieve accuracy ε by using Euler–Maruyama in a multilevel Monte Carlo setting
at an overall cost that scales like ε−2(log ε)2.

Moreover, by using a higher strong order method, such as Milstein [34,36], it is possible to
reduce the multilevel Monte Carlo cost to the order of ε−2 [13].

It is worth pausing to admire an O(ε−2) computational complexity count. Suppose we are
given an exact expression for the SDE solution, as a function of W(t). Hence, we are able to
compute exact samples, without the need to apply a numerical method. A standard Monte Carlo
approach requires 1/

√
M to scale like ε in order to achieve the required confidence interval

width. If we regard the evaluation of each exact X (T) sample as having O(1) cost, then the
cost overall will be proportional to M ; that is, ε−2. In this sense, with a multilevel approach the
numerical analysis comes for free; we can solve the problem as quickly as one for which we
have an exact pathwise expression for the SDE solution.
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4. Motivation for the multilevel approach

We can motivate the multilevel approach by considering a series expansion of Brownian motion,
where the coefficients are random variables. The Paley–Wiener representation over [0, 2π ] has
the form

W(t) = Z0
t√
2π

+ 2√
π

∞∑
n=1

Zn
sin((1/2)nt)

n
, (8)

where the {Zi}i≥0 are i.i.d. and N(0, 1); see, for example, [35]. In Figure 1 we draw samples for
the Zi and plot the curves arising when the infinite series in Equation (8) is truncated to

∑M
n=1, for

M = 1, 2, 5, 10, 50 and 200. It is clear that the early terms in the series affect the overall shape,
while the later terms add fine detail. From this perspective, it is intuitively reasonable that we
can build up information at different resolution scales, with the finer scales having less impact
on the overall picture.

Now, we may view Monte Carlo as requiring a ‘black box’ that returns independent samples.
In our numerical SDE context, the samples come from a distribution that is only approximately
correct, and the black box (the Euler–Maruyama method) comes with a dial. Turning the dial
corresponds to changing �t. Samples with a smaller �t are more expensive – we have to wait
longer for them because the paths contain more steps. The multilevel Monte Carlo algorithm
cleverly exploits this dial. The black box is used to produce samples across a range of stepsizes.
Most of the samples that we ask for will be obtained quickly with relatively large �t values.
Correspondingly few samples will be generated at the expensive small �t levels. In a sense,
the large �t paths cover the low-frequency information so that expensive, high-frequency paths
are used sparingly. Figure 1 might convince you that this idea has some merit. The next section
works through the details.
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Figure 1. Paths based on the Paley–Wiener representation (8). As indicated, the six plots show the sum truncated after
M = 1, 2, 5, 10, 50 and 200 sine terms.



2352 D.J. Higham

5. Multilevel Monte Carlo with Euler–Maruyama

We focus now on the more general case where we wish to approximate the expected value of
some function of the final time solution, E[h(X (T))]. We have in mind the case where X (t)
represents an underlying asset, in risk-neutral form, and h(·) is the payoff of a corresponding
European-style option [23,26]. For example, h(x) = max(x − E, 0) for a European call option
with exercise price E and expiry time T. For simplicity, we will consider the scalar case, so that
m = d = 1 in Equation (1), but we note that all arguments generalize to the case of systems, with
the same conclusions. We assume that the payoff function h satisfies a global Lipschitz condition;
this covers the call and put option cases.

Multilevel Monte Carlo uses a range of different discretization levels. At level l we have a
stepsize of the form

�tl = K−lT , where l = 0, 1, 2, . . . , L. (9)

Here K > 1 is a fixed quantity whose precise value does not affect the overall complexity of the
method, in terms of the asymptotic rate as ε → 0. For simplicity we may think of K = 2. As the
upper limit on the level index we choose

L = log ε−1

log K
. (10)

In this way, at the coarsest level, l = 0, we have the largest stepsize, �t0 = T , covering the whole
interval in one step. At the most refined level, l = L, we have �tL = O(ε) – from Equation (4),
this the stepsize needed by Euler–Maruyama to achieve weak error of O(ε).

With each choice of stepsize, �tl, we may apply Euler–Maruyama to the SDE (1) and evaluate
the payoff function h at the final time. We will let the random variable P̂l denote this approxi-
mation to h(X (T)). Now, from the linearity of the expectation operator we have the telescoping
sum

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l − P̂l−1]. (11)

In multilevel Monte Carlo, we use the expansion on the right-hand side as an indirect means
to evaluate the left-hand side. This may be thought of as a recursive application of the control
variate technique, which is widely used in applied statistics [23,26,40, 41]. To estimate E[P̂0]
we form the usual sample mean, based on, say, N0, paths. This gives

Ŷ0 = 1

N0

N0∑
s=1

P̂[s]
0 . (12)

Generally, for E[P̂l − P̂l−1] with l > 0 we will use Nl paths so that

Ŷl = 1

Nl

Nl∑
s=1

(P̂[s]
l − P̂[s]

l−1). (13)

It is vital to point out that P̂[s]
l and P̂[s]

l−1 in Equation (13) come from the same discretized Brownian
path, with different stepsizes �tl and �tl−1, respectively. Figure 2 illustrates the idea for the case
K = 2. In words, at a general level l, we compute Nl Brownian paths and, for each path, apply
Euler–Maruyama twice; once with stepsize �tl and once with stepsize �tl−1. (In practice, we
compute a path at resolution �tl and then combine Brownian increments over pairs of steps in
order to get a path at resolution �tl−1.) Having constructed our Nl independent paths for level l,
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Figure 2. Illustration of how the estimator Ŷl in Equation (13) is constructed. Circles (joined by straight lines for
clarity) show the refined Euler–Maruyama path, with stepsize �t = 2−lT . Asterisks show the coarser Euler–Maruyama
path, with stepsize �t = 2−l+1T , computed with the same Brownian increments.

we start afresh at level l + 1; none of the earlier information is re-used and new (independent)
pseudo-random numbers are generated.

Because of the choice of L in Equation (10) we know from Equation (11) that our estimator
will have the required O(ε) bias. Now we will see how to choose the values of {Nl}L

l=0 to achieve
the corresponding accuracy in the overall confidence interval.

Considering a general level where l > 0, appealing to the strong convergence behaviour (6) of
Euler–Maruyama and our assumption that h is globally Lipschitz, we have

var[P̂l − h(X (T))] = E[(P̂l − h(X (T)))2] − (E[P̂l − h(X (T))])2 (14)

≤ E[(P̂l − h(X (T)))2] (15)

≤ constant × E[(XN − X (T))2] (16)

= O(�tl). (17)

It then follows from Minkowski’s Inequality [11] that

var[P̂l − P̂l−1] = var[P̂l − h(X (T)) + h(X (T)) − P̂l−1]

≤
(√

var[P̂l − h(X (T))] +
√

var[h(X (T)) − P̂l−1]

)2

= O(�tl). (18)

Applying this result in Equation (13) we conclude that Ŷl has a variance of O(�tl/Nl) for l > 1.
Because all levels are independent, we deduce that

var

[
Ŷ0 +

L∑
l=1

Ŷl

]
= var[Ŷ0] +

L∑
l=1

O

(
�tl
Nl

)
.
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To balance the variance evenly across levels l = 1, 2, . . . , L, and to control the variance at level
l = 0, we choose Nl = O(ε−2L�tl). It then follows that our overall estimator has variance

O(ε2) +
L∑

l=1

O

(
ε2

L

)
= O(ε2).

In this way, we have achieved the bias and variance required to give a confidence interval of the
specified ε level of accuracy.

To quantify how the complexity of this algorithm scales with ε, we sum the cost of level l
from l = 0 to L to give

L∑
l=0

Nl�t−1
l =

L∑
l=0

ε−2L�tl�t−1
l = L2ε−2.

From Equation (10) this expression becomes O(ε−2(log ε)2), as we quoted in Section 3.
At this stage, a few remarks are in order:

Constructive upper bound: In the course of the analysis above, we came up with a general-
purpose choice for the number of paths at each level, {Nl}L

l=0. The final complexity count
is therefore an upper bound on the best possible value. In practice, for a given problem
and accuracy requirement, we can perform a cheap pre-processing step where appropriate
variances are estimated and an optimization problem is solved in order to give a sequence
{Nl}L

l=0; see, for example, [18].

Weak versus strong: The key inequality (18), which guarantees tight coupling between coarse
and fine paths, made use of the strong convergence property. For small �tl, both paths are
close to the true path, so the paths must be close to each other. In this sense, both strong and
weak error rates are key ingredients in the analysis. We note, however, that [6] introduces a
multilevel approach based on tightly coupled path simulation with schemes that are weakly,
but not strongly, convergent.

Variance and second moment: In deriving the inequality (17), we discarded the square of
the first moment and used the second moment as an upper bound for the variance. This may
appear to be a very crude step, but in our context it does not degrade the final conclusion. (In
a different, Poisson-driven setting where a multilevel method was developed and analysed,
the step (14)–(15) is no longer optimal – it is beneficial to analyse the variance directly [4].)

Exploiting structure: As mentioned above, multilevel Monte Carlo may be viewed as a recur-
sive version of the control variate approach. In the simplest version of control variates, if we
wish to compute E[X ], we may instead compute E[X − Y ] and add E[Y ], where Y is a
suitably constructed random variable such that X − Y has small variance and E[Y ] is read-
ily available [23,26]. However, the success of this technique usually relies on incorporating
some extra knowledge of the problem: a structure such as symmetry or convexity, or the
existence of a ‘nearby’ problem that is analytically tractable. In this respect, the multilevel
Monte Carlo method for SDEs is very different from traditional control variates: the analysis
is completely general and no special insights are needed about the nature of the underlying
SDE, other than knowledge of the basic weak and strong convergence properties.

Multilevel versus multigrid: In [16], Giles explains that the multigrid approach in numer-
ical PDEs was ‘the inspiration for the author in developing the MLMC method for SDE
path simulation.’ There are clear similarities between the two: the use of geometrically
refined/coarsened grids and the idea that relatively little work needs to be expended on the
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fine grids in order to resolve high frequency components. Indeed the multigrid idea has been
applied directly to the Monte Carlo context [9]. However, it is important to keep in mind that
there are also conceptual differences between the two techniques: multilevel Monte Carlo,
in the sense discussed here, is distinct, and novel. For example, multilevel Monte Carlo does
not involve the notion of passing information up and down the refinement levels, as is done
with multigrid V or W cycles.

Related earlier methods: As discussed in [16, section 1.3], related earlier work on improving
Monte Carlo when samples are generated via discretization was performed by Heinrich, see,
for example [24,25], and Kebaier [32] devised a two-level approach to path simulation.

Based on the type of analysis that we summarized above, it is possible to state a general
theorem about multilevel simulation:

Theorem 5.1 (Giles; see, e.g. [16]) Let P denote a random variable, and let Pl denote the
corresponding level l numerical approximation. If there exist independent estimators Yl based
on Nl Monte Carlo samples, and positive constants α, β, γ , c1, c2, c3 such that α ≥ 1

2 min(β, γ )

and

(1) |E[Pl − P]| ≤ c12−αl

(2) E[Y0] = E[P0] and E[Yl] = E[Pl − Pl−1] for l > 0
(3) var[Yl] ≤ c2N−1

l 2−βl

(4) E[Cl] ≤ c3Nl2γ l, where Cl is the computational complexity of Yl,

then there exists a positive constant c4 such that for any ε < e−1 there are values L and Nl for
which the multilevel estimator

Y =
L∑

l=0

Yl

has a mean-square error with bound

E[(Y − E[P])2] < ε2

with a computational complexity C with bound

E[C] ≤

⎧⎪⎨
⎪⎩

c4ε
−2, β > γ ,

c4ε
−2(log(ε)2), β = γ ,

c4ε
−2−(γ−β)/α , β < γ .

Giles [13] has also shown how to construct estimators for which β > γ = 1, by replacing
Euler–Maruyama with the more strongly accurate Milstein scheme. For European-style options
with Lipschitz payoff functions, this makes O(ε−2) complexity achievable. From the arguments
in section (3), it is intuitively reasonable that this level of cost should be optimal in a well-defined
sense. The issue is formalized in [38], where (almost) optimality of the multilevel approach is
confirmed.

In Section 2 we mentioned that the basic Euler–Maruyama method (1) may fail to converge
in a weak or strong sense on nonlinear SDEs in the asymptotic limit �t → 0. A closely related
question, of direct relevance to this review, is whether the combination of ‘Euler–Maruyama
plus Monte Carlo’ converges for nonlinear SDEs in the ε → 0 limit. In [28, 29], Hutzenthaler
and Jentzen showed that Euler–Maruyama Monte Carlo can achieve convergence in a P-almost
sure sense in cases where the underlying Euler–Maruyama scheme diverges. This can happen
when the events causing Euler–Maruyama to diverge are so rare that they are extremely unlikely
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to impact on any of the Monte Carlo samples. However, in [31] Hutzenthaler et al. showed that
the multilevel Monte Carlo method does not inherit this property. They established this result
using a counterexample of the form

dX (t) = −X (t)5 dt, (19)

with X (0) having a standard Gaussian distribution, where E[X (t)2] is the required moment. Note
that the SDE (19) has a zero diffusion term, so it may also be regarded as a random ODE. A
modified version of Euler–Maruyama, known as a tamed method, was shown in [31] to recover
convergence in the multilevel setting.

6. Computational experiments

Asymptotic, ε → 0, analysis indicates that multilevel Monte Carlo offers a dramatic improve-
ment in computational complexity. Numerous computational studies have confirmed that this
potential can be realized in practice.

Giles has made MATLAB code available at

http://people.maths.ox.ac.uk/gilesm/acta/

that can be used as the basis for computational experimentation. In Figure 3 we show results
based on this code. Here, we have an asset model given by geometric Brownian motion

dX (t) = 0.05X (t) dt + 0.25X (t) dW(t), X (0) = 100.

We consider (a) a European call and (b) a digital call option over [0, T] with T = 1 and exercise
price 100. So the payoff functions, after discounting for interest, are

h(x) = e−0.05T max(x − 100, 0)

for the call option and

h(x) =
{

e−0.05T 100 when x > 100

0 when x < 100

for the digital option. (For those who worry about probability zero events, the code defines
h(100) = e−0.05T (100 + 0)/2 in the digital case.) The code repeats the Monte Carlo simulation
for accuracy requests of ε = 0.1, 0.05, 0.02, 0.01, 0.005. The upper left picture in Figure 3 shows,
for the call option, the number of paths Nl used at each level l in the multilevel method. We see
that for a given ε more paths are used at the cheaper (small l) levels, and as ε is decreased,
so that more accuracy is required, extra levels are added. The upper right picture indicates the
corresponding computational cost in terms of run time. More precisely, the asterisks (joined by
dashed lines) show the cost weighted by ε2 as a function of ε. We see that this quantity remains
approximately constant, as predicted by the analysis. The picture also shows the scaled cost for
an equivalent standard Monte Carlo computation, using a solid linetype. We see a much larger
cost that appears to grow faster than ε−2. The lower pictures in Figure 3 give the same results
for the case of the digital option, where the payoff function is not globally Lipschitz. Again the
multilevel version is seen to be more efficient than standard Monte Carlo.
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Figure 3. Output from the multilevel Monte Carlo code made available by Giles (see text for web site address). Left-
-hand pictures show the number of paths per level at each target accuracy. Right-hand pictures show the computation
time, scaled by ε2. Upper pictures are for a European call option. Lower pictures are for a digital option.

7. Follow-on research

In this section we summarize some of the key advances that have been made since the original
multilevel breakthrough [14]. We focus on work that is directly relevant to financial option val-
uation. The comprehensive overviews [16,18] can be consulted for further details on these, and
other, areas. The webpage maintained by Giles at

http://people.maths.ox.ac.uk/~gilesm/mlmc\_community.html

is also an excellent source of up-to-date information.

7.1 Beyond European calls and puts

A key step in the analysis of Section 5 was to show that the coarse and refined paths are tightly
coupled, in the sense that they produce payoffs whose difference has small variance. The logic
behind the analysis may be loosely summarized as

A strong convergence of Euler–Maruyama ⇒
B coarse and refined paths close to the true path ⇒
C coarse and refined paths close to each other ⇒
D coarse and refined payoffs close to each other.

The C ⇒ D step appealed to the global Lipschitz property of h. This is valid for European
call and put options, where h(x) = max(x − E, 0) and h(x) = max(E − x, 0), respectively. How-
ever, the analysis must be refined for those European-style options where E[h(X (T))] is required
for functions h that violate the global Lipschitz criterion. We may also wish to deal with path-
dependent options where an expected value operation is applied to a functional depending on
some or all of the values X (t) for 0 ≤ t ≤ T .

These more exotic options include problematic classes where, for certain SDE paths, the pay-
off may be very sensitive to small changes. For example, with digital options that expire close to
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the money, a small change in the asset path can lead to an O(1) change in the payoff. Similarly,
the payoff from a barrier option is very sensitive to those paths that flirt with the barrier. In these
cases, the logical flow above above must be adapted. Intuitively, we should be able to exploit the
fact that troublesome paths are the exception rather than the rule, and hence C ⇒ D with high
probability. In some cases this allows us to recover the computational complexity that we saw
for European calls and puts. In other cases we must accept a slight increase in cost.

The behaviour of multilevel Monte Carlo for Asian, lookback and digital options was con-
sidered computationally in the original work of Giles [14]. Rigorous analysis to back up these
results for barrier, lookback and digital options was first given in [21]. Further work has been
targeted at binary options [5], Asian options [2], basket options [15], barrier options [22] and
American options [8]. The use of multilevel Monte Carlo to compute sensitivities with respect
to problem parameters, that is, Greeks, was considered in [10].

7.2 Further developments

It is common practice to combine more than one variance reduction technique. Given that anti-
thetic variables can be effective in option valuation [23,26], it is natural to consider embedding
this approach within the multilevel framework. Giles and Szpruch [17,19] have shown that this
can be effective, particularly when Milstein is used for the numerical integration. A conditional
Monte Carlo approach has also been shown to be fruitful in the mutlilevel setting [13]. In a differ-
ent direction, Rhee and Glynn [39] have proposed an extra level of randomization that produces
an unbiased multilevel estimator.

To go beyond O(ε−2) complexity it is possible to move to quasi Monte Carlo, where a low-
discrepancy sequence replaces a pseudo-random sequence. Giles and Waterhouse [20] have
demonstrated that a combination of quasi Monte Carlo and multilevel can outperform each sep-
arate technique. Belomestny and Nagapetyan [7] have also developed a multilevel Monte Carlo
approach that, for appropriate classes of SDE, breaks the O(ε−2) complexity barrier.

Finally, we note that the multilevel methodology has also been extended to asset models that
are not driven purely by Brownian motion [12,43].

8. Discussion

Our aim in this article was to explain in an accessible manner the key ideas behind the multilevel
Monte Carlo method. We focussed on the case of SDE-based financial option valuation, where
Monte Carlo is a widely used tool. At the heart of the technique is a very general and widely
applicable philosophy – a recursive application of control variates that relies on tight coupling
between simulations at different resolutions. The resulting algorithm is sufficiently simple and
effective that it can be implemented straightforwardly and used to produce noticable gains in
computational efficiency in very general circumstances. However, as evidenced by the wealth of
current research activity, there is also substantial scope for (a) refining the multilevel approach
in order to exploit problem-specific information and (b) developing multilevel methods in many
other stochastic simulation scenarios. For these reasons we envisage multilevel Monte Carlo
evolving into a cornerstone of computational finance.
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